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We perform a study about effects of an applied magnetic field and a finite chemical potential on the
size-dependent phase structure of a first-order transition. These effects are introduced by using methods
of quantum fields defined on toroidal spaces, and we study in particular the case of two compactified
dimensions, imaginary time and a spatial one (a heated film). It is found that for any value of the applied
field, there is a minimal size of the system, independent of the chemical potential, below which the
transition disappears.
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1. Introduction

On general grounds, systems defined on spaces or spacetimes
with some of its dimensions compactified are of interest in sev-
eral branches of physics, such as statistical, condensed-matter, and
particle physics. A development of this kind, which has its roots in
the late 1950s, is the systematic approach to quantum field the-
ory at finite temperature [1], as an imaginary-time formalism. In
this formalism, the so-called Matsubara prescription states that the
momentum conjugate to imaginary time is replaced by frequencies
2nπ/β or 2(n + 1/2)π/β for bosons or fermions, respectively, cor-
responding to the period β = T −1, with T being the temperature.
Further developments, as for instance in Refs. [2–5], allowed to
give to the imaginary-time approach a topological interpretation. It
has been shown that the temperature can be introduced by writ-
ing the original theory, formulated in the Euclidean space R4, in
the compactified manifold Γ 1

4 = S1 × R3, where the compactified
dimension is the imaginary time. The circumference of S1 is β .

An analogous formalism can be constructed for compactified
spatial coordinates, in a D-dimensional Euclidean space. In this
case, one can describe systems confined to limited regions of
space. This is an idea first advanced in [6] and we are faced with
systems defined on spaces with compactified spatial coordinates.
One takes then a modified Matsubara prescription in which β
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is replaced by compactification lengths Li , i = 1, . . . ,d, for each
bounded spatial coordinate. As is argued in Ref. [7], this can be
interpreted as the system being confined to a d-dimensional paral-
lelepiped embedded in the D-dimensional space. Temperature may
be then introduced, as in the Ginzburg–Landau model, through the
mass parameter of the Hamiltonian. By taking D = 3 and respec-
tively d = 1, 2, 3, this can be interpreted as samples of a supercon-
ducting material in the form of a film, a wire, or a grain [7].

Since then, progress has been done, in particular to treat jointly
spatial compactification [6,7] and the introduction of finite tem-
perature. Recently, in Ref. [8] general algebraic foundations have
been presented in this sense, to include concurrently, not only
temperature, but also spatial coordinates, in such a way that any
set of dimensions of the manifold RD can be compactified. One
then defines a theory in the topology Γ d

D = (S1)d × RD−d , with
1 � d � D , d being the number of compactified dimensions. Each
of these compactified dimensions has the topology of a circle and
we refer in general to Γ d

D as a toroidal topology. These ideas, in a
simpler form, were already present in Ref. [9] and were applied to
the study of spontaneous symmetry breaking/restoration induced
by both temperature and spatial boundaries. In their more mod-
ern presentation, these methods have been recently employed to
investigate several aspects of first and second-order phase tran-
sitions in both bosonic and fermionic systems [10–15]. In this
framework, here we intend to concurrently study effects of a fi-
nite chemical potential and of an applied external magnetic field
on the size-dependent phase structure of a first-order transition.
Some physical motivations for such a study are given along this
introductory section, with several references which testify of the
interest of finite-size effects on phase transitions.
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In Ref. [16] the Euclidean large-N Ginzburg–Landau model in
D dimensions, d of them being compactified, has been considered.
The fixed-point structure of the model is investigated on general
grounds, in the presence of an external magnetic field. An infrared-
stable fixed point has been found, being independent of the num-
ber of compactified dimensions, but for the space dimension D
in the range 4 < D < 6. This could be related to studies of extra-
dimension effects in both high and low energy physics [17,18]. In
condensed-matter and statistical-physics contexts, as discussed in
Refs. [19,20] for systems in bulk form, the fixed point mentioned
above should be taken as an indication, not as a demonstration,
of a (formal) continuous transition. This has been confirmed for
a system in the form of a film in Ref. [21]. The existence of an
infrared fixed point in the presence of a magnetic field, as found
in Ref. [16], does not assure the (formal) existence of a second-
order transition. In any case, for compactified systems under the
action of an external magnetic field, as is also the case for sys-
tems in bulk form, a phase transition for D � 4, in particular in
D = 4 or D = 3, should not be a second-order one. This furnishes
us a motivation to study first-order phase transitions in the pres-
ence of a magnetic background, as is done in this Letter. In this
sense the present Letter may be seen as an extension including
concurrently finite-size, magnetic and chemical potential effects, of
previous works on first-order phase transitions that have already
been performed for superconducting materials under the form of
films and wires [22,23].

