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Contiguous relations of hypergeometric series�
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Abstract

The 15 Gauss contiguous relations for 2F1 hypergeometric series imply that any three 2F1 series whose
corresponding parameters di-er by integers are linearly related (over the .eld of rational functions in the
parameters). We prove several properties of coe0cients of these general contiguous relations, and use the
results to propose e-ective ways to compute contiguous relations. We also discuss contiguous relations of
generalized and basic hypergeometric functions, and several applications of them.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Contiguous relations of 2F1 series

In this paper, let

F

(
a; b

c

)
:=2F1

(
a; b

c

∣∣∣∣∣ z
)

= 1 +
ab
c · 1

z +
a(a+ 1)b(b+ 1)
c(c + 1) · 1 · 2

z2 + · · · (1)

denote the Gauss hypergeometric function with the argument z. Two hypergeometric functions with
the same argument z are contiguous if their parameters a, b and c di-er by integers. For example,

F
(
a; b
c

)
and F

(
a+ 10; b− 7

c + 3

)

are contiguous. As is known [1, 2.5], for any three contiguous 2F1 functions there is a contiguous
relation, which is a linear relation, with coe0cients being rational functions in the parameters a, b,
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c and the argument z. For example,

a(z − 1)F

(
a+ 1; b

c

)
+ (2a− c − az + bz)F

(
a; b

c

)

+(c − a)F

(
a− 1; b

c

)
= 0; (2)

aF

(
a+ 1; b

c

)
− (c − 1)F

(
a; b

c − 1

)
+ (c − a− 1)F

(
a; b

c

)
= 0; (3)

aF

(
a+ 1; b

c

)
− bF

(
a; b+ 1

c

)
+ (b− a)F

(
a; b

c

)
= 0: (4)

In these relations two hypergeometric series di-er just in one parameter from the third hypergeometric
series, and the di-erence is 1. The relations of this kind were found by Gauss, there are 15 of them.
A contiguous relation between any three contiguous hypergeometric functions can be found by
combining linearly a sequence of Gauss contiguous relations. In the next section, we discuss this
and other ways to compute contiguous relations.

The following theorem summarizes some properties of coe0cients of contiguous relations. These
results are useful in computations and applications of contiguous relations. We assume that the
parameters a, b, c and z are not related, and by Sa, Sb, Sc, we denote the shift operators a �→
a+ 1, b �→ b+ 1 and c �→ c + 1, respectively.

Theorem 1.1. For any integers k, l, m there are unique functions P(k; l; m) and Q(k; l; m), rational
in the parameters a, b, c and z, such that

F

(
a+ k; b+ l

c + m

)
= P(k; l; m)F

(
a; b

c

)
+Q(k; l; m)F

(
a+ 1; b

c

)
: (5)

These functions satisfy the same contiguous relations as F
(
a;b
c

)
, that is, if

3∑
n=1

fnF

(
a+ n; b+ �n

c + �n

)
= 0; f1; f2; f3 ∈C(a; b; c; z) (6)

is a contiguous relation, then
∑3

n=1 (Sk
aS

l
bS

m
c fn)P(k + n; l + �n; m + �n) = 0, and similarly for

Q(k; l; m).
Besides, the following expressions hold:

P(0; 0; 0) = 1; Q(0; 0; 0) = 0;

P(1; 0; 0) = 0; Q(1; 0; 0) = 1:
(7)
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P(k; l; m) =
c − a− 1

(a+ 1)(1 − z)
SaQ(k − 1; l; m): (8)

Q(k + k ′; l+ l′; m+ m′) = (Sk
aS

l
bS

m
cQ(k ′; l′; m′))Q(k + 1; l; m)

+
(
Sk+1

a Sl
bS

m
c
c − a
a(1 − z)

Q(k ′ − 1; l′; m′)
)
Q(k; l; m): (9)

∣∣∣∣∣∣
P(k; l; m) P(k ′; l′; m′)

Q(k; l; m) Q(k ′; l′; m′)

∣∣∣∣∣∣=
(c)m(c)mz−m(z − 1)m−k−l

(a+ 1)k(b)l(c − a)m−k(c − b)m−l

×Sk
aS

l
bS

m
cQ(k ′ − k; l′ − l; m′ − m): (10)

Q(−k;−l;−m) =
(−1)m+1(−a)k(1 − b)lzm(1 − z)k+l−m

(1 − c)m(1 − c)m(c − a)k−m(c − b)l−m

×S−k
a S−l

b S−m
c Q(k; l; m): (11)

Here (a)k =�(a+ k)=�(a) is the Pochhammer symbol; for positive k it is equal to a(a+ 1) · · · (a+
n− 1).

