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Incident occurrence and recovery are critical to the smooth and efficient operations of

freeways. Although many studies have been performed on incident detection, clearance,

and management, travelers and traffic managers are unable to accurately predict the

length of time required for full traffic recovery after an incident occurs. This is because

there are no practical studies available to estimate post-incident recovery time. This paper

estimates post-incident traffic recovery time along an urban freeway using traffic simu-

lation and compares the simulation results with shockwave theory calculations. The

simulation model is calibrated and validated using a freeway segment in Baltimore, MD.

The model explores different flow regimes (traffic intensity) and incident duration for

different incident severity, and their effects on recovery time. A total of 726 simulations are

completed using VISSIM software. Finally, the impact of congestion and incident delay on

the highway network is quantified by a regression formula to predict traffic recovery time.

The developed regression model predicts post-incident traffic recovery time based on

traffic intensity, incident duration, and incident severity (ratio of lanes closure). In addi-

tion, three regression models are developed for different flow regimes of near-capacity,

moderate, and low-traffic intensity. The model is validated by collected field data on two

different urban freeways.

© 2015 Periodical Offices of Chang'an University. Production and hosting by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Freeway congestion is a major problem in many urban areas.

Congestion on freeways is classified to recurring and non-

recurring. Recurring congestion is from normal peak-hour

travel. Non-recurring congestion is from random and
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unpredictable incidents and events that impede the flow of

traffic, such as lane blockage from accidents, disabled vehi-

cles, or natural phenomena. These non-recurring incidents

canmake large delays that contribute significantly to the total

congestion experienced by travelers. Delays are influenced by

the nature and frequency of incidents and the traffic intensity

before the incident. Accurate estimations of congestion delay
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Fig. 1 e Typical time-density-speed graph of incidents and

traffic recovery.
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and its components are important for effective traffic man-

agement. Traffic management decisions will be largely influ-

enced by the nature and type of congestion experienced.

Traffic management strategies should be emphasized if the

accrued delay is largely from recurrent congestion, and the

incidentmanagement strategies should be applied if the delay

is largely incident related (Skabardonis and Geroliminis, 2004).

A literature search is conducted to find past researches

related to incident delay estimation and recovery time. The

obtained information indicates that most of the available

studies utilized the analytical model of queuing analysis

(Garib et al., 1997; Giuliano, 1989; Lindley, 1987; Morales, 1986;

Olmstead, 1999; Sullivan, 1997) and shockwave analysis the-

ory (Hadi et al., 2007; Knoop, 2010).While thesemethodologies

remain popular, others have concluded that these approaches

underestimate the actual queue dissipation time and, ulti-

mately, the full system recovery time (Chien and Chowdhury,

2000; Li et al., 2006). Although these analytical models can

reasonably estimate the average delay, they seriously under-

estimate the standard deviation of delay and the expected

total delay in the dynamic traffic networks.

Delay is one of the most important indicators to measure

the impacts of incidents. Several methods (queuing and

shockwave) are available in the literature for incident-induced

delay estimation on freeway networks. The deterministic

queuingmodel (DQM) is one of themost widely usedmethods

and also supported by the Highway Capacity Manual (TRB,

2010).

DQM and shockwave theory are often used to evaluate the

characteristics of queue formation and dissipation. DQM is

based on assumptions regarding arrival patterns, departure

characteristics, and queue disciplines. The queue discipline

that most readily assumed for traffic-oriented queues is the

first-in, first-out (FIFO).

A shockwave means a discontinuity of flow or density and

occurs when cars change speed abruptly. A sudden reduction

of the freeway capacity creates backups and queuing, and

results in the shockwave effect. The sudden reduction of ca-

pacity results from either recurring or non-recurring conges-

tion. The bottleneck results in speed reduction, and the point

at which this change occurs can be noted by the brake lights

on the vehicles.

According to Skabardonis and Geroliminis (2004),

simulation models can be applied to analyze incident

impacts without simplifying assumptions which is required

by analytical techniques. Furthermore, most previous

studies have only estimated the queue dissipation time,

and had no standard formulation for full traffic recovery

time (TRT) estimation. Therefore, traffic managers in

different areas have postulated that post-incident TRT

exceeds the actual duration of an incident by a fixed factor.

For example, this factor is postulated to be four and ten in

Maryland and California, respectively (Chang et al., 2006).