There are many potentials that describe first-order transitions
both in bulk and film-like systems, for instance, the Halperin–
Lubensky–Ma potential, engendered by integrating out gauge-field
modes [24,25]. In this Letter, we will remain in a somehow
less sophisticated framework and will consider a potential of the
Ginzburg–Landau type, −λϕ4 + ηϕ6 (λ > 0, η > 0), which allows
that the system undergoes a first-order transition. However, this
study will be done in the spirit of an application of the above
mentioned developments for field theories defined on toroidal
spaces [8], including finite-temperature field theory ideas and
compactification of spatial coordinates, not using the Ginzburg–
Landau approximation of considering a linear behavior of the mass
term of the Hamiltonian with the temperature. We perform a
study of concurrent effects of a finite chemical potential and of
an applied external magnetic field, on the size-dependent phase
structure of a first-order transition. Our main concern will be to
analyze the model within a field-theoretical approach, as applied
to statistical and condensed-matter physics. We will consider the
particular case of two compactified dimensions (d = 2), related to
finite temperature and one compactified spatial coordinate, with
compactification length L. From a condensed-matter physical point
of view, we can think of this system as a heated film of thick-
ness L, undergoing a first-order phase transition under the influ-
ence of an applied magnetic field.

We remember that Hamiltonian densities, when taken in the
Ginzburg–Landau approximation for temperatures around a given
fixed temperature parameter, are currently employed to describe
systems (for instance, superconductors) in the absence or the
presence of a magnetic background. This has been the case in
which this approximation has been employed to perform stud-
ies of superconducting films in a magnetic field in Refs. [21,26].
Here, instead of introducing temperature via the mass term, as
in the Ginzburg–Landau approximation, we will consider the sys-
tem in the framework of finite-temperature field theory, with
m2

0 being a fixed squared mass parameter; within this formal-
ism, the model is valid for the whole domain of temperatures,
0 � T < ∞.

In this case, we start from the scalar field model described by
the following Hamiltonian density in a Euclidean D-dimensional
space, including both ϕ4 and ϕ6 interactions, at zero temperature,
in the absence of boundaries and in the presence of an external
field (in natural units, h̄ = c = kB = 1):

H = |Dμϕ|2 + m2
0|ϕ|2 − λ

4
|ϕ|4 + η

6
|ϕ|6. (1)

In the above equation, m2
0 is a physical squared mass parame-

ter, λ > 0 and η > 0 are, respectively, physical quartic and sextic
self-coupling constants, all at zero temperature and in the ab-
sence of spatial compactification; these quantities are taken as
fixed parameters which define the model. Actually, we will define
dimensionless quantities in terms of m0, and only λ and η will
be adjustable parameters. The symbol D stands for the covariant
derivative, Dμ = ∂μ − ie Aext

μ , and Aext
μ is an external gauge field.

2. Zero-temperature magnetic effects in the absence of spatial
boundaries

In the D-dimensional space with Cartesian coordinates x1,

x2, . . . , xD , following Ref. [27], we choose a gauge such that Aext =
(0, xH,0, . . . ,0) (to simplify notation we take x1 ≡ x), where H
is the applied constant magnetic field, parallel to the x3 ≡ z axis.
In this case, the part of the Hamiltonian

∫
dDr H quadratic in ϕ

becomes, after an integration by parts, − ∫
dDr ϕ∗Dϕ , where the

differential operator D is

D = ∇2 − 2iωx∂y − ω2x2 − m0
2, (2)

with ω = eH being the cyclotron frequency. Thus the natural basis
to expand the field operators is the set of the normalized eigen-
functions of the operator D, the Landau basis,

χ�,p y ,k(r)

= 1√
2��!

(
ω

π

) 1
4

eik·Zeiωp y ye−ω(x−p y)2/2 H�

[√
ω(x − p y)

]
, (3)

where r = (x, y,Z) and H� are the Hermite polynomials; the cor-
responding energy eigenvalues are (the subscript � denotes the
Landau levels) E�(k) = k2 + (2�+ 1)ω +m2

0; k and Z are conjugate
momentum and space (D − 2)-dimensional vectors, respectively.
The free propagator is written as [27]

G
(
r, r′) =

∫
dD−2k

(2π)D−2

∫
dp y ω

∞∑
�=0

χ�,p y ,k(r)χ∗
�,p y ,k(r

′)

k2 + (2� + 1)ω + m2
0

. (4)

The non-translational-invariant phase of the propagator (4) can be
isolated as in Ref. [27], and we can write

G
(
r, r′;ω) = eiω(x+x′)(y−y′)/2Ḡ

(
r − r′;ω)

, (5)

where Ḡ(r −r′;ω) is the translationally invariant part; the momen-
tum-space propagator can be obtained from Eqs. (4) and (5), by
inserting Eq. (3) into Eq. (4) and then considering r = r′ . This will
be fully justified at the next section, where we will consider con-
tributions to the effective potential coming from only two kinds of
daisy diagrams, for which we need to consider just the coincidence
limit r = r′ .

