The stability of a cubic type functional equation with the fixed point alternative

Yong-Soo Junga,∗,1, Ick-Soon Changb

a Institute of Basic Science, Seowon University, Cheongju, Chungbuk 361-742, South Korea
b Department of Mathematics, Chungnam National University, Taejon 305-764, South Korea

Received 7 August 2003
Available online 4 February 2005
Submitted by William F. Ames

Abstract

In this note we investigate the generalized Hyers–Ulam–Rassias stability for the new cubic type functional equation

\[f(x + y + 2z) + f(x + y - 2z) + f(2x) + f(2y) = 2[f(x + y) + 2f(x + z) + 2f(y + z) + 2f(y - z) - f(x - z)] \]

by using the fixed point alternative. The first systematic study of fixed point theorems in nonlinear analysis is due to G. Isac and Th.M. Rassias [Internat. J. Math. Math. Sci. 19 (1996) 219–228].

Keywords: Stability; Cubic function; Fixed point alternative

1. Introduction

In 1940, S.M. Ulam [23] proposed the following question concerning the stability of group homomorphisms: Under what condition does there is an additive mapping near an approximately additive mapping between a group and a metric group?

∗ Corresponding author.
E-mail addresses: ysjung@seowon.ac.kr, ysjung@math.cnu.ac.kr (Y.-S. Jung), ischang@math.cnu.ac.kr (I.-S. Chang).

1 This work was supported by Korean Research Foundation Grant (KRF-2002-075-C00002).
In the next year, D.H. Hyers [7] answers the problem of Ulam under the assumption that the groups are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mappings was given by Th.M. Rassias [17]. Since then, the stability problems of various functional equation have been extensively investigated by a number of authors (for instance, [1–4,6,8,9,12,18–22]).

By regarding a large influence of S.M. Ulam, D.H. Hyers and Th.M. Rassias on the investigation of stability problems of functional equations the stability phenomenon that was introduced and proved by Th.M. Rassias [17] in the year 1978 is called the Hyers–Ulam–Rassias stability.

Consider the functional equation
\[f(x + y) + f(x - y) = 2f(x) + 2f(y). \]
The quadratic function \(f(x) = cx^2 \) is a solution of this functional equation, and so one usually is said the above functional equation to be quadratic [1,5,11,13].

The Hyers–Ulam stability problem of the quadratic functional equation was first proved by F. Skof [22] for functions between a normed space and a Banach space. Afterwards, her result was extended by P.W. Cholewa [4] and S. Czerwik [5].

The cubic function \(f(x) = cx^3 \) satisfies the functional equation
\[f(2x + y) + f(2x - y) = 2f(x + y) + 2f(x - y) + 12f(x). \] (1.1)

Hence, throughout this note, we promise that Eq. (1.1) is called a cubic functional equation and every solution of Eq. (1.1) is said to be a cubic function. The stability result of Eq. (1.1) was obtained by K.-W. Jun and H.-M. Kim [10] (see also [16]).

Now we introduce the new cubic type functional equation, that is,
\[f(x + y + 2z) + f(x + y - 2z) + f(2x) + f(2y) = 2f(x + y) + 2f(x + z) + 2f(x - z) + 2f(y + z) + 2f(y - z) \] (1.2) satisfying the following algebraic identity:
\[(x + y + 2z)^3 + (x + y - 2z)^3 + (2x)^3 + (2y)^3 = 2[(x + y)^3 + 2(x + z)^3 + 2(y + z)^3 + 2(x - z)^3 + 2(y - z)^3]. \]

The main goal of this note is to offer the generalized Hyers–Ulam–Rassias stability result for the functional equation (1.2) by using the fixed point alternative [14] as in [15].

2. Stability of Eq. (1.2)

For completeness, we will first present solutions of the functional equation (1.2).

Lemma 2.1. Let \(X \) and \(Y \) be real vector spaces. A function \(f : X \to Y \) satisfies the functional equation (1.2) if and only if \(f \) is cubic.

Proof. \((\Rightarrow)\) Substituting \(x = y = z = 0 \) in (1.2) yields \(f(0) = 0 \). Putting \(x = -z \) and \(y = z \) in (1.2) and then replacing \(z \) by \(z/2 \) in the result, we get
\[f(z) + f(-z) = 0 \]

which implies that \(f \) is odd.