This theorem is proved in Section 3. In the following section, we discuss computational aspects
and applications of contiguous relations, including contiguous relations of generalized and basic
hypergeometric series.

2. Computational aspects and applications

Computational aspects. To compute a contiguous relation (6) between three 2F1 series, one can

take one of the series as F
(
a;b
c

)
: If necessary, one can apply a suitable shift operator to the contiguous

relation afterwards. Then the other two hypergeometric series are

F

(
a+ k ′; b+ l′

c + m′

)
and F

(
a+ k ′′; b+ l′′

c + m′′

)

for some integers k ′; l′; m′ and k ′′; l′′; m′′. According to Theorem 1.1, these two functions can be
expressed linearly in

F

(
a; b

c

)
and F

(
a+ 1; b

c

)
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as in (5). Elimination of F
(
a+1;b
c

)
gives

Q(k ′′; l′′; m′′)F

(
a+ k ′; b+ l′

c + m′

)
−Q(k ′; l′; m′)F

(
a+ k ′′; b+ l′′

c + m′′

)

= (P(k ′; l′; m′)Q(k ′′; l′′; m′′) − P(k ′′; l′′; m′′)Q(k ′; l′; m′))F

(
a; b

c

)
: (12)

Due to formula (8) it is enough to be able to compute Q(k; l; m) for any integers k, l, m. For this
one can take a .nite sequence of integer triples (ki; li; mi) which starts with (0; 0; 0), (1; 0; 0), ends
with (k; l; m), and any two neighboring triples di-er just in one component precisely by 1. Then all
Q(ki; li; mi) including Q(k; l; m) can be computed consequently using the simplest Gauss contiguous
relations. A possible choice of the sequence is to take all triples with intermediate integer values
in the .rst component between (0; 0; 0) and (k; 0; 0), then all “intermediate triples” between (k; 0; 0)
and (k; l; 0), and .nally all triples between (k; l; 0) and (k; l; m).

Formula (9) allows to compute Q(k; l; m) by “divide and conquer” techniques, that is, by reducing
the shift (k; l; m) recursively by (more or less) a half at each step, compare with [3, 4.6.3]. A
straightforward algorithm of this type is the following: compute Q(k; 0; 0) and Q(k + 1; 0; 0) using
(9) with shifts in the .rst parameter only (so there would be O(log k) intermediate Q-terms, perhaps
linearly growing in size); then use (4) to compute Q(k; 1; 0); and then alternate similar application
of (9) and Gauss contiguity relations to compute Q(k; l; 0), Q(k; l + 1; 0), Q(k; l; 1) and Q(k; l; m).
Notice that most formulas of Theorem 1.1 cannot be used when a, b or c are specialized, since the
corresponding shift operators would not be de.ned then.

Returning to the computation of a contiguous relation (6) note that one can take any other of the

given three functions in (12) as F
(
a;b
c

)
: Proceeding in the same way one would obtain a contiguous

relation involving, say, Q(−k ′;−l′;−m′) and Q(k ′′−k ′; l′′−l′; m′′−m′). The two contiguous relations
must be the same up to a rational factor and corresponding shifts in the parameters. Formulas
(10) and (11) are the explicit relations (between the coe0cients) implied by this fact. Notice that
combination of (12) and (10) gives an expression of a contiguous relation with coe0cients linear
in Q’s.

Contiguous relations (5) and (12) can be also computed by combining Gauss contiguous rela-
tions themselves in similar ways: after choosing a sequence of contiguous hypergeometric series
“connecting”

F

(
a+ k; b+ l

c + m

)
and F

(
a; b

c

)

so that neighboring series di-er just in one parameter by 1, or using a similar formula to (9). But
this is a double work compared with computing the Q’s.