Then we write

G(r, r) =
∫

dD−2k

(2π)D−2

+∞∫
−∞

dp y

(
ω

π

) 1
2

e−ω(x−p y)2

×
∞∑

�=0

1

2��!
[

H�(
√

ω(x − p y)
]2 ω

k2 + (2� + 1)ω + m2
0

≡
∫

dD−2k
D−2

G(k,ω). (6)

(2π)
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In the above equation, two of the dimensions are taken into ac-
count by the introduction of the sum over the Landau levels
and the incorporation of the cyclotron frequency; then, by defi-
nition, G(k,ω) is the free propagator in the remaining (D − 2)-
dimensional momentum space. Using the orthonormality rela-
tions for the Hermite polynomials,

∫ +∞
−∞ du Hn(u)Hm(u)exp(−u2)

= √
π2nn!δnm , we obtain straightforwardly the (D −2)-dimensional

free propagator in momentum space in the presence of a magnetic
field,

G(k,ω) =
∞∑

�=0

ω

k2 + (2� + 1)ω + m2
0

; (7)

this is to be used in the (D − 2)-dimensional space, in an entirely
analogous manner as in dimension D in the absence of a field.

To be more precise, let us remind that, in general, in a
D-dimensional non-compactified Euclidean space in the absence
of external field, the Feynman amplitude for a diagram G in a
scalar field theory has an expression of the form (omitting exter-
nal constant factors and symmetry coefficients),

A(D)
G

({p}) =
∫ I∏

i=1

dDqi

(2π)D

I∏
i=1

1

q2
i + m2

0

V∏
v=1

δ

(∑
i

εviqi

)
, (8)

where {p} stands for the set of external momenta, V is the number
of vertices, I is the number of internal lines and qi stands for the
momentum of each internal line i. The quantity εvi is the incidence
matrix, which equals 1 if the line i arrives at the vertex v , −1 if it
starts at v , and 0 otherwise. Performing the integrations over the
internal momenta leads to a choice of independent loop-momenta
{kα} and we get

A(D)
G

({p}) =
∫ L∏

α=1

dDkα

(2π)D

I∏
i=1

1

q2
i ({p}, {kα}) + m2

0

, (9)

where L is the number of independent loops. The momentum qi is
a linear function of the independent internal momenta kα and of
the external momenta {p}.

This means that, taking into account all Landau levels, calcula-
tions of a generic Feynman amplitude for a daisy diagram can be
performed in the (D − 2)-dimensional space using Eq. (7), in an
entirely similar way as in the absence of the external field, i.e,
performing, from Eq. (9) in momentum space, for the momentum
integrations over the independent momenta kα,α = 1,2, . . . , L,
and for the set of propagators corresponding to the internal lines
i, i = 1,2, . . . , I , the replacements∫ L∏

α=1

dDkα

(2π)D
→

∫ L∏
α=1

dD−2kα

(2π)D−2
,

I∏
i=1

1

q2
i ({p}, {kα}) + m2

0

→
I∏

i=1

∞∑
�=0

ω

q2
i ({p}, {kα}) + (2� + 1)ω + m2

0

. (10)

This gives, for a generic Feynman amplitude of a daisy diagram,
after taking into account the applied magnetic field, an expression
of the form of an integral in the remaining (D − 2)-dimensional
momentum space,

A(D)
G

({p},ω) =
∫ L∏

α=1

dD−2kα

(2π)D−2

I∏
i=1

×
[ ∞∑ ω

q2({p}, {kα}) + (2� + 1)ω + m2

]
. (11)
�=0 i 0
3. Effective potential at finite temperature and chemical
potential, in the presence of boundaries, under the action of an
external field

