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Abstract

Generalizing self-duality onR2×S2 to higher dimensions, we consider the Donaldson–Uhlenbeck–Yau equatio
R

2n×S2 and their noncommutative deformation for the gauge group U(2). Imposing SO(3) invariance (up to
transformations) reduces these equations to vortex-type equations for an Abelian gauge field and a complex scalar oR

2n
θ . For

a specialS2-radiusR depending on the noncommutativityθ we find explicit solutions in terms of shift operators. These vort
like configurations onR2n

θ determine SO(3)-invariant multi-instantons onR
2n
θ ×S2

R
for R =R(θ). The latter may be interprete

as sub-branes of codimension 2n inside a coincident pair of noncommutative Dp-branes with anS2 factor of suitable size.
 2003 Published by Elsevier B.V.

1. Introduction

Noncommutative deformation is a well established framework for stretching the limits of conventional (cl
and quantum) field theories [1,2]. On the nonperturbative side, all celebrated classical field configurations h
generalized to the noncommutative realm. Of particular interest thereof are BPS configurations, which are
to first-order nonlinear equations. The latter descend from the 4d Yang–Mills (YM) self-duality equations an
given rise to instantons [3], monopoles [4] and vortices [5], among others. Their noncommutative coun
were introduced in [6,7] and [8], respectively, and have been studied intensely for the past five years (see
recent review).

String/M theory embeds these efforts in a higher-dimensional context, and so it is important to formulat
type equations in more than four dimensions. In fact, noncommutative instantons in higher dimensions a
brane interpretations have recently been considered in [10–12]. Yet already 20 years ago, generalized se
equations for YM fields in more than four dimensions were proposed [13,14] and their solutions investigat
in [14,15]. For U(k) gauge theory on a Kähler manifold these equations specialize to the Donaldson–Uhle
Yau (DUY) equations [16,17]. They are the natural analogues of the 4d self-duality equations.

In this Letter we generalize the DUY equations to the noncommutative spacesR
2n
θ × S2 and construct explici

U(2) multi-instanton solutions even though these equations are not integrable. The key lies in a clever an
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the gauge potential, due to Taubes [5], which we generalize to higher dimensions and to the noncom
setting. This SO(3)-invariant ansatz reduces the U(2) DUY equations to vortex-type equations onR

2n
θ . Forn= 1

the latter are the standard vortex equations onR
2
θ , while forn= 2 they are intimately related to the Seiberg–Wit

monopole equations onR4
θ [18].

2. Donaldson–Uhlenbeck–Yau equations on R
2n
θ × S2

2.1. Manifold R
2n
θ × S2

We consider the manifoldR2n × S2 with the Riemannian metric

(2.1)ds2 =
2n∑
µ,ν=1

δµν dxµ dxν +R2(dϑ2 + sin2ϑ dϕ2)=
2n+2∑
i,j=1

gij dxi dxj ,

wherex1, . . . , xµ, . . . , x2n are coordinates onR2n while x2n+1 = ϑ andx2n+2 = ϕ parametrize the standard tw
sphereS2 with constant radiusR, i.e., 0� ϕ � 2π and 0� ϑ � π . The volume two-form onS2 reads

(2.2)
√

det(gij )dϑ ∧ dϕ =: ωϑϕ dϑ ∧ dϕ = ω �⇒ ωϑϕ = −ωϕϑ =R2 sinϑ.

The manifoldR
2n × S2 is Kähler, with local complex coordinatesz1, . . . , zn, y where

(2.3)za = x2a−1 − ix2a, z̄ā = x2a−1 + ix2a with a = 1, . . . , n

and

(2.4)y = R sinϑ

(1+ cosϑ)
exp(−iϕ), ȳ = R sinϑ

(1+ cosϑ)
exp(iϕ),

so that 1+cosϑ = 2R2

R2+yȳ . In these coordinates, the metric takes the form1

(2.5)ds2 = δab̄ dza dz̄b̄ + 4R4

(R2 + yȳ)2 dy dȳ

with δaā = δaā = 1 (other entries vanish), and the Kähler two-form reads

(2.6)Ω = − i

2

{
δab̄ dza ∧ dz̄b̄ + 4R4

(R2 + yȳ)2 dy ∧ dȳ

}
= − i

2
δab̄ dza ∧ dz̄b̄ +ωϑϕ dϑ ∧ dϕ.

