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The Construction of Tra~siati~n Planes 
from Projective Spaces* 

R. H. BRCCK~ AND K. C. BCXSE 

Can every (non~esar~ues~an) projective plane be imbedded {in some 
natural, geometric fashion) in a (Desarguesian) projective space ? The 
question is new but important, for, if the answer is yes, two entirely 
separate fields of research cm be united. This Paper provides a concep- 
tually simple geometric construction which yields an afhrmative answer 
for a broad class of planes. X plane T is given by the construction precisely 
when rr is a translation plant \<rith a coordinatizing right Veblen- 
Wedderburn system which is unite-~~imensi~r~al OCR its left-operator 
skew-field. The condition is satisfied by all known translation planes, 
including all finite translation planes. 

One might say, with sume justice, that projective geometry, in so far as 
present day research is concerned, l-tas split into two quite separate fields. 
On the one hand, the researcher into the foundations of geometry tends 
to regard Desarguesian spaces as completely known. Since the only possible 
non Uesarguesian spaces are planes, his attention is restricted to the theory 
of projective planes, especially the nonfksarguesian planes. On the other 
hand stand all those researchers-and especially, the algebraic geometers- 
who are un~~illin~ to be bound to t~vo-dinlensiollal space and ul~interested in 
permitting nonDesarguesian planes to assume an exceptional role in their 
theorems. For the Iatter group of researchers, there are no projective spaces 
except the Desarguesian spaces. 

* This research lvas supported by the National Science Foundation Grant 
No. GP 16-60 and the Air Force Ofice of Scientific Research Grant No. 84-63. 

* Present address: University of Wisconsin, Madison, Wisconsin. The paper was 
written while R. Pi. Bruck was spending a year’s leave at the University of North 
Carolina. 

85 

6* 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82015972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


86 URL:CI< ASL) BC5E 

In the present paper WL‘ present a construction \vhich, WC hope, may do 
just a little to span the chasm between the t\\o fields of projective geometry. 
Specifically, we show how to construct a class of nonDesarguesian planes 
(which occur most naturally in afline form) in terms of the elements (certain 
points and certain projective subspaces) of (Desarguesian) projective spaces of 
even dimension. The construction is given in Section 4. 

The researcher in the theor!- of planes will lvant to know byhat planes \be 
have constructed. There are two answers: (1) Only translation planes. (2) All 
finite translation planes and, more specificall!., precisely those translation 
planes coordinatized by a right Veblen-Ivedderburn system which is finite- 
dimensional over its left-operator skcrv-field. See Sections 6, 7; in parti- 
cular, Theorem 7.1. 

Since this paper has two authors, the following remarks may be appropriate: 
The present construction hinges upon the concept of a spread (of an odd- 
dimensional projective space; see Section 3). This concept was introduced 
by Bruck, with the construction of planes in mind (and as a natural sequel 
to the concluding part of his 1963 lectures to the Saskatoon Seminar of the 
Canadian Mathematical Congress; see ref. 2) but with a different objective. 
The construction presented here is entirely due to Bose and evolved, essen- 
tially, from considering spreads of 3-dimensional projective space (which are 
maximal sets of skew lines) in terms of 5-dimensional projective space. -knd, 
finally, the analytical details of the paper, including the precise relation with 
translation planes, were supplied by Bruck. 

The first example of a nonDesarguesian translation plane was given in 1907 
by Veblen and \Vedderburn [IO]. The first examples of spreads (in the sense 
used in this paper) seem to have been given in 1945 and 1946 by C. Radha- 
krishna Rao [a, 91. (Equivalent esamples are given in Section 3. However, 
in ref. 9, Rao also gives a solution of the original Kirkman Schoolgirl Problem 
by partitioning the 35 lines of projective 3-space over GF(2) into 7 disjoint 
spreads, each spread consisting of 5 skew lines containing, by threes, the 
15 points of space.) The first published use of spreads for the construction 
of nonnesarguesian planes is that in the present paper. 

2. PROJECTIVE SPACES IN 'FERRIS OF \'ECTOR SPACES 

Since most algebraists are more familiar with vector spaces than with 
projective spaces, we wish to recall a classical representation. This representa- 
tion is thoroughly studied, for example, in ref. 2. 

Let F be a skew field (that is, an associative division ring which may or 
may not be commutative) and let V be a vector space with F as a ring of (say) 
left operators. The dimension of I’ over F may be finite or infinite but (to 
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avoid trivialities) should be at least 3. From V we define a projective space 
,’ = Z( V:F) in the following manner: A point (or O-dimensional projective 
subspace) of 2 is a l-dimensional vector subspace of V over F. blare gene- 
rally, for each nonnegative integer s, an s-dimensional projective subspace 
of Z is an (s + I)-dimensional vector subspace of V over F. And incidence 
in 2‘ is defined in terms of the containing relation in 1’. The axiom of 
Desargues is a theorem of z‘. The axiom of Pappus is valid in ,Z precisely 
when F is a field. 