Letting \(y = 0 \) in (1.2) and employing the fact that \(f \) is odd, we obtain that
\[f(x + 2z) + f(x - 2z) + 6f(x) = 4f(x + z) + 4f(x - z). \] \hspace{1cm} (2.1)

Setting \(y = 0 = z \) in (1.2) gives the identity \(f(2x) = 8f(x) \), and so we replace \(x \) by \(2x \) in (2.1) to get
\[f(2x + z) + f(2x - z) = 2f(x + z) + 2f(x - z) + 12f(x) \] \hspace{1cm} (2.2)

for all \(x, z \in X \) which implies that \(f \) is cubic.

\((\Leftarrow) \) Suppose that \(f \) is cubic. Putting \(x = 0 = y \) in (1.1), we get \(f(0) = 0 \). Setting \(x = 0 \) in (1.1) yields \(f(y) = -f(y) \) and by letting \(y = 0 \) in (1.1) and \(y = x \) in (1.1), we obtain that \(f(2x) = 8f(x) \) and \(f(3x) = 27f(x) \), respectively.

We substitute \(y := x + y \) in (1.1) and then \(y := x - y \) in (1.1) to obtain that
\[f(3x + y) + f(x - y) = 2f(2x + y) - 2f(y) + 12f(x) \] \hspace{1cm} (2.3)

and
\[f(3x - y) + f(x + y) = 2f(2x - y) + 2f(y) + 12f(x). \] \hspace{1cm} (2.4)

Adding (2.3) to (2.4) and then using (1.1), we see that
\[f(3x + y) + f(3x - y) = 3f(x + y) + 3f(x - y) + 48f(x) \] \hspace{1cm} (2.5)

for all \(x, y \in X \).

Replacing \(x \) and \(y \) by \(x + y \) and \(x - y \) in (2.5), respectively, we have
\[f(4x + 2y) + f(2x + 4y) = 3f(2x) + 3f(2y) + 48f(x + y), \]
which, in view of the identity \(f(2x) = 8f(x) \), reduces to
\[f(2x + y) + f(x + 2y) = 3f(x) + 3f(y) + 6f(x + y). \] \hspace{1cm} (2.6)

Putting \(x := x + 3y \) and \(y := x - 3y \) in (2.6) and then using the identities \(f(2x) = 8f(x) \), \(f(3x) = 27f(x) \), we have
\[9f(x + y) + 9f(x - y) = f(x + 3y) + f(x - 3y) + 16f(x). \] \hspace{1cm} (2.7)

Let us interchange \(x \) with \(y \) in (2.7) to get the identity
\[9f(x + y) - 9f(x - y) = f(3x + y) - f(3x - y) + 16f(y). \] \hspace{1cm} (2.8)

Then, by adding (2.7) to (2.8), we lead to
\[18f(x + y) = f(x + 3y) + f(x - 3y) + f(3x + y) - f(3x - y) + 16f(x) + 16f(y). \] \hspace{1cm} (2.9)

On the other hand, if we interchange \(x \) with \(y \) in (2.5), we get
\[f(x + 3y) - f(x - 3y) = 3f(x + y) - 3f(x - y) + 48f(y). \] \hspace{1cm} (2.10)

Hence, according to (2.5) and (2.10), we obtain that
\[6f(x + y) = f(3x + y) + f(3x - y) + f(x + 3y) - f(x - 3y) - 48f(x) - 48f(y). \]
(2.11)

Now, by adding (2.9) and (2.11), we arrive at
\[f(x + 3y) + f(3x + y) = 12f(x + y) + 16f(x) + 16f(y). \]
(2.12)

Using (2.5), we have
\[16f(3x + z) + 16f(3x - z) + 16f(3y + z) + 16f(3y - z) = 48f(x + z) + 48f(x - z) + 768f(x) + 48f(y + z) + 48f(y - z) + 768f(y). \]
(2.13)

Also, putting \(x := 3x + z \) and \(y := 3y + z \) in (2.12) and using (2.5), we deduce that
\[16f(3x + z) + 16f(3y + z) + 16f(3x - z) + 16f(3y - z) = f(3x + 9y + 4z) + f(9x + 3y + 4z) - 12f(3x + 3y + 2z) + f(3x + 9y - 4z) + f(9x + 3y - 4z) - 12f(3x + 3y - 2z) = 3f(x + 3y + 4z) + 3f(x + 3y - 4z) + 48f(x + 3y) + 3f(3x + y + 4z) + 3f(3x + y - 4z) + 48f(3x + y) - 36f(x + y + 2z) - 36f(x + y - 2z) - 576f(x) = 3f(3x + y + 4z) + 3f(3x + y - 4z) + 48f(3x + y)
\]
\[+ 3f(x + 3y + 4z) + 3f(x + 3y - 4z) + 48f(x + 3y)
\]
\[= 48f(x + z) + 48f(x - z) + 768f(x) + 48f(y + z) + 48f(y - z) + 768f(y) + 36f(x + y + 2z) + 36f(x + y - 2z) + 576f(x + y). \]
(2.14)