Paule has shown that contiguous relations can be computed by a generalized version of Zeil-
berger’s algorithm, see [4]. However, for large shifts k, l, m this method is not e0cient, because the
growing degree (in the discrete parameters) of coe0cients of contiguous relations imply larger linear
problems. On the other hand, recurrence relations for hypergeometric functions can be computed as



R. Vid(unas / Journal of Computational and Applied Mathematics 153 (2003) 507–519 511

special cases of contiguous relations by the described methods, alternatively to Zeilberger’s algo-
rithm. Similar remarks hold also for computation of contiguous relations of generalized and basic
hypergeometric series. On the website [8] there is a link to Maple package for computing contiguous
relations for 2F1 series.
Generalization. Generalized hypergeometric series is de.ned as

rFs

(
a1 : : : ; ar

b1; : : : ; bs

∣∣∣∣∣ z
)

:=
∞∑
k=0

(a1)k : : : (ar)k
(b1)k : : : (bs)kk!

zk : (13)

Two pFq series are contiguous if their respective upper and lower parameters di-er by integers.
Like for 2F1 series, there are linear relations between contiguous generalized hypergeometric series.
In general they relate 1 + max(p; q + 1) hypergeometric series, see [6, Section 48] and [1, 3.7].
In particular, relations (3) and (4) also hold for hypergeometric series with more upper and lower
parameters. These relations allow to transform any di-erence operator to a di-erence operator with
di-erent shifts in one upper parameter only (by lowering all other upper parameters and raising the
lower ones). It follows that general contiguous relations for pFq series are generated by the relations
of types (3–4), and a recurrence relation with the shifts in one upper parameter.

Like for 2F1 series, contiguous relations for a class of pFq functions can be computed by linearly
combining a sequence of simplest contiguous relations. One can derive a formula analogous to (5)
with at most max(p; q+1) .xed hypergeometric functions on the right-hand side. The coe0cients to
the .xed hypergeometric functions would satisfy the contiguity relations of pFq functions, with cor-
responding initial conditions like (7). Those coe0cients usually are not all related by a formula like
(8), unless the hypergeometric functions under consideration satisfy three-term contiguous relations
(say, 3F2(1) functions).

Similarly, there are contiguous relations for basic hypergeometric (or q-hypergeometric) series;
see [1, 10.9] for the de.nition of r�s series. Two such series are contiguous if their corresponding
upper and lower parameters di-er by a power of the base q. Moreover, multiplicative q-shifts in the
argument of these functions can also be allowed, since the q-shift in the argument can be expressed
in q-shifts of the parameters, say

a2�1

(
a; b

c

∣∣∣∣∣ q; qz

)
= (a− 1)2�1

(
aq; b

b

∣∣∣∣∣ q; z

)
+ 2�1

(
a; b

c

∣∣∣∣∣ q; z

)
:

For any three contiguous 2�1 series, where also q-shifts in the argument z are allowed, there is a
contiguous relation. Allowing q-shifts in the argument z is natural, because many transformations
of basic hypergeometric series mix the parameters a; b; c and the argument z, see [1 (10:10:1)]. A
q-di-erential equation for r�s series can be interpreted as a contiguous relation in this more general
sense, since it can be seen as a q-di-erence equation.

Evaluation. Contiguous relations can be used to evaluate a hypergeometric function which is
contiguous to a hypergeometric series which can be satisfactorily evaluated. For example, Kummer’s
identity [1, Cor. 3.1.2]

2F1

(
a; b

1 + a− b

∣∣∣∣∣− 1

)
=
�(1 + a− b)�(1 + a=2)
�(1 + a)�(1 + a=2 − b)

(14)
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can be generalized to

2F1

(
a+ n; b

a− b

∣∣∣∣∣− 1

)
= P(n)

�(a− b)�((a+ 1)=2)
�(a)�((a+ 1)=2 − b)

+ Q(n)
�(a− b)�(a=2)
�(a)�(a=2 − b)

: (15)

Here n is an integer, the factors P(n) and Q(n) can be expressed for n¿ 0 as

P(n) =
1

2n+1 3F2

( −n=2;−(n+ 1)=2; a=2 − b

1=2; a=2

∣∣∣∣∣ 1
)
; (16)

Q(n) =
n+ 1
2n+1 3F2

( −(n− 1)=2;−n=2; (a+ 1)=2 − b

3=2; (a+ 1)=2

∣∣∣∣∣ 1
)

(17)

and similarly for n¡ 0, see [7]. In fact, formula (15) is a contiguous relation between

2F1

(
a+ n; b

a− b

∣∣∣∣∣− 1

)
; 2F1

(
a− 1; b

a− b

∣∣∣∣∣− 1

)
and 2F1

(
a; b

1 + a− b

∣∣∣∣∣− 1

)
;

where the last two terms are evaluated in terms of �-function using Kummer’s identity (14), and
the coe0cients are expressed as terminating 3F2(1) series.