Conversely, if d 3 2 is a positive integer and if 2 is a d-dimensional 
projective space (and if Z satisfies the axiom of Desargues in case d : 2) then 
there exists a skew field F, uniquely defined to within an isomorphism, and a 
(d 7 I)-dimensional vector space V over F such that Z is isomorphic to 
“r( V/F). 

Since, by the Theorem of WTedderburn, the only finite skew fields are the 
Galois fields GF(q), one for each prime power q, the only finite d-dimensional 
Desarguesian projective spaces are the projective spaces PG(d, q), one for 
each d ; 2 and each prime power q, where PG(d, q) is defined as above, with 
I’ (d -1 I)-dimensional over GF(q). 

3. SPREADS 

Let Z be a (finite or infinite) projective space of odd dimension 2t -- 1. 
Let S be a collection of (t ~ I)-dimensional projective subspaces of ,Z. \Ve 
call S a spread of 2 provided that each point of Z is contained in one and only 
one member of Z. Note that, if t = 1, Z is a projective line and Z has pre- 
cisely one spread, namely the collection consisting of all the points of 2. 

In the special case that Z = PG(2t - 1, q), a simple calculation shows that 
a spread of Z is merely a collection of 1 + qt distinct (t - I)-dimensional 
projective subspaces which are skew in the sense that no two have a common 
point. 

The existence of a spread of PG(2t ~ I, q) may be shown quite simply in 
terms of the representation described in Section 2. Set L = GF(qzt). Let 
K = GF(qf) be the unique subfield of L of indicated order and let F == GF(q) 
be the unique subfield of L and K of indicated order. Then L is a 2-dimen- 
sional vector space over K, and K is a t-dimensional vector space over F, 
and L is a (2t)-dimensional vector space over F. Hence, in the sense c$ iso- 
morphism, PG(2t - 1, q) = Z(L/F) and PG(1, q”) = Z(L/K). The set, S, 
of all l-dimensional vector subspaces of L over K is also a set of (some but 
not all) t-dimensional vector subspaces of L over F. And S is, simultaneously, 
a spread of PG(1, q”) and a spread of PG(2t - 1, q).-As we shall see later, 
not all spreads of PG(2t - 1, q) can be obtained in this manner if t > 1. 



Before turning to our construction we should like to raise a point which ma> 
be of some interest. Again let 21 be a (finite or infinite) projective space of odd 
~~irnelis~o~~ 3 .. I, but no\%- assume that f is at ieast two. Call a collection, S, 
of (t -- I)-dimensional projective subspaces of .Z a &a/ spefrd of 2Y provided 
that each (2t - 2)-dimensional projective subspace of Z contains one and 
only member of S. If S is finite, it is easy to see that the class of all spreads 
of 2 is identical Ah the class of ail dual spreads of 2. It is not obvious 
whether the two classes need coincide ashen 2‘ is infinite. 

4. THE CONS-IXUCTI~N 

Let t be a positive integer. \Vhat WC have to say will be v&d for f := I but 
will only be new for t > 2. 

Let 2 be a projective space of even dimension 2t, and let Z’ be a fixed 
projective subspace of Z of dimension 2r .- I. Furthermore, let S be a 
fixed spread of Z’. We construct a system 

(which will turn out to be an afhne plane) as follows: 
The points of 7~ are the points of Z which arc not in 2’. 
The Zincs of g are the t-dimensional projective subspaces of 2‘ which 

intersect 2’ in a unique member of S, and are not contained in 2:‘. 
The incillelzce refation of 71 is that induced by the incidence relation of 2. 

COROLLARY. If Z = PG(2t, g) then 7t :- ~(2, .?l’, S) is art ajim plane 
of order qt. 

R~~~A~~. If t == 1, so that Z is 3 prqjective plane (not necessarily Desar- 
guesian) and 2’ is a line of Z, then S is the set of all points of .?Y’ 
and r( .E, .E’, S) is isomorphic to the afine plane obtained from Z by deleting 
the line 2’ and the point set S. On the other hand, if t ‘-,- 1, then 2‘ is a 
Desarguesian space and the construction of 7~ seems to be new. 

Proof. We may assume t =Z 1, so that .Z is a Desarguesian space. 
First let P be a point of v and let J be a member of S. Then, since 1 is a 

(t -- I)-dimensional projective subspace of .Z which is contained in 2” and 
since P is a point of .Z which is not contained in .Z’, there exists one and only 
one $-dimensional projective subspace, L, of 2 which contains both J and P. 
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Moreover, Ln C’ = J. Hence L is a line of 7~. Thus: there is one and only 
one line, L, of TT containing a given point P of r and a given member, J, of S. 