We consider the system under the influence of an external field,
at temperature β−1, and we compactify one of the spatial coor-
dinates (say, x) with compactification length L. As is argued in
Ref. [7], this can be considered as a heated system confined to
a region of space delimited by a pair of parallel planes (a film of
thickness L). As already noticed, under these conditions the system
makes sense for dimensions D � 4. Taking into account the pre-
scriptions (10) in a generic dimension, we use (D − 2)-dimensional
Cartesian coordinates Z = (τ , x,W), where τ corresponds for-
mally to the imaginary-time (inverse-temperature) coordinate, x
to a spatial coordinate and W is a (D − 4)-dimensional vector.
The momentum conjugate to Z is k = (kτ ,kx,Q), Q being a
(D − 4)-dimensional vector in momentum space. Then we follow
the method described in Ref. [8] in the particular case d = 2, to
treat jointly finite temperature and compactification of one spatial
coordinate. This amounts to perform a double Matsubara prescrip-
tion, one in imaginary time, as is done in finite-temperature field
theory, and an analogous one in the x coordinate. We also con-
sider a chemical potential μ associated to the thermal reservoir.
Therefore, the Feynman rules should be modified according to∫

dkτ

2π
→ 1

β

∞∑
nτ =−∞

, kτ → 2nτ π

β
− iμ,

∫
dkx

2π
→ 1

L

∞∑
nx=−∞

, kx → 2nxπ

L
, (12)

where L is the size of the system and we remind that attention
must be paid to the conditions in Eq. (10).

We consider in principle corrections to the mass,

m2(β,μ, L,ω) = m2
0 + Σ(β,μ, L,ω), (13)

and coupling constants, λ(β,μ, L,ω) = λ0 + Π(β,μ, L,ω) and
η(β,μ, L,ω) = η0 + Ξ(β,μ, L,ω). Then, a free-energy density of
the Ginzburg–Landau type can be constructed,

F = F0 + A |ϕ0|2 + B|ϕ0|4 + C |ϕ0|6, (14)

where A = m2(β,μ, L,ω), B = −λ(β,μ, L,ω)/4 and C = η(β,μ,

L,ω)/6 and where ϕ0 is the vacuum expectation value of the field,
ϕ0 = 〈0|ϕ|0〉, the classical field. For the sake of simplicity we will
consider only corrections to the mass, the fixed coupling constants
λ and η will be taken as the physical ones.

Our analysis starts from the effective potential, which is re-
lated to the physical mass through a renormalization condition. In
principle, the effective potential is obtained, following the analysis
introduced in Ref. [28], as an expansion in the number of loops in
Feynman diagrams. Accordingly, to the free propagator and to the
no-loop (tree) diagrams for both couplings, radiative corrections
are added, with increasing number of loops. Thus, at the 1-loop
approximation, we get the infinite series of 1-loop diagrams with
all numbers of insertions of the ϕ4 vertex (two external legs in
each vertex), plus the infinite series of 1-loop diagrams with all
numbers of insertions of the ϕ6 vertex (four external legs in each
vertex), plus the infinite series of 1-loop diagrams with all kinds of
mixed numbers of insertions of ϕ4 and ϕ6 vertices. Analogously,
we should include all those types of insertions in diagrams with
two loops, etc. This is an extremely hard task; instead of undertak-
ing this computation, in our approximation we restrict ourselves
to the lowest terms in the loop expansion. The renormalization
condition giving the physical mass then reduces considerably the
number of relevant Feynman diagrams, if we restrict ourselves to
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Fig. 1. Contributions to the effective potential.

first-order terms in both coupling constants. In this case, just two
diagrams need to be considered in this approximation: a tadpole
graph with the ϕ4 coupling (one loop) and a “shoestring” graph
with the ϕ6 coupling (two loops), as depicted in Fig. 1. No dia-
gram with both couplings occur. The effects of temperature, finite
size, chemical potential and magnetic field appear from the treat-
ment of the loop integrals.

The gap equation we are seeking is given by the condition in
which the physical squared mass is defined as the second deriva-
tive of the effective potential U (ϕ0) with respect to the classical
field |ϕ0|, taken at zero value,

∂2U (ϕ0)

∂|ϕ0|2
∣∣∣∣|ϕ0|=0

= m2, (15)

where we remind that m is the physical mass. In our case,
we will have a β , L, μ and ω-dependent squared mass, m2 =
m2(β, L,μ,ω).

Within our approximation, we do not take into account the
thermal and boundary corrections for the interaction coupling con-
stants. As already stated, they were considered as physical quanti-
ties when they were written in the Hamiltonian at the starting
point, being fixed parameters of the model.

3.1. The tadpole contribution

At the one-loop approximation, the contribution from the di-
agram with only one |ϕ0|4 vertex (the tadpole) to the effective
potential, in the presence of a magnetic field, is obtained from
the one-loop contribution to the zero-temperature effective po-
tential in unbounded space, as an adaptation of the expression in
Ref. [28], taking into account the modified propagator in Eq. (7),

U1(ϕ0) =
∞∑

s=1

(−1)s+1

2s

[
ω(−λ)|ϕ0|2

2

]s

×
∫

dD−2k

(2π)D−2

[ ∞∑
�=0

1

[k2 + m2
�(ω)]s

]
, (16)

where we introduce the notation m2
�(ω) ≡ m2

0 + (2� + 1)ω. As the
parameter s counts the number of ϕ2 insertions on the loop, the
tadpole contribution comes from only the s = 1 term of the sum in
Eq. (16). However, due to analytic continuations that will be made
in the following, the value of s = 1 will be taken only at the end
of the calculation.