While that idea is clearly refutable because the recovery

time is a function of the prevailing traffic intensity, it does

have some element of truth regarding the relatively longer

period of traffic recovery and the actual duration of the

incident. In this study, TRT is defined as the time when

post-incident traffic flow has returned to pre-incident

conditions.
It is usually difficult to accurately predict the length of time

required for full traffic recovery after an incident. The proba-

bilistic nature of most non-recurring incidents makes it diffi-

cult to collect accurate empirical data to establish a

mathematical relationship between incident duration and

TRT for different flow regimes or traffic intensity values. The

duration of most non-recurring incidents is usually unknown

because of one's inability to determine the exact time of

occurrence. Microscopic simulation allows for generation of

pseudo-incidents for a variety of traffic-flow scenarios. These

pseudo-incidents can facilitate a controlled study on the

ramifications of delay to highway incident response.

A typical time-density-speed graph of incidents is pre-

sented in Fig. 1 to show the difference between queue

dissipation and full traffic recovery. The upper line segment

in the graph represents the density curve in vehicle per mile

(vpm), while the downward slope of the line represents the

queue discharge during the traffic stabilization period prior

to the onset of full TRT, or pre-incident conditions. The

lower line represents the speed curve in miles per hour

(mph). The first section is the pre-incident normal condition.

The incident begins at T1 and ends at T2. Queue dissipation

starts at T2 and ends at T3. Full traffic recovery happens at

T4. The time between T1 and T2 is the incident duration

when an incident happens, lanes are closed until the

incident is cleared and lanes would be re-opened. During the

incident, density increases and speed decreases since one or

more lanes of the freeway are blocked. After the incident

ends, recovery begins and traffic dissipates. Although the

queue is dissipated at T3, the traffic is not stabilized. Full

incident recovery is achieved when pre-incident conditions

are observed, after queue dissipation at T4. The authors

considered both speed and density for traffic recovery.

Density is a more accurate indicator for traffic congestion

along freeways, as freeways can be heavily congested even

at free flow speeds.

Computer simulation models have become increasingly

important in the analysis, design, and management of trans-

portation/traffic infrastructure and operations. This is partic-

ularly true for delay impact, delay analysis, incident detection,

and incident management, which form the complex and

frequently changing traffic conditions. Since it is expensive

and difficult to analyze such situations through empirical

methods (due to the large amount of data required), simulation

models are often used. In most cases, only limited, if any, field

tests are feasible, because of prohibitively high costs and lack
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of public acceptance (Toledo and Koutsopoulos, 2004). Boyles

and Waller (2007) demonstrated that the incident impact is

underestimated by 20% to 50%, due to the uncertainty in

predicting incident duration. They developed a stochastic

delay prediction model to mitigate the underestimation of

incident impact. They also employed a mesoscopic simulator

with Monte Carlo sampling to study incident delay for

different demand profiles. Simulation models also help

engineers evaluate alternative transportation strategies and

predict outcomes of possible improvements to the

transportation systems. The most popular microscopic traffic

simulation programs are CORSIM, INTEGRATION, WATSIM,

TRANSIMS, MITSIM, PARAMICS, VISSIM, and AIMSUN (TRB,

2010). There are several contributions in the literature on

calibration/validation of simulation models to match field

conditions (Dowling et al., 2004; Jha et al., 2004; Ni, 2004;

Toledo and Koutsopoulos, 2004).

The objective of this study is to present a simulation-based

methodology for incidentTRTestimation.Thepresent research

uses traffic simulation to explore the relationship among inci-

dent recovery time, traffic intensity, incident severity, and

incident duration, and to compare the simulated data with the

result of analytical shockwave traffic recovery estimation

model. The relationship is demonstratedusing the results from

the VISSIM 4.30 traffic simulation model (PTV, 2000). The

estimation formula is developed using regressionmodels.

Traffic managers can use the developed formulas to

calculate the full TRT based on traffic intensity, incident

severity, and incident duration. The research is expected to

serve as a valuable guide for incident managers and decision

makers as they assess the ramifications of delayed response

to highway incidents and develop improved incident-man-

agement methods. This research enhances management

agencies' ability to quantify the impact of congestion and

delay on the freeway network. The improved congestion

management also increases the reliability of traffic prediction

in advanced transportation information systems and, ulti-

mately, the social welfare of commuters and drivers.
Fig. 2 e JFX corridor.
2. Materials and methods

This section discusses the research process and highlights the

simulation procedure, determination of the TRT from the

simulation outputs, and the shockwave delay calculations.

The authors developed a traffic simulation model to

generate traffic intensity and incident duration for different

incident severity (lane closure) scenarios. Then, the TRT for

each scenario using the developed simulation model was

derived. The queue dissipation time (QDT) for each scenario

was also calculated using shockwave theory. The results of

the models were compared. Finally, the authors developed a

regressionmodel using the simulation results to estimate TRT

for each lane closure scenario (incident severity), traffic in-

tensity, and incident duration.