Xext let L, , Id2 be two distinct lines of 7~. If L, , L, contain the same mem- 
ber, J, of S, then, as we have just shown, L, , L, can have no point of T in 
common. That is: two distinct lines of r which contain the same member, J, of S 
are parallel. Next suppose that Li n Z’ = Jf (i = 1, 2) where J1 , JT are 
distinct members of S. In this case, J1n JZ is empty, and hence L,n L, 
has no point in common with 2”. However, since L, , L, are t-dimensional 
projective subspaces of the (2t)-d’ unensional projective space Z, then L, n L, 
contains at least one point, P, of 2. And P, not being in Z’, is a point of X. 
Thus: tzuo lines qf T which contain d#erent members of S have at least one 
common point of r. These two facts lead at once to the parallel axiom: If L 
is a line qf TT and if P is a point of 7~ zuhich is not on L, then there exists one and 
only one line, L’, of 7~ which contains P and has no point of T in common with L. 

Finally, let P, Q be distinct points of r. Then the line, PQ, of 2 is not 
contained in the (2t - I)-dimensional projective subspace L” of L’. Since 
Z: has dimension 2t, PQ has a unique point, R, in common with 2’. Since S 
is a spread of L”, R is contained in one and only one member, J, of S. If 
there exists a line, L, of 7~ which contains P and 0, then L must contain R 
and hence J. On the other hand, if L is the unique line of r which contains P 
and J, then L contains R and hence L contains PR = PQ. Therefore L con- 
tains P and Q. Thus: if P, Q are two distinct points of T, then P and Q aye 
contained in one and only one line, L, of 7~. 

In order to complete the proof of Theorem 4.1, we need only show that 
each line of n contains at least two distinct points of T. But this is sufficiently 
obvious. 

In the case of the Corollary, we need only compute the number, n, of 
1 -dimensional vector spaces of a (t + 1 )-d imensional vector space, L, over 
(X(g), which are not in a specified t-dimensional vector subspace, J, of L. 
Clearly 

n(q-l)=q’-‘-qt, 

whence n = qt. Thus, if Z = PG(2t, q) each line of r = n(L’, 27’, qj has 
precisely ?a = qt distinct points. This proves the Corollary. 

\I:e may imbed the affine plane 27 = ~(2, Z’, S) in a projective plane r* 
in the familiar manner. Since each member, J, of S corresponds to a class of 
parallel lines of Z-, namely those containing J, we adjoin each such J to r 
as a “point at infinity.” And we adjoin the spread, S, to n as a “line at 
infinity”. Hence the corresponding projective plane r* has a perfectly con- 
crete representation in terms of our construction. 

If (as will turn out to be the case) some of our planes n are not Desarguesian 
(for t >- I), the main advantage of the present construction is that it exhibits 
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nonDesarguesian projective planes in the realm of classical Desarguesian 
projective geometry. In particular, the various planes rr may be related to the 
group of all collineations of 2. There is, however, a practical question which 
now must be answered: EIoec! estenszbe is the present construction? In order to 
give a complete answer we must relate our work to the known theory of 
projective planes, and for this purpose we must make rather more use of 
coordinates than we would choose under other circumstances. 

5. AN APFINE REPRESENTATION OF SPI~EADS 

Let t 3 2 be a positive integer and let 2’ be a projective space of odd 
dimension 2t - 1. Then, in the sense of Section 2, 2’ = Z(WiF) where 
F is a skew-field and IV is a (2t)-dimensional vector space over F as a ring 
of left operators. We shall study the spreads of ,Y which contain a specified 
(t - I)-dimensional projective subspace of 2’. This subspace we shall 
designate by J(m). 

Since J(-) is a t-dimensional vector subspace of the (2t)-dimensional 
vector space W over F, we may choose an arbitrary basis 

e,, e2, --, el 

of J(m) over F and complete this to a basis of IV over F by adjoining t addi- 
tional basis elements 

Thus 

I , 
el 1 e2, ..., et. 

I(-) = {elj p2, ..., 4 , (5.1) 

W = {e, , e2, ..., et, e; , e; , ..., e;} . (5.2) 

Once the bases have been chosen, we define a one-to-one mapping x - x’ of 
J(a) upon a (t-dimensional vector) subspace of W by the following rule: If 

x = 2 xiei 
i=l 

where the xi are in F, then 

x’ = 2 x,e; . 
i=l 

(5.4) 
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Next suppose that J is any (t - I)-dimensional projective subspace of Z’. 
Then J is a t-dimensional vector subspace of TV. A necessary and sufficient 
condition that J(m) and J have no point in common is that J(m) n J consist 
of the zero vector alone: 

or, equivalently, that 

A-) n 1 = {Oh (5.5) 

J(m) + J = w. (5.6) 