After changing variables in the integral, ki/2π → ki , and putting
aτ = 1/β2, ax = 1/L2, the one-loop contribution to the effective
potential carrying temperature and finite-size effects is obtained
using Eq. (12), as a generalization of Eq. (16),

U1(ϕ0, β, L,μ,ω)

=
∞∑

s=1

(−1)s+1

2s

[
ω(−λ)|ϕ0|2

2

]s 1

βL

1

(4π2)s

×
∞∑ ∞∑ ∫

dD−4 Q
[Q2 + aτ (nτ − iβ μ)2 + axn2

x + c2]s
,

�=0 nτ ,nx=−∞ 2π �
where c2
� = m2

�(ω)/4π2.
The integral in the previous equation is calculated by a

dimensional-regularization formula [29], so that the one-loop con-
tribution to the effective potential can be put into the form

U1(ϕ0;β, L,μ,ω)

=
∞∑

s=1

(−1)s+1

2s

[
ω(−λ)|ϕ0|2

2

]s 1

βL

π(D−4)/2

(4π2)s

�(s − D−4
2 )

�(s)

×
∞∑

�=0

∞∑
nτ ,nx=−∞

[
aτ

(
nτ − iβ

2π
μ

)2

+ axn2
x + c2

�

](D−4)/2−s

.

(17)

The double sum in Eq. (17) may be recognized as one of the inho-
mogeneous Epstein–Hurwitz zeta functions [30,32], which gives to
the one-loop contribution to the effective potential the expression,

U1(ϕ0;β, L,μ,ω) = 1

βL

∞∑
s=1

f (D, s)

[
ω(−λ)|ϕ0|2

2

]s

×
∞∑

�=0

Z
c2
�

2

(
s − D − 4

2
;aτ ,ax;bτ ,bx

)
, (18)

where bτ = iβμ/2π , bx = 0, and

f (D, s) = π(D−4)/2

(4π2)s

(−1)s+1

2s�(s)
�

(
s − D − 4

2

)
. (19)

The zeta functions can be analytically continued to the whole
s-plane, leading to an expression for Z c2

2 of the general form,

Z c2

2

(
ν; {a j}; {b j}

)
= π |c|2−2ν �(ν − 1)

�(ν)
√

a1a2
+ 4πν |c|1−ν

�(ν)
√

a1a2

×
[

2∑
j=1

∞∑
n j=1

cos(2πn jb j)

(
n j√
a j

)ν−1

Kν−1

(
2πcn j√

a j

)

+ 2
∞∑

n1,n2=−∞
cos(2πn1b1) cos(2πn2b2)

(√
n2

1

a1
+ n2

2

a2

)ν−1

× Kν−1

(
2πc

√
n2

1

a1
+ n2

2

a2

)]
, (20)

where Kν−1(z) are modified Bessel functions of the second kind.
For us, a1 = aτ ,a2 = ax,b1 = bτ ,b2 = bx = 0 and ν = s − (D − 4)/2.
The first term in Eq. (20) is singular for even D � 4 and will be
suppressed by a regularization procedure. This procedure is known
as the zeta-function regularization and is well established, being
largely employed for a long time in the context of the Casimir
effect (see for instance [31]); mathematical foundations for this
method are for instance in [32].

Let us remark that the physical zero-temperature coupling con-
stants in the absence of boundaries λ and η have dimensions
respectively, of (mass)4−D and (mass)6−2D . We define the dimen-
sionless coupling constants, λ′ , η′; we also define the reduced tem-
perature t , reduced chemical potential γ , reduced inverse length of
the system ξ , and the reduced magnetic field δ,

λ′ = λ

m4−D
0

, η′ = η

m6−2D
0

, t = T

m0
,

ξ = L−1

m
, γ = μ

m
, δ = ω

m2
, (21)
0 0 0
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in such a way that we have, for any dimension D , the set of di-
mensionless parameters λ′ , η′ , t , γ , ξ and δ.