2.1. Traffic simulation

The authors developed a traffic simulation model for a typical

three-lane unidirectional urban freeway. The model
generated different incident scenarios of various traffic in-

tensity and duration for different lane closures. Driver

behavior parameters were adjusted and included the “look-

behind distance” and the “lane-changing” parameters. This

eliminated collisions and mini-queues had reduced the over-

estimation of the queue dissipation time. The VISSIM simu-

lation model was previously calibrated and validated in an

earlier study (Saka et al., 2008). A modified Chi-square test

known as GEH was employed to validate the model. The

calibration and validation was performed on the I-83

freeway corridor known locally as the JFX in Baltimore, MD,

by iteratively comparing the model output to the observed

traffic performance. Adjustments were made as needed to

reasonably replicate the observed condition. Fig. 2 presents

the JFX corridor and Table 1 presents a summary of the

calibration/validation process, which is based on Oketch and

Carrick's criteria (Oketch and Carrick, 2005). Parameters used

in the simulator were based on the Wiedemann (1974, 1991)

approach or software default values, or obtained by

measurement of traffic on the freeway.

Traffic and incident conditions were simulated along a

straight and level section of a three-lane unidirectional

freeway for at least 150min (the software'smaximum allowed

simulation time). Different scenarios of incident durations

and traffic intensity levels (Rho values) were generated. The

Rho is a measure of traffic intensity along a segment of the

freeway and is defined by the volume-to-capacity ratio (V/C).

Freeway capacity was determined as 2400 vehicles per hour

per lane (vphpl). Freeway capacity was defined as the traffic

volume at which the throughput did not change or declines

even as the input flow continually increased. For basic

freeway segments with no incidents, Highway Capacity

Manual (TRB, 2010) recommends an ideal capacity of

2250e2400 vphpl depending on free flow speed.

Traffic intensity was categorized into three levels, light

(0.25 � Rho � 0.50), moderate (0.50 < Rho � 0.80) and near

capacity (0.80 < Rho < 1.00). Then, incidents of various

http://dx.doi.org/10.1016/j.jtte.2015.08.001
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Table 1 e Observed versus simulated throughputs in study area.

JFX segment southbound Observed
volume o (vph)

Simulated volume
range e (vph) GEH

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo�eÞ2
0:5ðoþeÞ

q � Validation criteria
(GEH < 5) met?

Between Exit 5 and Exit 4 8075 7595e7879 2.20 Yes

Between Exit 4 and Exit 3 7120 7434e7731 3.68 Yes

Between Exit 3 and Exit 2 5886 5979e6184 1.21 Yes

Between Exit 2 and Exit 1 5712 5141e5497 2.87 Yes

Southbound right onto Fayette Street 1429 1284e1428 0.00 Yes

Southbound through onto President Street 2673 2097e2336 6.73 No*

Southbound left onto Fayette Street 1610 1392e1592 0.45 Yes

Note: * A GEH between 5 and 10 is not considered to indicate that the model is a poor fit, but does indicate that further investigation is required.
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durations were generated for these traffic demand levels.

Incident durations were defined as short (inc � 20 min),

moderate (20 min < inc � 40 min) and long

(40min < inc� 60min). The timed incidents were preceded by

a 30-min traffic build-up along the simulated freeway

segment. The experiments covered various lane-blockage

scenarios for the three-lane freeway segment. Since VISSIM

cannot simulate road incidents directly, the authors created

pseudo-incidents using traffic signals. In addition, only one

isolated incident per time and space were considered in the

simulation. In other words, the impacts of multiple incidents

on congestion and recovery time were not included in the

scenarios.

A total of 121 scenarios of Rho and incident duration were

generated, each with six random seeds, therefore, a total of

726 (121 � 6) experiments were simulated. Of the 121 sce-

narios, 97 scenarios involved 3 blocked lanes, 12 scenarios

involved 2 blocked lanes, and 12 scenarios involved 1 blocked

lane. From these 726 experiments, output values for flow,

density, speed, and TRT values were derived. Various lane-

blockages indicate incident severity, with more lanes closed,

the incident would be more severe.