LVe note that the equivalent conditions (5.5), (5.6) will hold precisely when 
each w in W has a unique representation w = x + y where x is in J(m) and y 
is in J. Equivalently, we must have, for each i = 1, 2, ..., t, 

ei = - xi + yi 

where the x, are in J(-) and the yi constitute a basis of J. Moreover, if xi 
is in J(a), then 

where the xij are in F. As a consequence, there corresponds to each J skem 
to J(a) a unique matrix X = (.Q) of t rows and columns with elements in F 
such that J = .[(X) where 

and 

J(X) = {x1 f e; , x2 + e; , ..., xt + e;) 

xi = 
d 

“xiiej (i = 1, 2, .‘., t). 
j=l 

Next let X, Y be two distinct t by t matrices over F, and set 2 
The intersection of 

J(X) + J(Y) 

\vith J(a) is spanned by the t vectors 

Hence 

zi = kz,e, (i = I, 2, ..., t). 

J(X) + j(Y) = w 0 x - Y is nonsinguzar. 

(5.7) 

(5.8) 

x -- I'. 

(5.9) 
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Kext let us observe the spaces J(O), J(1) corresponding to the zero matrix, 
0 and the identity matrix, I: 

J(0) = :e; ( e; ) .“) e;; 

J(l) = (e, + e; , e, -I- e; , ..., rt + e;/ (5.10) 

Clearly each two of J(m), J(O), J(1) are disjoint. 1Ve wish to establish the 
following converse: 1f J(m), L, M are three mutually disjoint (t -- l)-dimension- 
al projective subspaces of E’, and if e, , es., e, is a preassigned basis of J(a) 
ovey F, there exists one and only set oft additional basis vectors ei , ..., e; of FI’ 

over F such that L = J(O), M = J(I). Lf :e see this as follows: Since L, 112 are 
disjoint, then 

L n A!2 = (O}, I, + M = I’. 

Hence, for each i = 1, 2, ***, t, 

e, = - e: -I- bi 

for unique elements e; , bi in L and &i’ respectively. Since L(m) and 1, are 
disjoint, the t elements 

b, = ei + e: 

must constitute a basis of M over F. Since L(m) and &’ are disjoint, the t 
elements eb must constitute a basis of L over F; in addition, the 2t elements e, , 
el must constitute a basis of IV over F. This is the promised proof. 

At this point it should be clear that, in considering spreads of .Z’, there 
is no loss of generality, in terms of the above notation, in limiting attention 
to spreads containing J(m), J(0) and J(1). Such a spread, S, must have the 
following properties: 

(i) S contains J(m). 

(ii) Each member of S, other than J(m), has the form J(X), where X 
belongs to a collection, V?, of matrices oft rows and columns with elements in 
F, subject to the following conditions: 

(iia) 59 contains the zero matrix, 0, and the identity matrix, I. 

(iib) If X, Y are distinct matrices in Y;, then the matrix X - Y is non- 
singular. 

(iic) To each ordered pair of elements a, b of J(m) with a # 0 there 
corresponds a (unique) matrix X in % such that ax = b. 



COiVSTRUCTION OF TRANSLATION PLANES 93 

In view of the preceding discussion, we need only explain the conclition 
(iic) and, in particular the notation a”‘. First, if X = (x?,) and if 

a = 5 aiei 
i=l 

(5.11) 

where the ai are in F, then 

(5.12) 

As a consequence, for each t by t matrix X with elements in F, the mapping 
a + ax is a linear transformation of J(m) over F. 

Now we may explain (iic) as a maximality condition. Conditions (i) and (iia) 
are merely normalization conditions. Condition (iib) merely ensures that no 
two members of S have a common point. As we shall see, (iic) has precisely 
the effect of ensuring that each point of Z is contained in at least one member 
(and hence in exactly one member) of S. Consider a point of Z’, that is, a 
l-dimensional subspace {zu} of IV over F, where, of course, zu is a nonzero 
element of W. In terms of the mapping defined by (5.3), (5.4), w := b + a’ 
for a unique pair of elements u, b of J(a). If a = 0 then 7u is in /(a). If a f 0 
then we want w to be in J(X) f or some (unique) X in %. However, in view 
of (5.7), zu will be in J(X) precisely when (assuming (5.11)) 

or (in view of (5.8), (5.12)) precisely when ax = b. 
In the section which follows we shall use the present discussion to exhibit 

the connection between spreads and the so-called Veblen-Wedderburn 
systems. For this reason we shall not bother to give examples at this point. 

6. AFFINE COORDINATES FOR T 

Let t be a positive integer, t > 2, let Z be a (2t)-dimensional projective 
space, let 2’ be a (2t - I)-dimensional projective subspace of Z, and let S 
be a spread of Z’. We wish to introduce affine coordinates for the affine 
plane x = ~(2, E’, S) defined in Section 4. 