For later use, we also note here the derivatives

(2.7)∂za = 1

2
(∂2a−1 + i∂2a), ∂z̄ā = 1

2
(∂2a−1 − i∂2a),

where∂µ ≡ ∂/∂xµ for µ= 1, . . . ,2n.
Classical field theory on the noncommutative deformationR

2n
θ of R

2n may be realized in a star-produ
formulation or in an operator formalism. While the first approach alters the product of functions onR

2n the
second one turns these functionsf into linear operatorsf̂ acting on then-harmonic-oscillator Fock spaceH.

1 From now on we use the Einstein summation convention for repeated indices.



T.A. Ivanova, O. Lechtenfeld / Physics Letters B 567 (2003) 107–115 109

utative

review

ad

u

tes

ual
The noncommutative spaceR2n
θ may then be defined by declaring its coordinate functionsx̂1, . . . , x̂2n to obey the

Heisenberg algebra relations

(2.8)
[
x̂µ, x̂ν

]= iθµν

with a constant antisymmetric tensorθµν . The coordinates can be chosen in such a way that the matrix(θµν) will
be block-diagonal with nonvanishing components

(2.9)θ2a−12a = −θ2a 2a−1 =: θa.
We assume that allθa � 0; the general case does not hide additional complications. For the noncomm
version of the complex coordinates (2.3) we have

(2.10)
[
ẑa, ˆ̄zb̄]= −2δab̄ θa =: θab̄ = −θ b̄a � 0, and all other commutators vanish.

The Fock spaceH is spanned by the basis states

(2.11)|k1, k2, . . . , kn〉 =
n∏
a=1

(
2θaka!

)−1/2(
ẑa
)ka |0〉 for ka = 0,1,2, . . . ,

which are connected by the action of creation and annihilation operators subject to

(2.12)

[ ˆ̄zb̄√
2θb
,
ẑa√
2θa

]
= δab̄.

We recall that, in the operator realizationf �→ f̂ , derivatives off get mapped according to

(2.13)∂zaf �→ θab̄
[ ˆ̄zb̄, f̂ ]=: ∂ẑa f̂ , ∂z̄ā f �→ θāb

[
ẑb, f̂

]=: ∂ ˆ̄zā f̂ ,

whereθab̄ is defined viaθbc̄θ c̄a = δab so thatθab̄ = −θb̄a = δab̄
2θa . Finally, we have to replace

(2.14)
∫

R2n

dnx f �→
(
n∏
a=1

2πθa
)

TrH f̂ .

TensoringR2n
θ with a commutativeS2 means extending the noncommutativity matrixθ by vanishing entries in

the two new directions. A more detailed description of noncommutative field theories can be found in the
papers [2].

2.2. Donaldson–Uhlenbeck–Yau equations

Let M2q be a complexq = n+1 dimensional Kähler manifold with some local real coordinatesx = (xi)
and a tangent space basis∂i := ∂/∂xi for i, j = 1, . . . ,2q , so that a metric and the Kähler two-form re
ds2 = gij dxi dxj andΩ = Ωij dxi ∧ dxj , respectively. Consider a rankk complex vector bundle overM2q
with a gauge potentialA = Ai dxi and the curvature two-formF = dA + A ∧ A with componentsFij =
∂iAj − ∂jAi + [Ai ,Aj ]. BothAi andFij take values in the Lie algebra u(k). The Donaldson–Uhlenbeck–Ya
(DUY) equations [16,17] onM2q are

(2.15)∗Ω ∧F = 0 and F0,2 = 0,

whereΩ is the Kähler two-form,F 0,2 is the(0,2) part ofF , and∗ is the Hodge operator. In our local coordina
(xi) we haveq!(∗Ω ∧ F ) = (Ω,F )Ωq =ΩijFijΩq whereΩij are defined viaΩijΩjk = δik . Due to the anti-
Hermiticity ofF , it follows that alsoF2,0 = 0. Forq = 2 the DUY equations (2.15) coincide with the anti-self-d
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(2.16)∗F = −F

introduced in [3].
Specializing nowM2q to beR

2n × S2, the DUY equations (2.15) in the local complex coordinates(za, y) take
the form

(2.17)δab̄F
za z̄b̄

+ (R
2 + yȳ)2
4R4 Fyȳ = 0, F

z̄ā z̄b̄
= 0 and F̄zā ȳ = 0,

wherea, b= 1, . . . , n. Using formulae (2.4), we obtain

(2.18)Fz̄ā ȳ =Fz̄āϑ
∂ϑ

∂ȳ
+Fz̄āϕ

∂ϕ

∂ȳ
= 1

ȳ
(sinϑ Fz̄āϑ − i Fz̄āϕ),

(2.19)Fyȳ = Fϑϕ
∣∣∣∣∂(ϑ,ϕ)∂(y, ȳ)

∣∣∣∣= 1

2i

sinϑ

yȳ
Fϑϕ = 1

2i

(1+ cosϑ)2

R2 sinϑ
Fϑϕ

and finally write the Donaldson–Uhlenbeck–Yau equations onR
2n × S2 in the alternative form

(2.20)2iδab̄F
zaz̄b̄

+ 1

R2 sinϑ
Fϑϕ = 0, F

z̄ā z̄b̄
= 0, sinϑ Fz̄āϑ − i Fz̄āϕ = 0.