Formulas (35) and (36) in [7] present similar evaluations of

2F1

( −a; 1=2
2a+ 3=2 + n

∣∣∣∣∣ 1
4

)
and 3F2

(
a+ n; b; c

a− b; a− c

∣∣∣∣∣ 1
)

when n is an integer. These series are contiguous to the 2F1(1=4) and 3F2(1) series evaluable by
Gosper’s or Dixon’s (respectively) identities. Both new formulas are also three-term contiguous re-
lations, where two hypergeometric terms are evaluated and the coe0cients are written as terminating
hypergeometric series. In both cases all series contiguous to Gosper’s 2F1(1=4) or well-posed 3F2(1)
series can be evaluated by contiguous relations, but general expressions for the coe0cients in the
.nal three-term expression like (15) are not known.

Formulas like (15) may specialize to one-term evaluations. For example, P(−5)=0 if 2a2−4ab+
b2 − 12a+ 17b+ 12 = 0, and under this condition formula (15) may be brought to

2F1

(
a− 5; b

a− b

∣∣∣∣∣− 1

)
=
a− b− 1
a− 2b

�(a− b− 2)�(a=2 − 1)
�(a− 3)�(a=2 − b)

: (18)

By parameterizing the curve given by the relation between a and b one gets an exotic formula, see
[7; (33)]. Apparently, this kind of formula can be obtained only by using contiguous relations and a
known evaluation.

Transformations. General transformations of hypergeometric series can be derived from the sym-
metries of their contiguous relations. For example, all terms in the relations between 24 Kummer’s
2F1 functions (see [2, 2.9]) satisfy not only the same hypergeometric di-erential equation, but also
the same contiguous relations with the same shifts in the parameters a, b and c. To show this
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statement, one can check that two functions

u1 = 2F1

(
a; b

c

∣∣∣∣∣ z
)
; u2 =

�(c)�(c − a− b)
�(c − a)�(c − b) 2F1

(
a; b

a+ b+ 1 − c

∣∣∣∣∣ 1 − z

)
; (19)

satisfy basic contiguous relations (2–4). Then the functions

u3 =
�(c)�(b− a)
�(c − a)�(b)

(−z)−a2F1

(
a; a+ 1 − c

a+ 1 − b

∣∣∣∣∣ 1
z

)
; (20)

u4 =
�(c)�(a− b)
�(c − b)�(a)

(−z)−b2F1

(
b+ 1 − c; b

b+ 1 − a

∣∣∣∣∣ 1
z

)
; (21)

u5 =
�(c)�(1 − a)�(1 − b)

�(2 − c)�(c − b)�(c − a)
z1−c

2F1

(
a+ 1 − c; b+ 1 − c

2 − c

∣∣∣∣∣ z
)
; (22)

u6 =
�(c)�(a+ b− c)

�(a)�(b)
(1 − z)c−a−b2F1

(
c − a; c − b

c + 1 − a− b

∣∣∣∣∣ 1 − z

)
; (23)

satisfy the same contiguous relations as well, since the coe0cients in the relations

u6 = u1 − u2;
ei�asin(�b)

sin(�(b− a))
u3 = u1 − ei�(c−a)sin(�b)

sin(�(a+ b− c))
u6; (24)

u4 = u1 − u3; u5 = u1 − sin(�a)sin(�b)
sin(�c)sin(�(a+ b− c))

u6; (25)

are constants with respect to integral shifts in the parameters a, b, c. Other 18 hypergeometric
functions are alternative representations of u1; : : : ; u6, see [2, 2.9]. All relations between 24 Kummer’s
functions are generated by (24–25), so the statement follows. Mind that di-erent expressions of ui’s
as hypergeometric functions may have di-erent arguments.