As in Section 2 we represent Z in the form Z(V/F) where F is a skewfield 
and I’ is a (2t + I)-dimensional vector space over F as a ring of left operators. 
Then Z:’ = Z( W/F) where W is a (2t)-dimensional vector subspace of I’ 
over F. Without loss of generality we may give a special role to some (arbi- 
trarily chosen) ordered triple, I(-), J(O), J(I), of distinct members of the 
spread S. Then we may assume that, in the notation of Section 5, S consists 



of J(m) and other members J(S), X E ‘4, where % is a collection of f b\ t 
matrices with properties (iia), (iib), (iic). H ere I@ has a basis of 2t elements 
(ii , e: (i == I, 2, -.-, t), and n-e need only add a single element, r*, of CT nhich 
is not in I.1 in order to get a basis of I ‘. 

JYt’e observe that, in terms of the notation of Section 5, each point of T;, 
that is, each I-dinlel~s~onal vector space of IV over F which is not in I$‘, has 
a unique basis element of the form 

where x, 3 are in J(a). Thus we may speak of the point (x, y) of r where 
we define 

(x,y) = {y + M’ + e*$ (6.1) 

for every ordered pair x, y of elements of /(a). 
A line of 7~, that is, a (t + I)-dimensional vector space of V over F which 

intersects I&’ in a member J of S, has the form 

J + (s,y) = .J --p- {y -+ x’ -; e*; 

provided (x y) is one of its points. These lines may be divided into two 
types: 

(I) likes x = a. If a is in J(m), the point (x, y) of TT lies on the line 

J(m) $ (a, 0) =L J(c0) -i. {a’ J- e”j 

if and only if x = a. 

(II) La?zf?s y = XM + 6. If h is in J(a) and if J(M) is in S, the point 
(x, y) lies on the line 

if and only ify - b + x’ is in J(M); that is, if and only if 

Now we have specified all the points and all the lines of w by coordinates 
and equations, respectively. For purposes of comparison we wish to go 
slightly further and introduce a coordinate ring (H, +, *). To begin with, 
we take R == J(a) and we define addition, +, in R to be the addition in J(a) 
(as a subspace of V). To specify multiplication in R we must specialize a non- 
zero element of R = J(a) or, equivalently, we must pick a unit point of TT. 
We pick the unit point 

I = (1, I> = (1 f 1” + e*> 
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where 1 is any fixed nonzero element of R =: J(m). Then u-e define multiplica- 
tion (.) in R == J(-) as follows: To each x in R there corresponds a unique 
matrix T(X) in K-or a unique member J(T(x)) of S-such that 

,7-(z) = x . (6.3) 

And we define 

y” =y .x ,yT(Z) (6.4) 

for all y, x in R. It is now easy to verify that (R, +, *) has the following 
properties: 

(i) (R, +) is an abelian group with zero, 0. 

(ii) (R, *) is a groupoid. 

(iii) If R* is the set of nonzeYo elements of R, then (R*, *) is a loop zcith 
identity element 1. 

(iv) (X + y) z = xz + yz for all X, y, x, in R. 

(v) Jf a, 6, c aye elements of R, with a # b, there exists one and only 
element x of R such that xa = sb + c. 

The axioms (i) through (v) characterize a so-called Veblen-Wedderburn 
system (or quasi field). See, for example, refs. 3, 4, and 7. However, in the 
present case we have additional properties. Obviously 

fb + Y) =fx +fY (6.5) 
an d 

(f4 Y = f@Y) (6.6) 

for every f in the skew field F and for all X, y in R. In addition, if 1 is the 
identity element of R, we see from (6.6) that 

for all f in F, x in R, and from (6.5), (6.6) that 

(f-tg) 1 =fl +g1, (id 1 = (fl) kl) 

for all f, g in F. Consequently, the mapping 

is an operator isomorphism of F upon a skew field Fl which is a subsystem of 
(R, +, .). Therefore we may imbed F as a subskew field of (R, +, a) with 

properties (6.5), (6.6) by making the identification f = fl for every f in F. At 
this point we need a known lemma: 



LEMll.4 6. I. Let (R, ~. , .) be a CCblez- IVedderhum system and let I+’ be the 
set of all elements f in R which satisfy (6.5) 1 /6.6j for all s, y in R. Tim the 
suhsytem (F, -!-. .) of (R, $-, .) is a skezc j&l. 

DEFIKITION. \\:e shall call the ske\\ field P of Lemma 6.1 the leftoprotor 

skeu$eld of the 1:eblen-TVedderburn system (R, -’ , .). 

