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Abstract 

Mason, J.C. and G.H. Elliott, Near-minimax complex approximation by four kinds of Chebyshev poly x omial 
expansion, Journal of Computational and Applied Mathematics 46 (1993) 291-300. 

Functions of the form w(z)F(z) with F analytic and w(z) = 1, (z2 - l)‘/*, (z + 1)“’ or (z - l)‘/* are 
approximated in the ellipse 5,: 1 z +(z* -l)‘/* 1 = r by w(z>p,(z>, where p,, is a polynomial of degree n. 
Here p,, is obtained by the expansion of F in Chebyshev polynomials of the first, second, third or fourth kinds, 
corresponding to the above four respective weight functions. Bounds are established and computed for the 
norms on 5, of the corresponding projections, thus confirming that all resulting approximations are near- 
minimax within relative distances asymptotically proportional to 4a -* In n, and extending a known result 
(Geddes, 1978) for w(z) = 1 and first kind Chebyshev polynomials. 
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1. Introduction 

1.1. The Chebysheu polynomials 

The Chebyshev polynomials of the first and second kinds are well known. In the case of a 
real variable x on [ - 1, 11, they are defined by 

T,(x) = cos no, (1.1) 

u,(x) = 
sin(n + l)O 

sin 8 ’ (1.2) 
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where the subscript n denotes the polynomial, degree, and where x = cos 8. However, real 
Chebyshev polynomials of the third and fourth kinds may also be defined, and the relevant 
formulae are 

Y&4 = 
cos( n + $)e 

cos(@) ’ 

K(x) = 
sin( n + +)O 

sin(@) ’ 

(1.3) 

(1.4) 

These latter polynomials have appeared in various guises in the literature. They have been 
called “airfoil polynomials”, since they are appropriate for approximating the single square root 
singularities that occur at the sharp end of an airfoil, and a discussion and set of references 
may be found in [3]. They are also sometimes referred to as “half angle shifted” Chebyshev 
polynomials. However their apt designation as third and fourth kind Chebyshev polynomials is 
apparently due to Gautschi [4], in consultation with colleagues in the field of orthogonal 
polynomials. In fact the four polynomials (l.l)-(1.4) form a natural quartet, since they are 
Jacobi polynomials for the four parameter pairs LY = f i, p = + i, being orthogonal on [ - 1, 11 
with respect to 

(1 -x’)-“~, (1 --~~)i’~, (1 -~)r’~(l +.X)-I/~ and (1 +n)“‘(l -x)-i”. 

The four kinds of Chebyshev polynomial are all readily generated from their common 
recurrence relation 

P,(X) = 2%-,(X) -P,-2(X)> PO(X) = 19 (1.5) 

but with differing choices of starting values 

p*(x) =x, 2x, 2x - 1 and 2x + 1, respectively. (1.6) 

In two recent papers of the present authors, some new results and properties were obtained 
on the real interval [ - 1, 11. We considered classes C, r[ - 1, I], C_ i[ - 1, 11 and C, i[ - 1, 11 of 
functions continuous on [ - 1, l] but vanishing at f 1, - 1 or + 1, respectively [9]. We showed 
that expansions in {7’,(x)}, {(l -x*)‘/*U,(x>}, {(l +x>‘/*V,Jx)) and {(l -x)‘/~W,(X>} yielded 
near-minimax approximations in C[ - 1, 11, C + i[ - 1, 11, C_,[- 1, 11 and C+l[- 1, 11, respec- 
tively, and obtained explicit formulae for the- norms of the associated projections. We also 
obtained corresponding results for interpolation at Chebyshev polynomial zeros. The first 
author [7] discussed the application of the four kinds of Chebyshev polynomials to certain 
problems involving indefinite integration or integral transforms. 

The main purpose of the present paper is to seek complex near-minimax series expansion 
results analogous to the real results of [9], by extending the definitions of Chebyshev polynomi- 
als appropriately to a complex variable z. However, several key differences arise in the complex 
case. Firstly, an elliptical domain is involved. Secondly, results depend on the size of the 
domain. Thirdly, analytic rather than continuous function spaces are the more natural setting. 
Fourthly, weighted rather than constrained function spaces are adopted. Finally, it is not 
apparently possible to provide attainable bounds for the norms of series projections. 

The new results establish that weighted Chebyshev series expansions provide excellent 
(near-minimax) approximations to weighted analytic functions around square root singularities, 
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and these results have practical relevancy, for example, to applications in airfoil modelling [3] 
and to crack and punch problems in fracture mechanics [6]. 