The effective Rho value for each scenario was derived as a

ratio of total traffic demand for the simulation period to

effective capacity for the specified incident duration. Total

traffic demandwas calculated for the simulation period at the

specified traffic intensity or initial Rho value. Effective ca-

pacity was defined as the potential throughput for the simu-

lation period less than the unmet demand for the incident

duration at the specified traffic intensity level or original Rho

value.
2.2. Determination of simulation values for TRT

Determination of the post-incident TRT was based on the pre-

incident traffic conditions of density and speed.
Table 2 e Summary results of t-test for paired two samples (d

Traffic
intensity (Rho)

Incident
duration (min)

Pre-incident
density means

Pos
dens

0.9 10 116

0.8 15 103

0.8 30 106

0.7 50 91
The authors determined TRT when post-incident density

values were the same as pre-incident values. Although speed

values were also considered, density values were a more ac-

curate indicator of traffic congestion along freeways, as free-

ways can be heavily congested even at free flow speeds. A t-

test was then conducted to investigate if there were any sig-

nificant differences between the pre- and post-incident den-

sity values. The t-test results presented in Table 2 verify that

there is no significant difference, which means that the TRT

is determined correctly in all scenarios.
2.3. Queue dissipation time calculations using
shockwave theory

The authors calculated the queue dissipation time for each

three-lane-closed scenario using the following formulas

u1 ¼ q2 � q1

k2 � k1
¼ 0� q1

kj � k1
(1)

u2 ¼ q3 � q2

k3 � k2
¼ qmax � 0

kc � kj
(2)

u3 ¼ q4 � q1

k4 � k1
¼ qmax � q1

kc � k1
(3)

Q ¼ t1u1 (4)

t2 ¼ Q
u2 � u1

(5)

where u1 is queue build up rate (mile/h), u2 is queue dissipa-

tion rate (mile/h), u3 is normal stabilization flow rate (mile/h),

q1 is pre-incident flow rate (veh/h), q2 is incident flow rate

(veh/h), q3 is capacity flow rate (veh/h), q4 is stabilization flow

rate (veh/h), qmax is maximum flow capacity (veh/h), k1 is pre-

incident density (veh/mile), kj is jam (incident) density (veh/
ensity means).

t-incident
ity means

Sample
size N

t-stat P-value t critical

117 6 �0.227 0.829 2.571

103 6 0.095 0.928 2.571

102 4 1.367 0.265 3.182

88 3 1.389 0.299 2.571
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mile), kc is capacity (dissipation) density (veh/mile), Q is queue

length (mile), t1 is incident duration (h), t2 is queue dissipation

time (h).

When comparing simulation and shockwave, the authors

considered only the case that all lanes of the freeway were

closed, q2 ¼ 0. This was done in order to evaluate the worst-

case scenarios for TRT of all lanes closed. Further, the authors

used simulation values for kj, kc, and qmax instead of actual

field data because of two reasons. First, this would be feasible

to compare the results of the shockwave theory calculations

with the simulation results. Second, it would be very time-

consuming and expensive to collect all scenarios of incident

duration and traffic intensity. Since only non-recurring in-

cidents were considered, it would be even more difficult to

collect the actual field data.

Previous literature suggests shockwave theory calculates

only queue dissipation time, which is different from TRT. In

order to make a fair comparison of the simulation results and

shockwave theory calculations, the authors proposed a for-

mula to calculate the full TRT for shockwave with both the

summation of queue dissipation time and the stabilization

time as follows

t4 ¼ t2 þ t3 (6)

t3 ¼ Q
u3

(7)

where t3 is shockwave stabilization time, t4 is shockwave re-

covery time.

As stated earlier, full TRT is defined as the time after inci-

dent clearance when pre-incident traffic flow conditions

resume. Therefore, the full TRT is the summation of queue

dissipation time and traffic stabilization time. The authors

defined the queue stabilization time as the queue length

divided by the stabilization rate.
3. Results and discussion

This section presents the outputs of the simulation scenarios

and a statistical analysis of TRT for different incident and

traffic demand regimes. Results of the shockwave calculations
Table 3 e Estimated TRT from traffic simulation.

Incident duration (min) Short (SI) (inc � 20) M

Lane
closure

Traffic
intensity (Rho)

5 10 15 20 2

3-lane

blocked

Near capacity (NC)

(0.80 < Rho < 1.00)

0.95 76

0.90 59 84 88

0.85 35 58 78 90

Moderate traffic (MT)

(0.50 < Rho � 0.80)

0.80 28 47 60 77

0.75 21 35 51 62

0.70 21 34 49 57

0.65 16 26 35 43

0.60 15 21 28 36

Light traffic (LT)

(0.25 � Rho � 0.50)

0.50 15 19 24 29

0.35 12 14 15 21

0.25 9 11 12 15

Note: X is post-incident TRT values omitted, as normal pre-incident cond
for TRT and a comparison of methods (simulation vs. shock-

wave) are also presented.