Proof. \Vith each element .X of R we associate a mapping, R(x), of R, the 
Tight multiplication by s, defined bl 

yR(x) = ys (6.7) 

for all y in R. In view of axiom (iv), each R(x) is an endomorphism of the 
abelian group (R, +). By axiom (iii), if a, h are elements of R with a :/ 0, 
there exists a unique x in R such that aR(x) :== b. Hence the set .& of right 
multiplications of R is an irreducible set of endomorphisms of (R, +). 
Therefore, by Schur’s Lemma, the centralizer, :#*, of .R in the ring of all 
endomorphisms of (R, +), is a skew field. An endomorphism, 8, of (R, 7) is 
in 2@* if and onlv if 

(y0) x = (yx) 0 (6.8) 

for all y, x in R. Setting y = 1 in (6.8), we get 

x0 = fi (6.9) 

for all X, where f = 10. From (6.9) in (6.8), w-e get 

(fv) x = f(Y4 

for ally, s in R. That is, (6.6) holds. In addition, since 0 is an endomorphism 
of (R, -I-), then (6.5) holds. Conversely, if f satisfies (6.5), (6.6) and if 0 is 
defined by (6.9), then 0 is an endomorphism of (R, +) which satisfies (6.8). 
If, further, g satisfies (6.5), (6.6) and if 9 is defined by 

then 

and 

x(Bv) = (a+), =g(fx) = (gf)x. 

Consequently the system (F, +, *) is a skew field antiisomorphic to the 
skew field a*. 
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Now we may add our crucial axiom: 

(vi) The k bl - Z dd b ?e en L ‘e er urn system (Ii, $-, .) is a finite-dimensional 
vector space over its left-operator skew-$eld. 

\Ve note that, although the skew field F from which we started is not 
necessarily the full left-operator skew field of (R, -I-, .), nevertheless, (R, T) 
must, a fortiori, have finite dimension over its left-operator skew field. 

Axiom (vi) raises a question to which the answer is probably unknown: 
Has every Veblen- Weddeybzrrn system finite dimension over its left-operator 
skew field P 

7. 'TRANSLATION PLANES 

For an axiomatic characterization of translation planes, see ref. 4. We need 
merely say here that a projective plane = * is a translation plane with respect 
to one of its lines, L, if and only if the corresponding affine plane 7~, obtained 
from T* by deleting L and its points, can be coordinatized by a Veblen- 
Wedderburn system. It will be convenient here to speak of the affine plane T 
as an affine translation plane. Now we may state a theorem: 

THEOREM 7.1. Every a&e plane ,(A?‘?-, z’, S), constructed as in Section 4, 
is a translation plane. Conversely, if 7~ is an afine translation plane with a 
coordinating Veblen-Wedderburn system which is jinite dimensional ovey its 
leftoperator skew field, then 7~ is isomorphic to at least one plane r(Z, Z’, S). 

COROLLARY. Every finite afine translation plane is isomorphic to at least 
one plane n(Z, 27, S). 

Proof. We need only concern ourselves with the second sentence of 
Theorem 7.1. Suppose then that r is coordinatized by a \‘eblen-M’edderburn 
system (R, +, .). Suppose also that (R, +, .) has a subsystem, F = (F, - ;), 
such that F is a skew field contained in (but not necessarily equal to) the left- 
operator skew field of (R, +, .) and such that R is a t-dimensional vector 
space over F, where t is a positive integer. It is to be understood that the 
points of r are ordered pairs (x, y), X, y E R, and that the lines of r belong 
to two types: (I) the lines x = a, one for each a in R; (II) the lines 
y = swz + b, one for each ordered pair of elements, nz, b in R. We shall omit 
the verification that r is indeed an affine plane. 

It will be convenient to speak of R as a t-dimensional vector space over F. 
Next we introduce a second vector space R’, isomorphic to R over F, but 
having only the zero vector in common with R. Then we define the vector 
space 

W = R + R’, 



the direct sum of R and R’, whose zero element coincides with that of R and 
R’. \\‘e shall understand that the mapping 

is an isomorphism of R upon R’ over If’. ’ Ihen Iti is a (2t)-dimensional vector 
space over P. We define 

It-1 = R 

and, for each element m of R, we define J(m) to be the set of all vectors of form 

where x ranges over R. Then J(m) is a t-dimensional subspace of W overF and 

for each nz. Indeed, xm $ N’ is in J(-) = R if and only if x = 0. Similarly, 

for if 

J(m) n J(k) = lo) if m f k, 

then 

xm + x’ = yk -; y’ 

whence y = x and 

xm - yk = (y ~~ s)’ = 0 

0 = xm -~ sk. 

Since nz # k, the latter equation has the unique solution x = 0. Next, let 

be an arbitrary nonzero element of W. If (and only if) x = 0, w is in I((-) = R. 
On the other hand, if x # 0, there is one and only one m in R such that 
xm = y; and, for this (and only this) choice of nz, w is in J(m). 

Consequently, if S is the collection consisting of J(-) and the J(m), m E R, 
then S is (in vector form) a spread. 