The transition to the noncommutative DUY equations is trivially achieved by going over to operator-
objects everywhere. In particular, the field strength components in (2.20) then readF̂ij = ∂x̂i Âj − ∂x̂j Âi +
[Âi , Âj ], where, e.g.,Âi are simultaneously u(k) and operator valued. To avoid a cluttered notation, we d
the hats from now on.

3. Generalized vortex equations on R
2n
θ

3.1. Noncommutative generalization of Taubes’ ansatz

Considering the particular case (2.16) of the SU(2) DUY equations onR
2 × S2, Taubes introduced an SO(3

invariant ansatz2 for the gauge potentialA which reduces the ASDYM equations (2.16) to the vortex equation
R

2 [5] (see also [21]). Here we extend Taubes’ ansatz to the higher-dimensional manifoldR
2n × S2 and reduce

the noncommutative3 U(2) Donaldson–Uhlenbeck–Yau equations (2.20) to generalized vortex equations oR
2n
θ ,

including their commutative (θ = 0) limit. In Section 4, we will write down explicit solutions of the generaliz
noncommutative vortex equations onR

2n which determine multi-instanton solutions of the noncommutative
equations onR2n × S2.

We begin with the u(2)-valued operator one-formA on R
2n
θ × S2. Imposing SO(3) invariance up to a gau

transformation, Taubes [5] found forn = 1 andθ = 0 that theS2 dependence ofA must be collected in th
su(2) matrix

(3.1)Q= i

(
cosϑ e−iϕ sinϑ

eiϕ sinϑ −cosϑ

)
= i(sinϑ cosϕ σ1 + sinϑ sinϕ σ2 + cosϑ σ3)

2 Similarly, Witten’s ansatz [19] for gauge fields onR
4 reduces (2.16) to the vortex equations on the hyperbolic spaceH2 (cf. [20] for the

noncommutativeR4).
3 As it is well known [2], in the noncommutative case one should use U(2) instead of SU(2).
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and its differential dQ. Note thatQ2 = −1 and ∂Q
∂ϕ

= −sinϑ Q ∂Q
∂ϑ

. Our slight generalization of his ansatz

R
2n
θ × S2 reads (1 = ( 1 0

0 1

)
)

(3.2)A= 1

2

{
(iQ− γ 1)A+ (φ1−1)QdQ+ φ2 dQ

}
,

where the constantγ parametrizes the additional u(1) piece. The one-formA= Aµ(x)dxµ with Aµ ∈ u(1)∼= iR
andµ= 1, . . . ,2n is anti-Hermitian whileφ1,2 = φ1,2(x) ∈ R are Hermitian, all being operators inH only. Note
that this form reduces the non-Abelian connectionA to the Abelian objects(A,φ1, φ2) whose noncommutativ
character thus does not interfere with the u(2) structure. Calculation of the curvature

F = dA+A∧A = 1

2
Fij dxi ∧ dxj

(3.3)= 1

2
Fµν dxµ ∧ dxν +Fµϑ dxµ ∧ dϑ +Fµϕ dxµ ∧ dϕ+Fϑϕ dϑ ∧ dϕ

for A of the form (3.2) yields

(3.4)2Fµν = iQ
(
∂µAν − ∂νAµ−γ [Aµ,Aν]

)− γ 1
(
∂µAν − ∂νAµ − 1+ γ 2

2γ
[Aµ,Aν]

)
,

(3.5)

4Fµϑ = {
Q
(
2∂µφ1 + iAµφ2 + iφ2Aµ − γ [Aµ,φ1]

)+ 1
(
2∂µφ2 − iAµφ1 − iφ1Aµ − γ [Aµ,φ2]

)}∂Q
∂ϑ
,

(3.6)

4Fµϕ = {
Q
(
2∂µφ1 + iAµφ2 + iφ2Aµ − γ [Aµ,φ1]

)+ 1
(
2∂µφ2 − iAµφ1 − iφ1Aµ − γ [Aµ,φ2]

)}∂Q
∂ϕ
,

(3.7)2Fϑϕ = {
Q
(
1− φ2

1 − φ2
2

)+ 1[φ1, φ2]
}

sinϑ.