3.1. TRT from simulation

Presented in Table 3 are the aggregated results for 3 lanes

blocked, 97 cases, each with 6 random seeds (582

experiments) of derived TRT for different scenarios of Rho

and incident durations. Results for 13 of those scenarios

were omitted from further analysis because the normal pre-

incident condition was not attained within the 150-

min simulation period.

The recovery time values derived from traffic simulations

ranged from a high value of 97 min to a low value of 9 min,

depending on the demand or traffic intensity levels and inci-

dent duration. For example, a 60-min recovery time is asso-

ciatedwith scenarios for NCeSI, MTeMI, and LTeLI. Scenarios

for Rho 0.90 and 5 min incident, Rho 0.60 and 35 min incident,

and Rho 0.50 and 60 min incident all have a recovery time of

almost 60 min.

Fig. 3 presents typical density profiles for the same incident

duration as traffic demand increases. As expected, the graph

confirms that within the same incident duration, TRT

increases nonlinearly as traffic intensity builds. Further

analysis of the results suggests that as traffic intensity

approaches the capacity threshold (Rho equals 1), recovery

time becomes indefinite. Consequently, congestion increases

as incident duration increases at all Rho (demand) values.

Similarly, density profiles for different incident duration and

increasing traffic intensity levels confirm that a lower

incident time does not necessarily result in a lower recovery

time, as TRT is a function of both incident duration and

traffic intensity. Only if traffic demand is fixed the lower TRT

with the lower incident time. Fig. 4 shows a 3-dimensional

view of the variability level in TRT associated with varying

incident durations and traffic demands.

3.2. Comparison between shockwave and simulation

TRT was also calculated by shockwave theory for the same

scenarios of traffic intensity and incident duration. Table 4

presents the parameters used to calculate shockwave TRT.
oderate (MI) (20 < inc � 40) Long (LI) (40 < inc � 60)

5 30 35 40 45 50 55 60

93

89 94 97

73 74 81 X X

62 72 77 X X X X X

51 64 68 71 73 X X X

43 51 60 67 69 X X X

35 38 42 46 50 55 58 60

23 27 28 30 32 35 38 40

16 17 18 20 21 23 25 26

ition is not attained during the 150 min simulation period.

http://dx.doi.org/10.1016/j.jtte.2015.08.001
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Fig. 3 e Simulation results of 25-min incident duration for

varying demand levels.

Table 4 e Parameters used in shockwave calculations.

Parameter Value

kj (veh/mile) 263

kc (veh/mile) 132

qmax (veh/h) 7200
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Table 5 presents a sample of the results and compares the

estimated TRT values from simulation and from shockwave

theory. In all cases, the simulated TRT values exceed the

recovery time derived from shockwave methodology. On the

other hand, the shockwave model's queue dissipation time

is almost half of the value which was observed in the

simulation.

The shockwave model calculations indicate that shock-

wave TRT approximates simulated TRT for LTeLI, MTeMI, and

MTeLI scenarios. For short incidents with both off-peak (light

traffic) and peak (near capacity) demand levels, TRT for almost

all (except 2) cases differs by more than a 2:1 ratio for simu-

lation values versus shockwave results.

When traffic intensity is moderate or near capacity,

shockwave TRT exceeds incident duration. When traffic is

light, TRT is less than incident duration. The simulation

values also show varying ratios of incident to TRT depending

on the variation of traffic demand. Preliminary analysis shows

that the ratio of incident duration to TRT varies and when
Fig. 4 e TRT versus Rho a
traffic demand is at low traffic (Rho < 0.60) withinmoderate to

long incident durations, TRT is approximately a factor of one.

At moderate traffic with short incident duration, the factor of

incident duration to TRT varies from 2 to 6. The variation in

recovery time cannot be adequately described by one consis-

tent ratio but is, in fact, determined to a certain extent based

on the traffic demand at the time of the incident. As presented

in Table 5, this ratio is between 1 and 15.

As stated earlier, the shockwave formula to calculate TRT

was developed only for all 3 lanes closed. When only one or

two lanes are closed, q2 is not zero and vehiclesmerge to other

lanes. Too many assumptions need to be made to develop an

accurate TRT formula. The authors decided to compare only

all lanes closed in order to show the differences between re-

sults from simulation and shockwave models, which could

demonstrate the superiority of simulation method.