1.2. Generalised expansions 

In an earlier discussion, the first author [7] considered the L, approximation of f(z) 
continuous on the elliptical contour 

5,: lz+(i?- l)lq =r, r> 1, (1.7) 

based on a generalised Chebyshev series projection 

(J,,f)(z) = f’c,T&) + (z’- If2 2 d,&l(Z), 
k=O k=l 

where 

‘k = &&f(r)T,(z)(=2 - If’2 dz, 
r 

dk = ;lif(z)u,_,(z) dz, 
r 

WV 

(1.9) 

(1.10) 

and where Tk and U, are Chebyshev polynomials of the first and second kinds given by 

T,(z) = +(w” + w-” ), for 2 = +(w + w-l), 

and 

w n+l _ w-n-1 

U,(z) = = 
w-w-l 

+(Wn+l - W--l)(t2 - 1)-l/2* 

(The prime above the sum in (1.8) indicates that the first term is halved.) It is clear that these 
definitions of T,(z) and U,(z) are natural complex extensions of (1.1) and (1.2). Mason showed 
that 

where 

II Jn,, II m = A,,, (1.11) 

(1.12) 

is the classical Lebesgue constant asymptotic to 4~ -2 In IZ (see, for example, [2]). Since 

llf-J,,f llm<(l+ llJ,,llm)Ilf-fB Ilm, (1.13) 

where f B is the minimax approximation of the form of the right-hand side of (1.81, it follows 
that J,,f is near-minimax within a relative distance A,. It further follows from [l] that J,, is a 
minimal projection. 

In the present paper we extend this idea, by looking first at classes of functions f(z) and 
(z2 - 1>‘/2f(t) with f analytic, for which the expansion (1.8) reduces either to a first kind (T,) 
expansion or a weighted second kind (27,) expansion. The projection norm is bounded by A, in 
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the first case and by a smaller value in the second case, found by exploiting an odd Fourier 
series kernel in place of the traditional even Dirichlet kernel. However, neither of the resulting 
projections are minimal. 

We also consider Chebyshev series projections for analytic f(z) weighted by (z + l)l/* and 
(z - 1)“2, respectively, based on Chebyshev polynomials of the third and fourth kinds: 

4I+1/2 + W-(n+1/2) n+1/2 _ )&n+1/2) 

v,(z) = ),$)1/* + ),$-l/Q ’ W,(z) = w w1/2 _ w-l/2 ’ 
(1.14) 

and we obtain bounds for these projections similar to A,, in form. Clearly the complex 
definitions (1.14) are natural extensions of (1.3) and (1.4) above. 

2. Series of first kind polynomials 

Suppose that f belongs to A([,), the class of functions analytic within the elliptical 
boundary 5, given by (1.71, and continuous on 5,. Then from (l.lO), d, = 0 (since the integrand 
is analytic) and the expansion (1.8) involves only Chebyshev polynomials Tk(z) of the first kind. 
Denoting the partial sum projection in this case by (P~‘)~>(z>, we readily deduce that 

and from 

Now 

p?.f)(4 = Ii CkTkW 
k=O 

(1.9) it follows that 

(24 

(P,“‘f)( z) = J/ 2 *k(r)Tkf;; f(t) dt. 
‘rr trk=O (t*- 1) 

2T,(z)T,(t) = 2 cos ku cos ku = cos k 4 + cos k$) P-2) 
where z = cos u, t = cos u, 4 = u - u, Q = u + u. Hence, on using a classical Dirichlet kernel 
approach, 

(Pp.f)<z> = &@( 5 cos k4 + cr cm w) (t2 “:,l,2. -, k=O k=O 
(2.3) 

By replacing u by --L’ it is clear that the integrals for both sums in (2.3) coincide. Hence the 
substitution t = cos u in (2.3) gives 

(P,“‘f)(z) = ‘/2Tf(cos u) k cos kd, d$. 
+rr 0 k=O 

(2.4) 

Now 4 is readily seen to be real and to move on [0, 2~1, and hence from the definition (1.12) of 
the classical Lebesgue constant A,, 

and hence 

P-5) 
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Here and throughout the remainder of this paper we adopt the L,-norm, so that 11 * 11 denotes 
II . IIW 

Thus P,“)f is near-minimax within a relative distance A, (‘) = A,,. This result was first obtained 
in [5]. 

Note that we have not established equality in (2.6). We cannot be sure for example that it is 
possible to find an f in A([,) which coincides on 5, with the function 

f(t)=sgn{iecosk4), forz=z,. (2.7) 

If there were such an analytic function, then its values within 5, would be completely 
determined (by Cauchy’s integral formula) from the values (2.7) on 5,. It is not reasonable to 
assume that the infinite series expansion so defined should converge throughout the interior. 