On account of (2.12) and (2.5), the left-hand side of (2.13) can be written in the form
\[16f(3x + z) + 16f(3y - z) + 16f(3x - z) + 16f(3y + z) = f(3x + 9y - 2z) + f(9x + 3y + 2z) - 12f(3x + 3y) + f(9x + 3y - 2z) + f(3x + 9y + 2z) - 12f(3x + 3y) = 3f(x + 3y + 2z) + 3f(x + 3y - 2z) + 48f(x + 3y) + 3f(3x + y + 2z) + 3f(3x + y - 2z) + 48f(3x + y)
\]
\[+ 3f(3x + y - 2z) + 48f(3x + y) - 648f(x + y) = 768f(x) + 768f(y) + 48f(x + z) + 48f(x - z) + 48f(y + z) + 48f(y - z) + 36f(x + y + 2z) + 36f(x + y - 2z) - 72f(x + y). \]
(2.15)

Replacing \(z \) by \(2z \) in (2.15) and then applying (2.14), we obtain
\[16f(3x + 2z) + 16f(3y - 2z) + 16f(3x - 2z) + 16f(3y + 2z) = 3f(x + 3y + 4z) + 3f(x + 3y - 4z) + 48f(x + 3y)
\]
\[+ 3f(x + 3y + 4z) + 3f(x + 3y - 4z) + 48f(x + 3y) - 648f(x + y) = 768f(x) + 768f(y) + 48f(x + z) + 48f(x - z) + 48f(y + z) + 48f(y - z) + 36f(x + y + 2z) + 36f(x + y - 2z) - 72f(x + y). \]
(2.16)

Again, making use of (2.12) and (2.5), we get
\[
16f(3x + 2z) + 16f(3x - 2z) + 16f(3y + 2z) + 16f(3y - 2z) \\
= f(12x + 4z) + f(12x - 4z) - 12f(6x) + f(12y + 4z) \\
+ f(12y - 4z) - 12f(6y) \\
= 64f(3x + z) + 64f(3x - z) - 2592f(x) + 64f(3y + z) \\
+ 64f(3y - z) - 2592f(y) \\
= 64\left[3f(x + z) + 3f(x - z) + 48f(x) + 3f(y + z) + 3f(y - z) + 48f(y)\right] \\
- 2592f(x) - 2592f(y) \\
= 192f(x + z) + 192f(x - z) + 480f(x) + 192f(y + z) \\
+ 192f(y - z) + 480f(y).
\]

Finally, if we compare (2.16) with (2.17), then we conclude that
\[
f(x + y + 2z) + f(x + y - 2z) + 8f(x) + 8f(y) \\
= 2f(x + y) + 4f(x + z) + 4f(x - z) + 4f(y + z) + 4f(y - z)
\]
which, by considering \(f(2x) = 8f(x)\), gives
\[
f(x + y + 2z) + f(x + y - 2z) + f(2x) + f(2y) \\
= 2\left[f(x + y) + 2f(x + z) + 2f(x - z) + 2f(y + z) + 2f(y - z)\right]
\]
for all \(x, y, z \in X\). This completes the proof of the lemma. \(\square\)

For explicitly later use, we state the following theorem:

Theorem 2.2 [14]. (The alternative of fixed point.) Suppose that we are given a complete generalized metric space \((\Omega, d)\) and a strictly contractive mapping \(T : \Omega \to \Omega\) with Lipschitz constant \(L\). Then, for each given \(x \in \Omega\), either
\[
d(T^nx, T^{n+1}x) = \infty \quad \text{for all } n \geq 0,
\]
or there exists a natural number \(n_0\) such that
\[
\begin{align*}
&\bullet \ d(T^nx, T^{n+1}x) < \infty \text{ for all } n \geq n_0; \\
&\bullet \ The \ sequence \ (T^nx) \text{ is convergent to a fixed point } y^* \text{ of } T; \\
&\bullet \ y^* \text{ is the unique fixed point of } T \text{ in the set } \Delta = \{y \in \Omega : d(T^mx, y) < \infty\}; \\
&\bullet \ d(y, y^*) \leq \frac{1}{1-L}d(y, Ty) \text{ for all } y \in \Delta.
\end{align*}
\]

Utilizing the above-mentioned fixed point alternative, we now obtain our main result, i.e., the generalized Hyers–Ulam–Rassias stability of the functional equation (1.2).