Low traffic intensity and variations of incident duration

resulted in little or no change in the TRT for partial-lane-

blockage scenarios. Consequently, fewer scenarios (12 sce-

narios) were analyzed for the 3-lane-blocked scenarios. The

recovery time incrementally increased as the number of lane

closures increased from one to three lanes. Table 6 compares

TRT values for different lane-blockage scenarios.
3.3. Regression results

Regression analysis was employed to formulate the TRT based

on traffic intensity, incident duration, and incident severity.
nd incident duration.
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Table 5 e Comparison of TRT values from simulation and shockwave models (based on scenario matrix).

Scenario
matrix

Incident
duration t1 (min)

Original
Rho

Simulation
dissipation
time (min)

Shockwave
dissipation
time (min)

Shockwave
recovery

time t4 (min)

Simulated
recovery

time t5 (min)

t5/t4 t5/t1

LTeLI 45 0.50 39 21 37 50 1.3 1

LTeLI 55 0.35 32 14 26 38 1.4 1

LTeLI 60 0.25 23 10 19 26 1.4 0

LTeLI 60 0.50 48 28 50 60 1.2 1

LTeMI 25 0.25 11 4 8 16 2.1 1

LTeMI 30 0.35 18 8 14 27 1.9 1

LTeMI 35 0.50 33 16 29 42 1.5 1

LTeSI 5 0.35 4 1 2 12 4.9 2

LTeSI 5 0.25 2 1 2 9 5.9 2

LTeSI 5 0.50 6 2 4 15 3.5 3

LTeSI 10 0.25 5 2 3 11 3.4 1

LTeSI 10 0.35 7 3 5 14 3.0 1

LTeSI 15 0.50 18 7 12 24 2.0 2

LTeSI 15 0.25 7 2 5 12 2.6 1

LTeSI 20 0.25 9 3 6 15 2.5 1

MTeLI 45 0.60 61 30 53 69 1.3 2

MTeLI 45 0.65 61 36 62 73 1.2 2

MTeMI 25 0.60 44 17 29 43 1.5 2

MTeMI 25 0.75 55 30 51 73 1.4 3

MTeMI 30 0.65 41 24 42 64 1.5 2

MTeMI 30 0.75 56 36 61 74 1.2 2

MTeMI 35 0.70 64 34 58 77 1.3 2

MTeMI 35 0.80 64 53 88 97 1.1 3

MTeSI 5 0.70 14 5 8 21 2.6 4

MTeSI 5 0.80 15 8 13 28 2.2 6

MTeSI 10 0.60 18 7 12 21 1.8 2

MTeSI 15 0.70 35 15 25 49 1.9 3

MTeSI 15 0.80 66 23 38 60 1.6 4

MTeSI 20 0.65 28 16 28 43 1.6 2

MTeSI 20 0.75 53 24 40 62 1.5 3

NCeMI 25 0.85 79 49 80 93 1.2 4

NCeSI 5 0.85 25 10 16 35 2.2 7

NCeSI 5 0.90 37 13 22 59 2.7 12

NCeSI 5 0.95 45 19 35 76 2.2 15

NCeSI 15 0.90 81 39 66 88 1.3 6

NCeSI 20 0.85 47 39 64 90 1.4 5
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Statistical analysis of the simulation results indicates that

TRT is exponential and its natural logarithm transformation

can be reasonably represented as a linear function of incident

duration and traffic intensity. However, the authors found

that when scenario is defined within the specified ranges of

traffic intensity level, a better model is obtained using a

regression model to estimate the coefficients of this

relationship.

Four different regression models were explored, aggre-

gated for all scenarios, based on traffic intensity levels as

defined above, and for each lane blockage scenario separately.

The developed regression model is as follow, and the results

are presented in Table 7.

lnðTRTÞ ¼ aþ bt1 þ gRhoþ qL (8)

where L is the ratio of lanes closed, a is a constant, b, g; q are

coefficients.

All regression models with 0 intercept show a strong cor-

relation among all the variables, with high adjusted R2 values.

It suggests that over 85% of the variance in post-incident

traffic recovery can be explained by the variables of traffic
intensity, incident duration, and the proportion of lane

closure. Note that “L” in the regression formula is the pro-

portion of lane closed, e.g., when one lane out of the three

lanes of the freeway is closed, L is 1/3 or 0.333.
3.4. Model validation

The developed simulation-based regression model was vali-

dated using real-world data. The authors obtained incident

data from the Regional Integrated Transportation Information

System (RITIS) in CATT Laboratory at the University of Mary-

land, College Park (RITIS, 2012). RITIS integrates existing

transit and transportation management data from different

sources. The main RITIS functions are the real-time fusion

and exchange of regional transportation data, and data

archiving. The major data sources are traffic cameras. The

authors extracted traffic data for incidents on I-83 and I-695

that occurred from June to September, 2011, based on the

cameras located on these two urban freeways. Number of

lanes closure, incident duration, and Rho were extracted

from the database and TRT was derived based on the
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Table 6 e Sample results comparing TRT values for
different lane closure scenarios.