3. Series of second kind polynomials 

Suppose now that f belongs to the space 

(f(z) = (z’- l)i’*F(z): F in A([,)), 

and again consider a norm restricted to the elliptical contour 5,. Then from (1.91, ck = 0 (since 
the integrand is analytic) and the expansion (1.8) involves only Chebyshev polynomials U,_,(z) 
of the second kind. Denoting the partial sum projection in this case by (P~*)f)(z), it follows that 

@‘)f)(t) = (z’- l)l’* 5 d/J&Z), 
k=l 

and from (1.10) that 

(fyf)(z) = - A/, kgl(z* - 1)“*~k-,(~)U,-l(~)~(t) dt* 
, 

(3.1) 

Now, 

2(z2 - l)‘~2~k_l(z)(t2 - 1)1’2uk_l(t) = 2 sin ku sin kv = cos kqb - cos kt,b, 

where z = cos U, t = cos v, 4 = u - v, $ = u + u, and hence 

(c?‘f)(z) = -+(t)K(u, u) dt = 5, (t2 _ q/2 ’ 

where 

K(u, U) = 2 f’cos k(u - v) - 2 fr cos k(u + u). (3.2) 
k=O k=O 

Here we have replaced each sum from 1 to 12 by a sum from 0 to IZ, which is justified since the 
constant terms cancel. Changing the variable to u and then 4, and observing that 4 takes real 
values, we obtain 
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where 

w#b a = 
sin(n + $)4 sin(n + $)I/J 

sin($$) - sin( &+) 
=K(u, U) 

sin(n + :)(u -u) sin(n + ;)(u + ZI) 

= sin(t(u -u)) - sin(+(u +iJ)) . 

We have simplified the two sums in (3.2) by geometric series. Hence 

II e2!f II G II f IlC 

where 

(3.3) 

(34 

and 4 = 2u - 4 = 2 COS-~Z - 4. 
This formula can be further simplified. Writing 

z = i(Y + y-1) cos 8+ii(r-r-l) sin 8, on 5, forO<8<27r, 

we deduce that u = 8 + i In Y, and hence that 

where + = 28 + 2i In r - 4. Clearly h, (2) depends on r, and so a different bound on II PL2) II is 
obtained for every ellipse. From (3.3) it follows that 

(( P,‘2’ (1 < A$ G-6) 

and hence that Pi2)f is near-minimax within a relative distance A’,2) given by (3.4). 
An alternative bound for )I Pi2) II can be obtained which is independent of Y, by rewriting 

(3.1) above in the form 

(P,‘2’f)(z) = --Li 
, 
kcl (Tk(Z)q$) - (z’- lf2(t2 - lY2~k-lwk-lw) 

f(t) dt 
x (t2 - 1)1’2 ’ 

since the first term in the integral vanishes (by the analytic&y of F). Hence 

(P;2’f)(z) = -&f(t) ~kos k(b dt 
r k=O 

(The k = 0 term may be included since the integral vanishes in this case.) Thus 
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where 4 = u - u, z = cos u and t = cos v. Thus, 

(3.7) 
and we have the pair of bounds A’,)(Y) and At) for II Pi*) II. 

The bound A(~)(Y) is significantly smaller than A(L) as Y + I, when the ellipse collapses to the 
interval [ - 1, 11. However, the values of A(~)(Y) increase rapidly with r, and hence the bound A(:’ 
is generally superior. 

4. Series of third and fourth kind polynomials 

Any function g(w) continuous on C,: I w I = Y has a Fourier series expansion on C, whose 
partial sums may be written in the form 

n 

g, = c [&(wk+l + w-“) + d;+(wk+l - w-“)I. 
k=O 

(4.1) 

Now we know that 

[;(Wl/* + w-l/*)]* = f(w + w-l) + + = gz + l), 

[+(Wr/* - w-‘/*)]* = f(W + &) - ; = ;(z - 1). 

Hence the continuous function w-‘/*g(w) =f(z) may b e approximated by the partial sum 

w-l’2g,(w) = 

= 

k=O 

wk+b’* + W-(k+l/*)) + d;;(Wk+‘/* _ w-(k+l/*))] =fn(z) 

[;(z+ l)]l’* 2 c,*v,(z) + [+(z - l)]l’* k d,*W,(z), 
k=O k=O 

P-2) 

where z = i<w + w-l) and where the third and fourth kind polynomials 1/,(z) and W,(z) are 
defined by (1.14) above. Thus 

f,(z) = (J,*,f)(z)7 (4.3) 

where J,,: is a generalised “balanced” Chebyshev series projection in which (in contrast to the 
projection J,, given by (1.8)) the singularities of (z + 111/* and (z - l)l/* are balanced between 
the two.parts of the approximation. 

