NOTE

CONSTRUCTING 3-DESIGNS FROM SPREADS AND LINES

Luigia BERARDI
Dip di Ingegneria Elettrica-Università, I-67100 L'Aquila, Italy

Received 28 September 1987
Using the elements of a partial spread of $\operatorname{PG}(d, q)$ as points, a class of 3 -designs is constructed.

1. Introduction

A $t-(v, K, \Lambda)$ design is an incidence structure $\mathscr{D}=(\mathscr{P}, \mathscr{B}, I)$ satisfying the following conditions:
(i) \mathscr{P} has v elements, which we call points.
(ii) Any element of \mathscr{B} (which is called a block) is incident with precisely k points, being $k \in K$.
(iii) The number of blocks through any t points is an element of $\boldsymbol{\Lambda}$. If $|K|=|\Lambda|=1$, say $K=\{k\}$ and $\Lambda=\{\lambda\}$, then \mathscr{D} is also called a $t-(v, k, \lambda)$ design.
A partial t-spread [5,3] of a finite projective space $P=\operatorname{PG}(d, q)$ is a set \mathscr{S} of mutually skew t-dimensional subspaces. The partial t-spread \mathscr{S} is said to be a t-spread if any point of P is on (exactly) one element of \mathscr{S}. It is well-known that $\operatorname{PG}(d, q)$ has a t-spread if and only if $t+1$ divides $d+1$ (cf. [4] or [2], II,7.4.2).

By Θ_{s} we denote the number of points in an s-dimensional subspace of a projective space of order q, this is $\Theta_{s}=q^{s}+q^{s-1}+\cdots+q+1$.

Many connections between spreads and finite structures can be found in [1].
In this note we shall construct a class of 3-(v, K, Λ) designs from partial t-spreads in $\operatorname{PG}(d, q)$. In an important special case we will get (ordinary) $3-(v, k, \lambda)$ designs.

2. The construction

Let \mathscr{S} be a partial t-spread in $\boldsymbol{P}=\operatorname{PG}(d, q)$. We define the design $\boldsymbol{D}=\boldsymbol{D}(\mathscr{S})$ as follows.
The points of \boldsymbol{D} are the elements of \mathscr{S}.
The blocks of \boldsymbol{D} are those lines of \boldsymbol{P} which are not contained in any element of \mathscr{S} but intersect at least three elements of \mathscr{S}.

A point \mathscr{U} (that is an element $\mathscr{U} \in \mathscr{P}$) is incident with a block ℓ if and only if $\mathscr{U} \cap \ell \neq \emptyset$.

The following theorem is easy to prove.
Theorem. D is a 3- (v, K, Λ) design with

$$
v=|\mathscr{P}|, \quad K \subseteq\{3,4, \ldots, q+1\}, \quad \Lambda \subseteq\left\{\Theta_{-1}, \Theta_{0}, \Theta_{1}, \ldots, \Theta_{t}\right\}
$$

Proof. We have only to show that any three points of D are incident with $\Theta_{-1}, \Theta_{0}, \Theta_{1}, \ldots, \Theta_{t}$ blocks. In order to prove this, let $\mathscr{U}_{1}, \mathscr{U}_{2}, \mathscr{U}_{3}$ be three distinct elements of \mathscr{S}. Let \mathscr{U}_{3} intersect the subspace $\left\langle\mathscr{U}_{1}, \mathscr{U}_{2}\right\rangle$ in a subspace \mathscr{U}^{\prime} of dimension $u(-1 \leqslant u \leqslant t)$. Since through any point of \mathscr{U}^{\prime} there is exactly one line which intersects \mathscr{U}_{1} and \mathscr{U}_{2}, there are exactly Θ_{u} transversal lines of \mathscr{U}_{1}, $\mathscr{U}_{2}, \mathscr{U}_{3}$.

Hence the theorem is proved completely.
Corollary 1. If \mathscr{S} is a (total) t-spread of $P=\operatorname{PG}(d, q)$, then $D(\mathscr{P})$ is a 3-($|\mathscr{P}|, q+1, \Lambda)$ design with $\Lambda \subseteq\left\{\Theta_{-1}, \Theta_{0}, \ldots, \Theta_{t}\right\}$.

Now we consider the smallest possible dimension.

Corollary 2. If \mathscr{S} is a partial t-spread of $P=P G(2 t+1, q)$, then $D(\mathscr{P})$ is a 3-($\left.|\mathscr{P}|, K, \Theta_{t}\right)$ design with $K \subseteq\{3,4, \ldots, q+1\}$.

The proof is immediate, since any two elements of \mathscr{P} generate the whole space \boldsymbol{P}.

Corollary 3. If \mathscr{S} is a (total) t-spread of $P=P G(2 t+1, q)$, then $D(\mathscr{P})$ is a 3- $\left(q^{t+1}+1, q+1, \Theta_{t}\right)$ design.

References

[1] A. Barlotti, Alcuni procedimenti per la costruzione di piani grafici non desarguesiani, Conferenze Sem. Mat. Bari 127 (1966) 1-17.
[2] A. Beutelspacher, Einführung in die endliche Geometrie II: Projektive Räume (Bibliographisces Institut, Mannheim-Wien-Zürich 1983).
[3] A. Beutelspacher and F. Eugeni, On the type of partial t-spread in finite projective spaces, Discrete Math. 54 (1985) 241-257.
[4] P. Dembowski, Finite geometries (Springer Verlag, Berlin-Heidelberg-New York, 1968).
[5] G. Tallini, Fibrazioni in rette di PG(r, q). Le Matematiche Catania, 37 (1982) 8-27.