In terms of the dimensionless quantities above, after suppres-
sion of the singular term, putting s equal to 1, and using the
symmetry property of Bessel functions Kα(z) = K−α(z), the tad-
pole contribution to the effective potential is given by

Ũ1(ϕ0; t, ξ, γ , δ) = −λ′δm2
0|ϕ0|2

2(2π)
D−2

2

K(t, ξ, γ , δ), (22)

where

K(t, ξ, γ , δ)

=
∞∑

�=0

[ ∞∑
n=1

cosh

(
γ n

t

)(
t
√

1 + (2� + 1)δ

n

) D−4
2

× K D−4
2

(
n
√

1 + (2� + 1)δ

t

)

+
∞∑

n=1

(
ξ
√

1 + (2� + 1)δ
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√
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ξ
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cosh
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)(√
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2

× K D−4
2

(√
n2

1

t2
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2

ξ2

√
1 + (2� + 1)δ

)]
. (23)

Notice that in dimension D = 4, the above expression is well-
defined for the reduced chemical potential restrained to the
domain 0 � γ < 1. Indeed, using an asymptotic formula for
large values of the argument z of the Bessel function, K0(z) ≈√

(π/2z) exp(−z), with z = (n/t)
√

1 + (2� + 1)δ, we can see that,
for large values of n, the argument of the first sum in Eq. (23) has
the asymptotic form, for arbitrary values of the reduced applied
field,

fn(t, γ , δ)

≈
√

πt√
2 n

√
1 + (2� + 1)δ

1

2

[
exp

(
−n(

√
1 + (2� + 1)δ − γ )

t

)
+ exp

(
−n(

√
1 + (2� + 1)δ + γ )

t

)]
. (24)

The second term inside the square brackets of the above equation
does not present any problem for the convergence of the sum over
n for all values of γ � 0, but the first one implies that the sum
over n can be convergent only if 0 � γ <

√
1 + (2� + 1)δ. In order

to include arbitrarily small values of δ, we should restrain γ to the
domain 0 � γ < 1. A similar argument applies for the last term
in Eq. (23).

3.2. The shoestring contribution

The two-loop shoestring diagram contribution to the effective
potential is obtained using again the Matsubara-modified Feynman
rule prescription for the compactified dimensions. In the absence
of boundaries, at zero temperature, and not submitted to the ac-
tion of an external field, the shoestring diagram contribution is
simply given by the product, with the proper coefficients, of two
tadpoles,

Ũ2(ϕ0) = η|ϕ0|2
16

[ ∞∑∫
dD−2q

(2π)D−2

1

q2 + m2(ω)

]2

. (25)

�=0 �
Then, after steps analogous to those which have been done for Ũ1,
we have

Ũ2(ϕ0; t, ξ, γ , δ) = η′δ2m2
0|ϕ0|2

4(2π)D−2

[
K(t, ξ, γ , δ)

]2
. (26)

3.3. Critical temperature

We now take m2(t, ξ, γ , δ) ≡ m′ 2(t, ξ, γ , δ) as dimensionless,
measured in units of m2

0. It is obtained from the condition (15) by
using Eq. (21), that is, with the dimensionless coupling constants
λ′ , η′ and in terms of the reduced temperature, inverse size, chem-
ical potential and external field. At the first order in the coupling
constants λ′ and η′ it is given by

m′ 2(t, ξ, γ , δ) = ∂2

∂|ϕ0|2 Ũ (ϕ0; t, ξ, γ , δ)

∣∣∣∣|ϕ0|=0
, (27)

where Ũ = Ũ0 + Ũ1 + Ũ2 and Ũ0 stands for the tree-level approx-
imation. Then, from Eqs. (22), (23), (26), and (27), we have

m′ 2(t, ξ, γ , δ) = 1 − λ′δ
(2π)

D−2
2

K(t, ξ, γ , δ)

+ η′ δ2

2(2π)D−2

[
K(t, ξ, γ , δ)

]2
. (28)

As the temperature is lowered, the system approaches the
symmetry-breaking region. Taking the full equation (28), with η′ >
0 and λ′ > 0, there is a possibility that the system undergoes
a first-order phase transition. Besides these conditions, it is re-
quired that the minimum values of the free-energy density given
by Eq. (14),

F = F0 + m′ 2(t, ξ, γ , δ) |ϕ0|2 − λ′(ξ, γ , δ)|ϕ0|4
+ η′(t, ξ, γ , δ) |ϕ0|6, (29)

which occur for ϕ0 satisfying η′|ϕ0|5 − λ′|ϕ0|3 + m′ 2|ϕ0| = 0,
should be equal to F0, which can be fixed as zero without loss
of generality; this leads to the critical condition,

m′ 2(tc, ξ, γ , δ) = 3
(
λ′)2

/32η′, (30)

where the mass term is given by the full expression, Eq. (28), con-
taining mass corrections at the first-order in λ′ and η′ .