In the complex coordinates (2.3) withAza = 1
2(A2a−1 + iA2a) andA†

z̄ā
= −Aza we have

(3.8)F2a−1 2a = −Q(∂zaAz̄ā − ∂z̄āAza − γ [Aza,Az̄ā ]
)− iγ 1

(
∂zaAz̄ā − ∂z̄āAza − 1+ γ 2

2γ
[Aza,Az̄ā ]

)
which agrees with 2iFzaz̄ā .

3.2. Vortex-type equations in R
2n
θ

Introducingφ := φ1 + iφ2 and substituting (3.7) and (3.8) into the first equation from (2.20), we obtain

−δab̄
{
Q
(
∂zaAz̄b̄ − ∂

z̄b̄
Aza − γ [Aza ,Az̄b̄]

)+ iγ 1
(
∂zaAz̄b̄ − ∂

z̄b̄
Aza − 1+ γ 2

2γ
[Aza,Az̄b̄ ]

)}
(3.9)+ 1

4R2

(
Q
(
2− φφ† − φ†φ

)+ i1
[
φ,φ†])= 0

which splits into the two equations

(3.10)δab̄
{
∂zaAz̄b̄ − ∂

z̄b̄
Aza − γ [Aza,Az̄b̄ ]

}= 1

4R2

(
2− φφ† − φ†φ

)
,

(3.11)γ δab̄
{
∂zaAz̄b̄ − ∂

z̄b̄
Aza − 1+ γ 2

2γ
[Aza ,Az̄b̄]

}
= 1

4R2

[
φ,φ†]

after separating into the su(2) (proportional toQ) and u(1) (proportional to i1) components.
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The second equation from (2.20) can be written as

(3.12)Q
(
∂z̄āAz̄b̄ − ∂

z̄b̄
Az̄ā − γ [Az̄ā ,Az̄b̄ ]

)+ iγ 1
(
∂z̄āAz̄b̄ − ∂

z̄b̄
Az̄ā − 1+ γ 2

2γ
[Az̄ā ,Az̄b̄]

)
= 0.

After some algebra, using (3.5) and (3.6), we find that the third equation from (2.20) is equivalent to

(3.13)2∂z̄āφ + (1− γ )Az̄āφ + (1+ γ )φAz̄ā = 0.

Let us consider the commutative caseθµν = 0 and putγ = 0. Then the Donaldson–Uhlenbeck–Yau equati
on R

2n × S2 for A defined in (3.2) reduce to

(3.14)δab̄{∂zaAz̄b̄ − ∂
z̄b̄
Aza } = 1

2R2 (1− φφ̄),
(3.15)∂z̄āAz̄b̄ − ∂

z̄b̄
Az̄ā = 0,

(3.16)∂z̄ā φ +Az̄āφ = 0,

whereφ̄ is the complex conjugate of the scalar fieldφ. Eqs. (3.14)–(3.16) generalize the vortex equations [5
R

2 to the higher-dimensional spaceR
2n.

For the noncommutative caseθµν �= 0 we chooseγ = −1. Comparing (3.10) and (3.11), we obtain a constr
equation on the fieldφ,

(3.17)2− φφ† − φ†φ = −[φ,φ†] �⇒ φ†φ = 1,

and the following noncommutative generalization of the vortex equations in 2n dimensions:

(3.18)δab̄F
za z̄b̄

:= δab̄{∂zaAz̄b̄ − ∂
z̄b̄
Aza + [Aza,Az̄b̄ ]

}= 1

4R2

(
1− φφ†),

(3.19)F
z̄ā z̄b̄

:= ∂z̄āAz̄b̄ − ∂
z̄b̄
Az̄ā + [Az̄ā ,Az̄b̄ ] = 0,

(3.20)∂z̄ā φ +Az̄āφ = 0.

These equations and their antecedent DUY equations onR
2n
θ × S2 are not integrable even forn = 1. Therefore,

neither dressing nor splitting approaches, developed in [22] for integrable equations on noncommutative
can be applied. The modified ADHM construction [6] also does not work in this case. However, some
solutions can be obtained by choosing a proper ansatz as we shall see next.