Next we introduce a l-dimensional vector space {e*} over F, having only 
0 in common with W, and define 

I’ = w + {e*), 

where the direct sum is understood. Thus V is a (2t + 1)-dimensional 
vector space over F. 
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At this point, we define Z = Z(I’/E) to be the usual (2t)-dimensional 
projective space, take 2’ = Z(IJ’/F) to be the corresponding (2t ~ l)- 
dimensional projective subspace of 2, and use the spread S, just defined, as a 
spread of 2’. It is now a simple matter to verify that the affine plane 
~(2, C’, S) is isomorphic to the plane T from which we started. This com- 
pletes the proof of Theorem 7.1. 

Clearly we have made very little use, in the foregoing proof, of the fact 
that R has finite dimension t over F. However, without this restriction, the 
projective space L!Y is infinite dimensional, and so is Z’. And now we see the 
problem: How do we define the concept of a spread of an infinite-dimensional 
projective space ? 

For specific examples of Veblen-LVedderburn systems-and hence for 
examples of spreads-see ref. 4. 

8. SOME GEOMETRIC EXA~MPLES 

In order to avoid giving the impression that the only way to construct 
spreads is by using Veblen-Wedderburn systems, we shall sketch briefly, 
without proof, part of a geometric theory developed by Bruck for spreads 
of PG(3, 4). 

We recall that a spread of PG(3, q) is a set of I + qa skew lines of PG(3, y). 
If d, B, C are three distinct skew lines, the set, d’, of transversals to 

A, B, C’, consists of q + 1 skew lines. Each transversal to three members of 
9’ is a transversal to all the members of 9’. The set, .X = .JR(il, B, C), 
consisting of the q + I transversals to JQ’, may be called the regulus containing 
4, B, C, and &?’ may be called the opposite regulus to ,#. The points of the 
lines of .& are the same as the points of the lines of ./A’; and these (q +- I)? 
points constitute a doubly-ruled quadric, 1 = J(A, B, C), with .&’ and .#’ as 
its two reguli. 

A spread, S, of PG(3, q) will be called regular provided that, for every 
three (necessarily skew) lines A, B, C belonging to S, S contains every line 
of the regulus Z(4, B, C). Note that if D is one of the y” ~ q lines which is 
in S but not in 2(/I, B, C), then D is skew to every line of &!(A, B, C). It 
may be show that if A, B, C are three skew lines and if D is any line skew\ 
to every member of W(4, B, C), th ere is one and only one regular spread S 
containing iz, B, C and D. As a consequence, three skew lines A, B, C aye 
contained in precisely (q” - q)/2 distinct regular spreads, and each two of these 
spreads have precisely S(A, B, C) in common. 

The case q = 2 is exceptional. Every spread of PG(3, 2) is regular; and 
three skew lines A, B, C of PG(3,2) are contained in precisely one spread. 
In the rest of the discussion we assume q > 2. 



Let 5’ be a spread of PG(3, y), q :‘. 2, which happens to contain a regulus 
&. If S is derived from S hp replacing the regulus d by the opposite regulus 
.b’, then S’ is a spread. i\loreover, if one qf S, S’ is regular, the other is not. 
It seems reasonable to conjecture that every spread may be obtained from a 
regular spread by iteration of the process of replacing a regulus by the 
opposite regulus. ‘I’hc conjecture is correct for 9 -- 3. 

Next suppose that -R, A” are opposite reguli of PG(3, q), belonging to a 
quadric J!. It may be shown that q S, 5” nre ~e~u~u~ s~~~a~~ &~~~ta~~~ng d, .X’ 
Yespe~ti~el~, then Sn S’ consists of preciseby Pwo lines -q, 3, mwkdy of a pair 
of conjugnte nonsecants of the quxdric 2. 

Again, let A, B be two arbitrariiy chosen lines of a regular spread S of 
PG(3, y). It may be shown that the ~,e~zui~l~~~ q2 -.- 1 hkes of S are ~a~~~~i~~~~ 
into q -.-- 1 ~~~~~~~1~ reguli API , dtfz , ***, .?-t,i -.I ~~l~que~~ ~~e~~led by the ~equ~~~~l~~t 
that, for each i, A, R are cmjugcrte nonwcunts to the quadric L2!i mith reguli 
%i , A!; . As a consequence, by combining .-I, I: with one of .Xj , .%i for each i, 
WC get 2*- ’ distinct spreads, many of which are nonregular for 9 large. If 
9 = 3, there are 4 spreads, of v&A~ 2 are regular and 2 are nonregular. 