The solution of Eq. (30) gives the reduced critical temperature
tc as a function of the reduced inverse size, chemical potential and
applied field, t = tc(ξ, γ , δ).

4. Magnetic and chemical potential effects on the
size-dependent phase structure: Comments and conclusions

We fix ourselves in dimension D = 4. This corresponds to a
heated film under the influence of an external field. In order to
perform a qualitative analysis of the phase structure of the model,
we take for the coupling constants the numerical values λ′ = 0.5
and η′ = 0.05. Our objective is to investigate the interplay of the
simultaneous influences of a finite chemical potential and of an
applied magnetic field on the critical temperature as a function of
the size of the system.

Let us remind that an effect of the external field is of break-
ing the translational symmetry on two of the space dimensions,
x and y, leaving a (D − 2)-dimensional translationally invari-
ant subspace. Nevertheless, our system remains defined on a
D-dimensional space, although it is not globally translationally in-
variant. On the other hand, the general formalism of field theories
in toroidal topologies is constructed for translationally invariant
spaces. This has as a consequence that, if we want to introduce,
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in the framework of field theories defined on toroidal spaces [8],
finite temperature with chemical potential and finite-size effects,
we should compactify two of the dimensions remaining in the
(D − 2)-dimensional subspace, in such a way that the theory will
be valid for dimensions D � 4. In the case of dimension D = 4,
the dimensions of the whole space are {x, y, z, τ }. We take one
of these dimensions, τ , corresponding, after compactification, to
inverse temperature, the three others being spatial dimensions;
then compactification of τ and of the z-coordinate (with compact-
ification length L) makes our system, embedded in three spatial
dimensions, have the form of a heated film of finite thickness L,
under the influence of an applied magnetic field. Moreover, as we
will see below, for each value of the (reduced) applied field, δ, the
thickness of the film has a lower bound, L0(δ), sustaining the tran-
sition, below which the transition disappears.

One may speculate on the physics below L0(δ). Due to the sym-
metries of the problem in the two-dimensional limit achieved by
taking L → 0, it would be expected that the system could have
the conditions for a Berezinsky–Kosterlitz–Thouless (BKT) transi-
tion. Actually, numerical calculations show that the equation for
the critical temperature has no solution for L < L0(δ), and so we
are unable, within our formalism, to investigate this range of thick-
nesses. This means, in particular, that we cannot take the L → 0
limit, in order to verify whether a BKT transition occurs.

In a simpler situation of a first-order transition in the absence
of an applied magnetic field, a similar result was found by some
of us in Ref. [23] in the context of a Ginzburg–Landau model. In
this case, we have obtained an analytical expression for the critical
temperature of a superconducting film, as function of its thickness.
We found that our predicted curve for the critical temperature
is in a relatively good agreement with experimental data, partic-
ularly for small film thicknesses. Both the theoretical curve and
the experimental data suggest the existence of a minimal allowed
thickness, below which no transition occurs.

In Fig. 2 we show the reduced critical temperature as a function
of the reduced inverse size of the system, for several values of the
reduced chemical potential at a fixed value of the reduced applied
field, δ = 1.5. We find, in particular, that there exists a minimal
size of the system, L0 (corresponding to a maximal reduced in-
verse size ξ0 ≈ 3.20), sustaining the existence of the transition.
This minimal allowed size appears to be independent of the value
of the chemical potential.

In Fig. 3 we plot the reduced critical temperature as a func-
tion of the reduced inverse size of the system, for several cou-
ples of values (γ , δ). We take for such couples the values (0,0.3),
(0.5,0.3), and (0.9,0.3); (0,1.5), (0.5,1.5), and (0.9,1.5). We can
infer from this figure that the pattern of Fig. 2 for δ = 0.5, is repro-
duced for all values of the reduced applied field. For each couple
of values (γ , δ) of the (reduced) chemical potential and applied
field, there exists a minimal allowed size of the system, L0(γ , δ)

[corresponding to a maximal reduced inverse size ξ0(γ , δ)], below
which there is no transition.

From Fig. 3 we can also see that the minimal allowed size of
the system, L0(γ , δ) [or the maximal allowed value of the reduced
inverse size, ξ0(γ , δ)], is independent of the chemical potential for
both values of the reduced applied field, δ = 0.3 and δ = 1.5. Ac-
tually, this conclusion is valid for all values of δ. This is not a
trivially expected feature, but we can prove it by finding the so-
lutions for ξ0(γ , δ) directly from Eqs. (23) and (30) considering
the limit t → 0. Indeed, it should be noted that for ξ = ξ0(γ , δ),
the symmetry-breaking region disappears completely and we have
a null critical temperature. Then ξ0(γ , δ) is obtained by solving
Eq. (30) for t = 0 using an argument similar to one that was
used above to determine the allowed range of values of the re-
duced chemical potential. For t → 0, we use again the asymptotic
formula for large values of the argument of the Bessel function,
Fig. 2. Reduced critical temperature as a function of the reduced inverse size of the
system for dimension D = 4, for the value of the reduced magnetic field δ = 1.5. We
fix λ′ = 0.5 and η′ = 0.05 and take for the reduced chemical potential the values
γ = 0.0 (full line), 0.5 (dashed line) and 0.9 (dot-dashed line).