From now on, let \(X\) be a real vector space and \(Y\) be a real Banach space. Given a mapping \(f : X \to Y\), we set
\[
Df(x, y, z) := f(x + y + 2z) + f(x + y - 2z) + f(2x) + f(2y) \\
- 2\left[f(x + y) + 2f(x + z) + 2f(x - z) + 2f(y + z) + 2f(y - z)\right]
\]
for all \(x, y, z \in X\).
Let \(\phi : X \times X \times X \to [0, \infty) \) be a function such that
\[
\lim_{n \to \infty} \frac{\phi(\lambda_i^n x, \lambda_i^n y, \lambda_i^n z)}{\lambda_i^{3n}} = 0
\]
(2.18)
for all \(x, y, z \in X \), where \(\lambda_i = 2 \) if \(i = 0 \) and \(\lambda_i = 1/2 \) if \(i = 1 \).

Theorem 2.3. Suppose that a function \(f : X \to Y \) satisfies the functional inequality
\[
\| Df(x, y, z) \| \leq \phi(x, y, z)
\]
(2.19)
for all \(x, y, z \in X \) and \(f(0) = 0 \). If there exists \(L = L(i) < 1 \) such that the function \(x \mapsto \psi(x) = \phi(0, x, 0) \) has the property
\[
\psi(x) \leq L \cdot \lambda_i^3 \cdot \psi \left(\frac{x}{\lambda_i} \right)
\]
(2.20)
for all \(x \in X \), then there exists a unique cubic function \(C : X \to Y \) such that the inequality
\[
\| f(x) - C(x) \| \leq \frac{L^{1-i}}{1-L} \psi(x)
\]
(2.21)
holds for all \(x \in X \).

Proof. Consider the set
\[
\Omega := \{ g : g : X \to Y, g(0) = 0 \}
\]
and introduce the generalized metric on \(\Omega \),
\[
d(g, h) = d_\phi(g, h) = \inf \left\{ K \in (0, \infty) : \| g(x) - h(x) \| \leq K \psi(x), \ x \in X \right\}.
\]
It is easy to see that \((\Omega, d) \) is complete.

Now we define a function \(T : \Omega \to \Omega \) by
\[
Tg(x) = \frac{1}{\lambda_i^3} g(\lambda_i x)
\]
for all \(x \in X \). Note that for all \(g, h \in \Omega \),
\[
d(g, h) < K \quad \Rightarrow \quad \| g(x) - h(x) \| \leq K \psi(x), \ x \in X,
\]
\[
\Rightarrow \quad \left\| \frac{1}{\lambda_i^3} g(\lambda_i x) - \frac{1}{\lambda_i^3} h(\lambda_i x) \right\| \leq \frac{1}{\lambda_i^3} K \psi(\lambda_i x), \ x \in X,
\]
\[
\Rightarrow \quad \left\| \frac{1}{\lambda_i^3} g(\lambda_i x) - \frac{1}{\lambda_i^3} h(\lambda_i x) \right\| \leq LK \psi(x), \ x \in X,
\]
\[
\Rightarrow \quad d(Tg, Th) \leq LK.
\]
Hence we see that
\[
d(Tg, Th) \leq Ld(g, h)
\]
for all \(g, h \in \Omega \), that is, \(T \) is a strictly self-mapping of \(\Omega \) with the Lipschitz constant \(L \).
If we put \(x = 0 = z \) in (2.19) and use (2.20) with the case \(i = 0 \), then we see that
\[
\| f(2y) - 8f(y) \| \leq \varphi(0, y, 0)
\]
(2.22)
which is reduced to
\[
\| f(y) - \frac{1}{32} f(2y) \| \leq \frac{1}{23} \psi(2y) \leq L \psi(y)
\]
for all \(y \in X \), that is, \(d(f, Tf) \leq L = L^1 < \infty \).

If we substitute \(y := y/2 \) in (2.22) and use (2.20) with the case \(i = 1 \), then we see that
\[
\| f(y) - 2^3 f\left(\frac{y}{2}\right) \| \leq \psi(y)
\]
for all \(y \in X \), that is, \(d(f, Tf) \leq L^0 = L^0 < \infty \).