In principle, relations (24–25) can be found by showing that the three terms satisfy the same
second-order recurrence relation (with respect to integral shifts in some parameter), and comparing
their asymptotics as the corresponding parameter approaches ∞ and −∞. However, this approach
may be cumbersome. Quadratic or higher order algebraic transformations can also be found in this
way.

An interesting question is whether the symmetries of contiguous relations can classify all identities
between hypergeometric series. For 2F1 series this boils down to the symmetries of Q(k; l; m). In
the remainder of this section, we demonstrate a way to investigate the symmetries of recurrence
relations (a special case of contiguous relations) of hypergeometric series.

Symmetries of recurrence relations. To obtain recurrence relations for some hypergeometric series
one can introduce the discrete parameter n by replacing one or several continuous parameters by
a �→ a + 2n (and similarly) in di-erent ways. Then a recurrence is a contiguous relation between
su0ciently many hypergeometric functions with successive n. We are interested in situations when
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two hypergeometric series (with a common discrete parameter n) satisfy the same recurrence relation,
perhaps after multiplying the functions by a hypergeometric term (or equivalently, a solution of a
.rst-order recurrence relation with coe0cients rational in n, see [5, 5.1]). Therefore we call two
hypergeometric functions with discrete parameter n equivalent if they di-er by such a factor.

More speci.cally, suppose that a hypergeometric series satis.es a second order recurrence relation
(for n¿ 0)

A(n)S(n+ 1) + B(n)S(n) + C(n)S(n− 1) = 0 (26)

with A(n), B(n) and C(n) being rational functions in n. For convenience, we assume that S(n) does
not satisfy a .rst-order recurrence relation, and that B(n) 	= 0 for all n¿ 0. Then S(n) is equivalent
to

Z(n) = (−1)n
A(0) : : : A(n− 1)
B(0) : : : B(n− 1)

S(n):

The sequence Z(n) satis.es the recurrence

Z(n+ 1) − Z(n) +
C(n)A(n− 1)
B(n)B(n− 1)

Z(n− 1) = 0: (27)

In fact, Z(n) is the unique sequence equivalent to S(n) and satisfying a recurrence relation of form
Z(n+ 1) − Z(n) +H (n)Z(n− 1) = 0. (Note that the second order recurrence for Z(n) is unique up
to a factor, and that we want to keep the coe0cients of two terms.) It follows that an equivalence
class of hypergeometric functions is determined by the rational function

B(n)B(n− 1)
C(n)A(n− 1)

: (28)

Hypergeometric series with a discrete parameter n can be classi.ed by their equivalence class func-
tion. One can compute this function for various types of hypergeometric functions and di-erent ways
of introducing the discrete parameter n. Then one can look for the cases when di-erent equivalence
class functions are equal (perhaps under some relations between their continuous parameters).

For example, the equivalence class function for

0F1

( −
ĉ + n

∣∣∣∣∣ ẑ
)

is the polynomial −(n+ ĉ − 1)(n+ ĉ − 2)=ẑ. This is also the equivalence class function for

0F1

( −
2 − ĉ − n

∣∣∣∣∣ ẑ
)
:

The equivalence class function for

1F1

(
a+ n

c + 2n

∣∣∣∣∣ z
)
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is

−(2n+ c − 1)(2n+ c − 3)(4n2 + 4cn− 4n+ c2 + 2az − cz − 2c)(4n2 + 4cn− 12n+ · · ·)
z2(n+ a− 1)(n+ c − a− 1)(2n+ c)(2n+ c − 4)

:

When c = 2a, this rational function is also a polynomial of degree two, namely −4(2n + 2a −
1)(2n + 2a− 3)=z2. By comparing these two polynomials and corresponding transformations of the
recurrences to normalized form (27), we conclude that there must be a linear relation between three
functions

1F1

(
a+ n

2a+ 2n

∣∣∣∣∣ 4z
)
; 0F1

( −
a+ 1=2 + n

∣∣∣∣∣ z2

)
and

�(a+ 1=2 + n)
�(3=2 − a− n)

z1−2a−2n
0F1

( −
3=2 − a− n

∣∣∣∣∣ z2

)
;

where coe0cients are constants with respect to the shift n→ n+ 1. Note that the .rst two functions
are bounded as n → ∞, whereas the last one is unbounded (for .xed generic a and z). Hence
the coe0cient to the last function is zero. By comparing the limits of the .rst two functions one
concludes that