Fig. 3. The same as in Fig. 2 for several couples of values (γ , δ). We take for
them the values (0.0,0.3), (0.5,0.3) and (0.9,0.3) (respectively, full, dashed and
dot-dashed lines in the right set of curves); (0,1.5), (0.5,1.5) and (0.9,1.5) (re-
spectively, full, dashed and dot-dashed lines in the left set of curves).

K0(z) ≈ √
(π/2z) exp(−z), for t → 0, so that the argument of the

first sum between square brackets in Eq. (23), for small tempera-
tures is formally the same as in Eq. (24), i.e., in this case, the sum
can be written as

∑∞
n=0 fn(t, γ , δ). Taking into account the con-

dition 0 � γ < 1, this sum vanishes in the limit t → 0. A similar
argument applies for the last term in Eq. (23). Therefore, in the
limit t → 0, only the second term in Eq. (23) survives, in such a
way that all dependence coming from the chemical potential drops
out. Consequently, the resulting solution of Eq. (30), for ξ in this
case, ξ = ξ0(γ , δ) = ξ0(δ), does not have any influence from the
chemical-potential magnitude.

The same kind of “mathematical phenomenon” is found in the
absence of an external field for both first- and second-order phase
transitions [10,11]. As explicitly stated by some of us in Ref. [10],
what appears to happen is that for zero temperature the behavior
of the physical system having the minimal (finite) size collapses
to the one corresponding to a zero chemical potential, as is the
case of a Bose–Einstein distribution. In the presence of a mag-
netic field, for each value of δ, there is a limiting smallest size
of the system, Lmin(δ), corresponding to a largest reduced inverse
size χmax(δ), over which the first-order transition described by
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the adopted model, ceases to exist. In other words, in the pres-
ence of a magnetic field, we find the same kind of “mathemat-
ical phenomenon”, of the collapsing of the system into a Bose–
Einstein distribution for the minimal allowed film thickness; the
main difference is that the minimal allowed size for the system is
now dependent on the intensity of the applied field; the larger
the field is, the larger is the minimal allowed size of the sys-
tem.

Moreover, let us remind that with our choice of gauge for
D = 4, A = (0, xH,0,0), the applied field lies on a direction per-
pendicular to the film. In this case, we see from Fig. 3 that, for
a higher applied field, the minimal allowed thickness of the film
is larger, that is, thinner films cannot be made for stronger val-
ues of the applied field. On the other hand, let us consider any
film thickness such that the transition can exist for both val-
ues of the applied field (0 < ξ < 3.20 in the figure). We see in
this case that the critical temperature is lower for higher applied
field, i.e., the applied field goes against the transition. This behav-
ior for a system in the form of a film is in agreement with the
observed behavior for systems in bulk form, that is, the applied
field tends to destroy the (for instance, superconducting) transi-
tion. In other words, the tendency of the applied field to destroy
the phase transition is a common feature for materials in bulk
form and for films, independently of its thickness. However, the
lowering of the critical temperature for a given thickness and ap-
plied field depends on the density of the material, in such a way
that for higher values of the chemical potential, the material “re-
sists” less to the destruction of the transition by the magnetic
background.

As an overall conclusion, we can say that some of the above re-
sults seem a priori somehow unexpected, such as the independency
of the minimal size of the system (the minimal film thickness)
on density and the fact that for higher applied fields, the mini-
mal allowed thicknesses of the film are larger; actually, they are
a direct consequence of considering effects coming from the fi-
nite size of the system. Other results, such as the decreasing of
the critical temperature as the magnetic field intensity grows, go
along the lines of known features of superconducting materials in
bulk, under the influence of a magnetic background. In any case,
the results found in this Letter suggest that magnetic and finite-
size effects with finite chemical potential are relevant for bounded
systems and significantly changes the phase structure with re-
spect to the one for the system in bulk form. In particular, these
actors lead to the appearance of a minimal allowed size of the
system, for each value of the applied field, which is independent
of the chemical potential. On the other side, there are other as-
pects in agreement with some observations for materials in bulk
form.
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