The coefficients cz and dz are given, from (4.1), by the Laurent coefficient formulae 

gc,* + dk*) = +-&g(w)w-(*+*) dw 
, 

and 

+<c,* - dk*) = &/cg(w)w(k-l) dw. 
r 
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&/,-g(w)(wx”/’ + w-(~+“~))w-~‘* dw 

&Lr( )[ ( f z ; z + 1)]“*1/,(z)[$(z* - l)] -1’2 dz. 
, 

‘k * = -&f(z)[;(z - l)]-“*&(z) dz. (4.4) 
5, 

Similarly, 

d: = &f(z)[;(z + I)] -1’2w,&) dz. 
r 

(4.5) 

Clearly (4.4) and (4.5) are respectively formulae for the coefficients of v,(z) and wk(z) in the 
series expansion of which (4.2) is a partial sum. This partial sum reduces to one involving vk(z) 
only or W,(z) only according as f(z) has the form k<z + 1>1’2F(z> or i(z - 1)1’2F(~), where 
F(z) is analytic within 5, and continuous on 5,. 

4.1. Partial sum of third kind series 

Consider then a function 

f(z) = [i(z + l)]1’2F(~), F in A([,). 

From (4.9, d$ = 0, and hence the approximation (4.2) reduces to 

f,(z) = (Pi3’f)(z) = [+(z + l)]“’ k c;I/k(z), 
k=O 

(4.6) 

a weighted {by i( z + l)‘/*} partial sum of the expansion of F(z) in Chebyshev polynomials of 
the third kind. Hence, from (4.41, 

(P;“)~)(z) = [+(z + l)]“*+- 5 Vk(z)Vk(~;2f(~) dt. 
2ni crkZO [+<t - 1)] 

(4.7) 

Now, 

2[+(z + l)]“‘[+(t + 1)]1’2Vk(~)Vk(t) = 2 cos(k + +A cos(k + +)u 

= cos( k + +)4 + cos( k + +,b, 

where z = cos u, t = cos u, C#I = u - u, I) = u + u, and hence by comparison with the method 
used in (2.3) and (2.4) above, 

(Ppf)(z) = A/ (t2- 1)-l’* 
= 5, 

+ cos( k + +)+I f(t) dt 

= ;[Tf(cos u) 2 cos(k+ ;)+ d+, 
k=O 

P-8) 

where #I is real and moves on [0, 2~1. 
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By summing the series, we may deduce that 

k=O 

+ sin(n + l)f#~ 
sin(+g) * 

Hence, 

and thus, 

(4.9) 

(4.10j 

Thus Pn(“)f, given by (4.7), is near-minimax within a relative distance A$) given by (4.10). 

4.2. Partial sum of fourth kind series 

For the function 

f(z) = [i(z - 1)]“2F(~), F in A([,), 

the approximation (4.2) reduces (cc = 0) to 

f(z) = (P;“‘f)(z) = [+(z - l)]t’2 e d;Wk(z), 
k=O 

and it follows in precisely the same way as in Section 4.1 (but with z + 1 replaced by z - 1) that 

I] Pj4) 11 G A’,) = A’,). 

5. Numerical values and behaviour of A:), A:), A:‘, h’,4’ 

The Lebesgue constant A’,‘) is already well known to behave asymptotically as 4,rrP2 In n, and 
its numerical values may be calculated from (1.12). The constant A’,3) = A’,) is readily seen to 
behave similarly, since 

and hence from (4.10) and (1.121, 

Ac3’ = A’,) < A’r’ + 1 n n (5.1) 

Thus A’,) and A$) also behave asymptotically as 47~ -2 In IZ. Numerical values of the Lebesgue 
constants are shown in Table 1. Numerical evidence shows that A,, (3) = AC4) is asymptotically the n 
same as A(” n* 
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Table 1 
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n /p’ 
n /Q2’(1> n 

A’3’ = /$4’ 
n n 

3 1.778 1.565 1.832 
4 1.880 1.658 1.923 
6 2.039 1.797 2.059 

10 2.223 1.980 2.242 
20 2.494 2.241 2.504 

50 2.860 2.596 2.864 

100 3.139 2.870 3.141 

The limiting case r + 1 is considered for 11 P,‘“’ 11, and the corresponding numerical bounds 
A(z)(l) are given. These are significantly smaller than A,, . (I) However, the bound A$ is valid for 
)I Pi2) )I and is superior to A(i)(r) as r increases away from 1, since A’,)(Y) is O(rn> for large r. 
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