1F1

(
a+ n

2a+ 2n

∣∣∣∣∣ 4z
)

= e2z
0F1

( −
a+ n+ 1=2

∣∣∣∣∣ z2

)
;

see also [1, (4.1.12)].
The author computed a number of equivalence class functions for rF1 (with r=0; 1; 2) and 3F2(1)

functions. They do not imply new identities, except plenty of exotic two-term identities such as
(18), and some interesting consequences of known identities. Straightforward computations are too
cumbersome when the degree of numerators or denominators of equivalence class functions ex-
ceeds 10. However, this method generalizes easily to q-hypergeometric functions. A more intelligent
consideration of the symmetries of recurrence (and contiguous) relations could be helpful in .nding
relations between hypergeometric functions when one cannot use symmetries of di-erential equations
for them, say when the variable z is specialized, or the parameters and z are related.

3. Proof of Theorem 1

To show the existence of (5), observe that contiguous relations (2–4) express

F

(
a− 1; b

c

)
; F

(
a; b

c − 1

)
; F

(
a; b+ 1

c

)

in terms of

F

(
a; b

c

)
and F

(
a+ 1; b

c

)
:
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There are similar expressions for

F

(
a; b

c + 1

)
and F

(
a; b− 1

c

)
:

Using shifted versions of these relations one can express

F

(
a+ k; b+ l

c + m

)

linearly in hypergeometric functions without shifts in parameters b and c, and then leave only terms

F

(
a; b

c

)
and F

(
a+ 1; b

c

)
:

If expression (5) is not unique, then

F

(
a+ 1; b

c

)/
F

(
a; b

c

)

is a rational function in the parameters, just as

F

(
a+ 1; b+ 1

c

)/
F

(
a+ 1; b

c

)

(by the symmetry of the upper parameters). Then

2F1

(
a+ 1; b+ 1

1 + a− b

∣∣∣∣∣− 1

)/
2F1

(
a; b

1 + a− b

∣∣∣∣∣− 1

)

is a rational function in a and b. But this function has unbounded set of poles according to Kummer’s
identity (14). Hence a contradiction.

The uniqueness of (5) implies that P(k; l; m) and Q(k; l; m) satisfy the same contiguous relations
of 2F1 series, check the (triple) substitution of (5)–(6).

The “initial” conditions (7) are obvious.
To prove (8), apply (5) to both sides of

F

(
a+ k; b

c

)
= SaF

(
a+ k − 1; b

c

)
;

and use (2) to eliminate F
(
a−1;b
c

)
on the right-hand side.

Formula (9) is obtained after several applications of (5) to

F

(
a+ k + k ′; b+ l+ l′

c + m+ m′

)
:
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The .rst intermediate step is

F

(
a+ k + k ′; b+ l+ l′

c + m+ m′

)
= (Sk

aS
l
bS

m
c P(k ′; l′; m′))F

(
a+ k; b+ l

c + m

)

+(Sk
aS

l
bS

m
cQ(k ′; l′; m′))F

(
a+ k + 1; b+ l

c + m

)
:

Now apply (5) to get terms with

F

(
a; b

c

)
and F

(
a+ 1; b

c

)

only, compare the terms to F
(
a+1;b
c

)
; and eventually use (8) once to replace P(k ′; l′; m′).

For a proof of the last two formulas, let us introduce

Wp;q; r(k; l; m):=

∣∣∣∣∣
P(k; l; m) P(k + p; l+ q; m+ r)

Q(k; l; m) Q(k + p; l+ q; m+ r)

∣∣∣∣∣ : (29)

We assume that p, q, r (just as k, l, m) are integers.

Lemma 3.1. The following properties of the W -symbol hold.

(i) W0;0;0(k; l; m) = 0.
(ii) Wp;q; r(0; 0; 0) =Q(p; q; r).

(iii) For <xed k; l; m the determinants Wp;q; r satisfy the contiguous relations of 2F1 functions. More
precisely, if (6) is a contiguous relation, then

∑3
n=1(Sk+p

a S
l+q
b Sm+r

c fn)Wp+n;q+�n;r+�n(k; l; m)=
0.