Simulation scenario TRT (min)

Incident
duration
(min)

Original
Rho

3-lane
Closure

2-lane
Closure

1-lane
Closure

10 0.90 86 57 28

15 0.90 93 74 42

15 0.85 78 52 26

15 0.80 60 44 17

15 0.75 51 35 16

15 0.70 49 31 11

30 0.80 85 62 22

30 0.75 71 54 19

45 0.75 72 68 33

50 0.70 65 60 26

55 0.65 64 53 30

60 0.70 * 60 32

Note: * Post-incident TRT was omitted because it was inconclusive.

j o u r n a l o f t r a ffi c and t r an s p o r t a t i o n e n g i n e e r i n g ( e n g l i s h e d i t i o n ) 2 0 1 5 ; 2 ( 5 ) : 2 9 1e3 0 0298
database speed information in the sameway it was calculated

for simulation results. TRT was also predicted using the

developed regression formulas as presented in Table 8. The

authors compared the predicted TRT using regression

analysis with the observed ones. The authors excluded row

19 in Table 8 since it did not seem to be realistic to have a

10-min observed TRT when the traffic was almost at

capacity (Rho ¼ 0.99) and the incident duration was 41 min.

It could be a data collection error. Columns in Table 8

present Rho, proportion of the lanes closure, incident

duration, observed TRT, and predicted TRT.

The authors conducted a single regression between

observed and predicted TRT. The regression results indicate

that the predicted TRT using the regression model developed

by the authors explains 82% of the observed data (R2 ¼ 0.821)

as presented in Table 9. The authors also used a Wilcoxon

rank-sum test, which was a non-parametric test, to compare

the observed and predicted TRT values. The test results

showed no significant difference between the probability

distributions of the predicted and the observed TRT with

95% confidence level (Z ¼ �2.451, Sig. ¼ 0.014).

Based on the Wilcoxon test and regression results, the

authors' simulation-based regression model provides a reli-

able formula to predict TRT for different flow regimes on

urban freeways. Themodel can be utilized for urban freeways
Table 7 e Regression results for aggregated, traffic intensity, a

Regression model a b

All scenarios

aggregated

�0.406

(0.1705)

0.0216

(8.18E�1

Traffic intensity level Near capacity �0.382

(0.784)

0.024

(0.0001)

Moderate traffic �1.766

(0.016)

0.025

(7.58E�0

Low traffic 1.512

(5.94E�12)

0.016

(6.77E�1

Note: * The numbers in parenthesis are P-values of coefficients. P-values l

interval.
other than I-83, within the defined clonstraints, since I-695's
predicted TRT was close to the observed TRT.
4. Conclusions

This study proposed a methodology for estimating post-inci-

dent traffic recovery time (TRT). Traffic simulation was uti-

lized to evaluate how different combinations of demand (V/C),

incident duration, and incident severity (lane closure pro-

portion) affected incident recovery time. Simulation was uti-

lized to have all different combinations of traffic demand (or

intensity, V/C of 0.1e1.0), incident duration (5e60 min), and

incident severity (the proportion of lanes closure). A total of

726 simulations were completed. Finding all these combina-

tions was almost impossible from real-world data.

The authors then applied the simulation output results for

speed, density, and flow to well-known analytic delay pre-

diction formulas to compare the results of TRT. In addition,

the authors developed a regressionmodel that can reasonably

estimate recovery time based on 3 primary variables: traffic

intensity, incident duration, and lane closure proportion. TRT

is defined as the period elapsing after incident clearancewhen

traffic returns to pre-incident conditions.

Since full TRT estimation has not been widely explored in

literature, this research is relevant and timely to the trans-

portation industry and the transportation management cen-

ter (TMC) responsible for smooth and efficient freeway and

highway operations. Most traffic managers have postulated

that the post-incident TRT exceeded the actual incident

duration by a fixed factor.

The traffic simulation results indicate that congestion in-

creases as incident duration increases at all demand levels but

increases at faster rates for higher traffic demand. However,

recovery time becomes indefinite as traffic intensity ap-

proaches capacity threshold. This suggests that TMCs should

implement alternate incident management strategies once a

certain demand threshold is reached. A regression model was

developed to estimate TRT using the simulation results. The

regression model was applied to different combinations of

traffic intensity level, incident durations, and lane blockage.