The analytic formulation of the above remarks is quite interesting: SVe use 
the notation of Section 6, withF := W(9) and t -= 2, except that, to empha- 
size the fact that we are dealing with lines, we use I: instead of f, Then 

L(X) = (s,,e, -t .xj2e2 +- e; , xaIel f sT2e2 7 e;)? e3.2) 

where S is a matrix of two rows and columns over GF(9). 
If W is the rcgulus determined by L(a), L(O), L(I), then .Y#? consists of 

L(m) and the lines L(aZ) croresponding to the scalar matrices al, a IE CA?(q). 
Each regular spread containing .X consists of L(m) and lines L(T) where 1‘ 
ranges over Q? matrices forming a field isomorphic to GF(q”). Equivalently, 
T ranges over 9’ matrices of form 

al + bX, a, 6 E GF(q> 

where A’ is a fixed (but arbitrarily chosen) irreducible matrix. Another type 
of spread consists of ,% and 9” - q lines L(Y) where I’ ranges over the 
9” - 9 distinct conjugates 

P --1XP 

of a fixed (but arbitrarily chosen) irreducible matrix X. The latter spread is 
not regular, but becomes regular when S? is replaced by R’. 

Of the two types of spread just described, the regular spread corresponds to 
a Veblen-~jedderburn system which is a field, and hence corresponds 
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(according to our construction) to a L>esarguesian plane. On the other hand, 
the nonregular spread corresponds to a Veblen-\\:edderburn system which is 
a Hall system, and hence corresponds (according to our construction) to a 
IIall plane. 

Returning again to the regular spread defined above, we ma!; verif! that 
the r/ 1 reguli Ml, .#t, ..., .9?,,P1 of the spread, Faith respect to which 

L(a), I,(O) are conjugate nonsecants, consist, for each i, of the linesL(al A hS) 
such that the determinant 

has a constant value d, # 0. Clearly, if q is even, each 9, has a unique line in 
common with 9, while, if CJ is odd, half of the MA, have a unique line in common 
with .W and the other half are disjoint from .&. 

So far we have no satisfactory formulation of a geometric theory of spreads 
of (2t ~ I)-dimensional projective space for the case t 2. 

9. A COSNECTIOK WITH A PROCEDURE OF OSTRLX 

In a series of papers, of which we shall mention only two, Ostrum [5, 61 
has developed a procedure for constructing from a given plane r of finite 
order 122 a “conjugate” plane 7~’ which is symmetrically related to r but 
usually has different properties. We explain the procedure in its affine form: 

Let v be an affine plane of finite order ~9 possessing a collection, K, made 
up of all the lines of some n + 1 parallel classes of lines of n, such that, to 
every pair, P, 0, of distinct points of n lvhich are joined in x b!; a line, PO, 
in K, there corresponds an affine subplane, (PQ)‘, of n with the following 
properties: (i) (PQ)’ contains P and Q; (ii) (PQ)’ has order n; (iii) the lines of 
(PQ)’ are all in K. (There can be at most one subplane (PQ)’ with properties 
(i), (ii), (iii).) Let K’ be the collection consisting of the subplanes (PO)‘. 
Let 57’ be the system obtained from 7~ by retaining the points of 7~ and the 
lines of 7~ which are not in K but replacing the lines PQ in K by the subplanes 
(PO) in RI--and using the latter as lines. Then 7~‘ is an affine plane of order 
12‘). RIoreover, K’ consists of all the lines of some n + 1 parallel classes of n’; 
and K is a collection of affine subplanes of order n of n’, one for each pair, 
P, 0 of distinct points of n’ such that the line (PO)’ of 27’ is in K’. 

Now let us apply Ostrum’s procedure to an affine translation plane 
n --= ~(2, Z’, S) of order n’ = q” constructed by the method of Section 4 
from the projective 4-space Z = PG(4, q). Here 2’ = PG(3, q) is a projective 
3-space of Z and S, a spread of E’, consists of q” + 1 skew lines of Z’. \\:e 
recall that the points of x are the points of 2 which are not in 2’ and that the 
lines of 71 are the planes of 2 which are not in Z” but meet Z’ in a line of S. 
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First, consider any plane, T, of 2‘ \vhich is not in 2” and does not meet 
2” in a line of S. Then T meets 2’ in a line, L, which is not in S. ‘1-o 1, 
corresponds a set, C, of y - 1 lines of S, one through each point of L. Let 
(T) be the system consisting of the $ points of 7’ which are not in .Y’ and 
of the q(q + I) planes of Z containing a line of C and at least one point of 
(7’). It is easy to see that (T) is an affix subplane of in of order q. Hence n 
has affine subplanes of order q in rich profusion. 

Nest suppose that the spread S happens to contain a regulus, 2. In the 
sense of Ostrum’s procedure, let K bc the collection consisting of all planes of 
Z which are not in 2‘ and which meet S in a line of .X. Then K consists of 
all the lines of some q I- 1 parallel classes of lines of r. And-in view of the 
preceding paragraph-Ostrum’s procedure amounts, in this cast, to changing 
the spread S by replacing the regulus .X by the opposite regulus 2’. In parti- 
cular, the conjecture about spreads of PG(3, q) mentioned in Section 8 
could be rephrased as a conjecture that, by iteration of Ostrum’s procedure, 
any translation plane obtainable b!- our construction from PG(4, cl) could be 
derived from a Desarguesian plane. 
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