(iv) W1;0;0 satis<es <rst-order recurrence relations

W1;0;0(k + 1; l; m) =
(
Sk+1

a Sm
c
a− c
a(1 − z)

)
W1;0;0(k; l; m);

W1;0;0(k; l+ 1; m) =
(
Sl

bS
m
c
b− c + 1
b(1 − z)

)
W1;0;0(k; l; m);

W1;0;0(k; l; m+ 1) =
(
Sk

aS
l
bS

m
c

c2(z − 1)
(c − a)(c − b)z

)
W1;0;0(k; l; m):

Proof. The .rst two properties are straightforward.
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If (6) is a contiguous relation, then
3∑
n=1

(Sk+p
a S

l+q
b Sm+r

c fn)Wp+n;q+�n;r+�n(k; l; m)

=

∣∣∣∣∣∣∣∣∣∣∣

P(k; l; m)
3∑
n=1

(Sk+p
a S

l+q
b Sm+r

c fn)P(k + p+ n; l+ q+ �n; m+ r + �n)

Q(k; l; m)
3∑
n=1

(Sk+p
a S

l+q
b Sm+r

c fn)Q(k + p+ n; l+ q+ �n; m+ r + �n)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
P(k; l; m) 0

Q(k; l; m) 0

∣∣∣∣∣= 0:

The recurrence relation for W1;0;0 with respect to k follows from contiguous relation (2):

W1;0;0(k + 1; l; m) =

∣∣∣∣∣
P(k + 1; l; m) ÃP(k; l; m) + B̃P(k + 1; l; m)

Q(k + 1; l; m) ÃQ(k; l; m) + B̃Q(k + 1; l; m)

∣∣∣∣∣
=−ÃW1;0;0(k; l; m); with Ã= Sk+1

a Sm
c
c − a
a(1 − z)

:

To prove the recurrence relation for W1;0;0 with respect to l we use contiguous relations (4) and
[2, 2.8.(36)] to derive

P(k; l+ 1; m) = AP(k; l; m) + BP(k + 1; l; m);

P(k + 1; l+ 1; m) = CP(k; l; m) + DP(k + 1; l; m);

with A = Sk
aS

l
b
b−a
b , B = Sk

aS
l
b
a
b , C = Sk

aS
l
bS

m
c
c−a−1
b(1−z) , D = Sk

aS
l
bS

m
c
a+b−c+1
b(1−z) . There are similar

expressions for Q(k; l+ 1; m) and Q(k + 1; l+ 1; m). Then

W1;0;0(k; l+ 1; m) =

∣∣∣∣∣
AP(k; l; m) + BP(k + 1; l; m) CP(k; l; m) + DP(k + 1; l; m)

AQ(k; l; m) + BQ(k + 1; l; m) CQ(k; l; m) + DQ(k + 1; l; m)

∣∣∣∣∣
= (AD − BC)W1;0;0(k; l; m);

which is the required relation. The recurrence with respect to m can be proved similarly, using
relations (34) and (38) in [2, 2.8]. This completes the proof of the lemma.

The recurrence relations for W1;0;0(k; l; m) imply that

W1;0;0(k; l; m) =
(c)m(c)mz−m(z − 1)m−k−l

(a+ 1)k(b)l(c − a)m−k(c − b)m−l
: (30)

The recurrence relations for Wp;q; r and an initial condition (i) imply that

Wp;q; r(k; l; m) =W1;0;0(k; l; m) ·Sk
aS

l
bS

m
cQ(p; q; r): (31)

Formula (10) follows from these two equations.
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To prove (11) note that the determinant in (10) can be expressed in two ways as the symbol W .
This gives

Wk−k′ ; l−l′ ;m−m′(k ′; l′; m′) = −Wk′−k; l′−l;m′−m(k; l; m): (32)

By setting k ′ = l′ = m′ = 0 and changing the sign of k, l and m one obtains

W−k;−l;−m(0; 0; 0) = −Wk;l;m(−k;−l;−m): (33)

Statement (ii) of Lemma 3.1, formulas (31) and (30), and transformation of Pochhammer symbols
give the last formula of Theorem 1.1.
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