Now, from the fixed point alternative in both cases, it follows that there exists a fixed point \(C \) of \(T \) in \(\Omega \) such that
\[
C(x) = \lim_{n \to \infty} f(\lambda_n x)\lambda_n^3
\]
(2.23)
for all \(x \in X \) since \(\lim_{n \to \infty} d(T^n f, C) = 0 \).

To show that the function \(C : X \to Y \) is cubic, let us replace \(x, y \) and \(z \) by \(\lambda_n x, \lambda_n^i y \) and \(\lambda_n^i z \) in (2.19), respectively, and divide by \(\lambda_n^3 \). Then it follows from (2.18) and (2.23) that
\[
\| Df(x, y, z) \| = \lim_{n \to \infty} \| Df(\lambda_n^i x, \lambda_n^i y, \lambda_n^i z) \| \leq \lim_{n \to \infty} \frac{\varphi(\lambda_n^i x, \lambda_n^i y, \lambda_n^i z)}{\lambda_n^3} = 0
\]
for all \(x, y, z \in X \), that is, \(C \) satisfies the functional equation (1.2). Therefore Lemma 2.1 guarantees that \(C \) is cubic.

According to the fixed point alternative, since \(C \) is the unique fixed point of \(T \) in the set \(\Delta = \{ g \in \Omega : d(f, g) < \infty \} \), \(C \) is the unique function such that
\[
\| f(x) - C(x) \| \leq K \psi(x)
\]
for all \(x \in X \) and some \(K > 0 \). Again using the fixed point alternative, we have
\[
d(f, C) \leq \frac{1}{1 - L} d(f, Tf),
\]
and so we obtain the inequality
\[
d(f, C) \leq \frac{L^{1-i}}{1 - L}
\]
which yields the inequality (2.21). This completes the proof of the theorem.

From Theorem 2.3, we obtain the following corollary concerning the Hyers–Ulam–Rassias stability [17] of the functional equation (1.2).

Corollary 2.4. Let \(X \) and \(Y \) be a normed space and a Banach space, respectively. Let \(p \geq 0 \) be given with \(p \neq 3 \). Assume that \(\delta \geq 0 \) and \(\varepsilon \geq 0 \) are fixed. Suppose that a function \(f : X \to Y \) satisfies the functional inequality
\[
\| Df(x, y, z) \| \leq \delta + \varepsilon (\| x \|^p + \| y \|^p + \| z \|^p)
\]
(2.24)
for all \(x, y, z \in X \). Furthermore, assume that \(f(0) = 0 \) and \(\delta = 0 \) in (2.24) for the case \(p > 3 \). Then there exists a unique cubic function \(C : X \to Y \) such that the inequality
\[
\| f(x) - C(x) \| \leq \frac{\delta}{2^{3-p} - 1} + \frac{\varepsilon}{8 - 2^p} \| x \|^p
\]
holds for all \(x \in X \), where \(p < 3 \) if \(i = 0 \) and \(p > 3 \) if \(i = 1 \), that is, the relation (2.18) is true.

Since the inequality
\[
\frac{1}{\lambda_i} \psi(\lambda_i x) = \frac{\delta}{\lambda_i^{p-3}} + \frac{\lambda_i^{p-3}}{2^p} \varepsilon \| x \|^p \leq \lambda_i^{p-3} \psi(x)
\]
holds for all \(x \in X \), where \(p < 3 \) if \(i = 0 \) and \(p > 3 \) if \(i = 1 \), we see that the inequality (2.20) holds with either \(L = 2^{p-3} \) or \(L = 1/2^{p-3} \). Now the inequality (2.21) yields the inequalities (2.25) and (2.26) which complete the proof of the corollary.

The following corollary is the Hyers–Ulam stability [7] of the functional equation (1.2).

Corollary 2.5. Let \(X \) and \(Y \) be a normed space and a Banach space, respectively. Assume that \(\theta \geq 0 \) is fixed. Suppose that a function \(f : X \to Y \) satisfies the functional inequality
\[
\| Df(x, y, z) \| \leq \theta
\]
for all \(x, y, z \in X \). Then there exists a unique cubic function \(C : X \to Y \) such that the inequality
\[
\| f(x) - C(x) \| \leq \frac{1}{21} \theta
\]
holds for all \(x \in X \).

Proof. In Corollary 2.4, putting \(\delta := 0 \), \(p := 0 \) and \(\varepsilon := \theta/3 \), we arrive at the conclusion of the corollary.

References