All regressionmodels show a very strong positive relationship

between a natural log of TRT and incident time, demand, and

incident severity. The validity of the simulation-based

regression model results was successfully tested using the

collected field data.
nd lane blockage scenarios.

g q R2 Adj. R2 N

3)

2.634

(1.49E�22)*

1.833

(2.01E�13)

0.662 0.653 121

3.179

(0.051)

1.188

(0.009)

0.480 0.443 47

8)

3.679

(8.98E�05)

2.392

(2.81E�10)

0.676 0.655 50

2)

3.113

(1.01E�08)

e 0.942 0.882 24

ess than 0.05 are considered significant at the 95% level of confidence
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Table 8 e Comparison of observed and predicted TRT values.

Case Rho Lane closure proportion Incident duration (min) RITIS observed TRT (min) Predicted TRT (min)

1 0.53 0.67 10.00 15.00 14.81

2 0.18 0.33 109.00 21.00 26.83

3 0.46 0.33 30.00 45.00 11.28

4 0.18 0.00 22.00 3.00 2.61

5 0.09 1.00 72.00 20.00 25.43

6 0.31 0.67 20.00 13.00 9.72

7 0.30 1.00 23.00 22.00 16.38

8 0.50 0.33 37.00 18.00 14.72

9 0.36 0.67 31.00 59.00 14.25

10 0.30 1.00 21.00 15.00 15.92

11 0.14 0.33 33.00 22.00 4.85

12 0.57 0.33 26.00 20.00 13.98

13 0.58 0.67 18.00 17.00 20.04

14 0.94 0.33 44.00 51.00 58.02

15 0.40 0.67 14.00 21.00 11.00

16 0.56 0.33 15.00 37.00 10.80

17 1.02 0.33 4.00 45.00 31.20

18 0.67 1.00 19.00 69.00 43.32

19 0.99 0.67 41.00 10.00 103.44

20 0.66 0.67 30.00 45.00 31.82

21 0.68 0.33 53.00 48.00 33.92

22 0.70 0.33 30.00 25.00 22.30

23 0.92 0.33 16.00 24.00 30.23

24 0.30 0.00 4.00 3.00 2.55

25 0.31 1.00 24.00 34.00 17.36

26 0.47 0.67 72.00 45.00 46.25

27 0.55 0.33 51.00 11.00 22.54

28 0.66 0.67 20.00 24.00 26.49

29 0.33 0.00 1.00 2.00 2.57

30 0.51 1.00 36.00 38.00 39.45

31 0.61 0.33 15.00 18.00 12.41

j o u rn a l o f t r a ffi c a nd t r an s p o r t a t i o n e n g i n e e r i n g ( e n g l i s h e d i t i o n ) 2 0 1 5 ; 2 ( 5 ) : 2 9 1e3 0 0 299
Comparative analysis of the simulation- and shockwave-

derived TRT values suggests that the simulation model offers

some advantages over the traditional shockwave model.

Except for the low traffic (off-peak) scenarios, the simulation-

based TRT estimates consistently exceeded the shockwave-

derived estimates. In those low traffic scenarios, the shock-

wave-derived TRT approximated the simulation-derived re-

sults. The shockwave-derived results were consistently lower

for both queue dissipation and recovery time.

Engineers and safety officials can apply the developed for-

mulaswithin the defined constraints to estimate the TRT after

an incident along an urban freeway instead of using a fixed

factor, such as 4. The simulation model is a better alternative

because it canmodel various incident durations and scenarios.

The ability to utilize extensive simulation data in scenario

analysis will enhance the management agencies' ability to

quantify the impact of congestion and delay on the highway

network. The regression formula for determining post-inci-

dent TRT will enable traffic management personnel to sys-

tematically ascertain the magnitude of traffic congestion

conditions along highways. In addition, it will be possible to
Table 9 e Regression results for observed TRT versus
predicted TRT.

Regression Predicted TRT R2 Adj. R2 N P-value

Coefficient 1.17 0.821 0.786 30 2.30E�12
reasonably estimate the effect of proportional lane closures

and increase traffic intensity on congestion buildup.

The authors considered only three factors, traffic intensity,

incident severity, and incident duration that affect TRT.While

other factors such as road geometry could affect TRT, the

authors tried to develop a very simplistic method to be usable

by practitioners. An extension to this model could add more

factors and also account for the rubbernecking effect. Another

extension to this study would consider the impact of multiple

incidents on congestion and recovery time.
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