4. Multi-instanton solutions on R
2n
θ × S2

4.1. Solutions of the constrained vortex-type equations

We are going to present explicit solutions to the noncommutative generalized vortex equations (3.18
subject to the constraint (3.17). The latter can be solved by putting

(4.1)φ = SN, φ† = S†
N,

whereSN is an order-N shift operator acting on the Fock spaceH, i.e.,

(4.2)S
†
NSN = 1 while SNS

†
N = 1− PN ,

with PN being a Hermitian rank-N projector:P 2
N = PN = P †

N .
It is convenient to introduce the operators

(4.3)Xza =Aza + θab̄ z̄b̄, Xz̄ā =Az̄ā + θāb zb
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in terms of which

(4.4)F
zaz̄b̄

= [Xza ,Xz̄b̄ ] + θab̄, F
z̄ā z̄b̄

= [Xz̄ā ,Xz̄b̄ ].
We now employ the shift-operator ansatz (see, e.g., [7,23])

(4.5)Xza = θab̄ SN z̄b̄ S†
N, Xz̄ā = θāb SN zb S†

N

for which

(4.6)F
zaz̄b̄

= θab̄ PN = δab̄
PN

2θa
, F

z̄ā z̄b̄
= 0

sinceθab̄ = δab̄
2θa . After substituting (4.1) and (4.6) into the first vortex equation (3.18), we obtain the conditio

(4.7)δab̄θab̄ PN = 1

4R2
PN ⇐⇒ 1

θ1
+ · · · + 1

θn
= 1

2R2
.

The remaining vortex equations (3.19) and (3.20) are identically satisfied by (4.1) and (4.6).
Hence, forγ = −1 we have established onR2n a whole class of noncommutative constrained vortex-t

configurations

(4.8)Aza = θab̄
(
SN z̄

b̄ S
†
N − z̄b̄), φ = SN ,

parametrized by shift operatorsSN . Our particular form (3.2) forA then yields a plethora of solutions to th
noncommutative DUY equations onR2n×S2. These configurations generalize U(2) multi-instantons fromR

2×S2

to R
2n
θ × S2. To substantiate this interpretation we finally calculate their topological charge.

4.2. Topological charge

Forγ = −1, from (3.7) and (3.8) we get

(4.9)Fϑϕ = 1

4
(Q− i1)sinϑ PN , F2a−1 2a = (i1 −Q)Fza z̄ā = (Q− i1)

PN

2θa
.

Employing

(4.10)(Q− i1)n+1 = (−2i)n(Q− i1), tr2×2(Q− i1)= −2i

we have

tr2×2F ∧ · · · ∧F︸ ︷︷ ︸
n+1

= (n+ 1)! tr2×2F12F34 . . .F2n−1 2nFϑϕ dx1 ∧ dx2 ∧ · · · ∧ dx2n ∧ dϑ ∧ dϕ

(4.11)= (n+ 1)! (−2i)n+1

2n+2

PN∏n
a=1 θ

a
dx1 ∧ dx2 ∧ · · · ∧ dx2n ∧ sinϑ dϑ ∧ dϕ.

With this, the topological charge indeed becomes

Q := 1

(n+ 1)!
(

i

2π

)n+1
(

n∏
a=1

2πθa
)

TrH

∫
S2

tr2×2F ∧ · · · ∧F︸ ︷︷ ︸
n+1

=
(

i

2π

)n+1
(−2i)n+1

2n+2

(
n∏
a=1

2πθa
)(

TrH
PN∏n
a=1 θ

a

)∫
S2

sinϑ dϑ ∧ dϕ

(4.12)= 1

4π
(TrHPN)

∫
S2

sinϑ dϑ ∧ dϕ =N.
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5. Concluding remarks

By solving the noncommutative Donaldson–Uhlenbeck–Yau equations we have presented explicit U(2
instantons onR2n

θ ×S2 which are uniquely determined by Abelian vortex-type configurations onR
2n
θ . The existence

of these solutions required the condition (4.7) relating theS2-radiusR to θ via R = (2∑n
a=1

1
θa
)−1/2. We see tha

any commutative limit (θa→0) forcesR→ 0 as well, and the configuration becomes localized inR
2n (for n= 1)

or disappears (forn > 1). The moduli space of ourN -instanton solutions is that of rank-N projectors in then-
oscillator Fock space.

Since standard instantons localize all compact coordinates in the ambient space they have been inte
sub-branes inside Dp-branes [1,2,9–12]. The presence of an NS backgroundB-field deforms such configuration
noncommutatively. In the same vein, the solutions presented in this Letter may be viewed as a collectioN
sub-branes of codimension 2n, i.e., as D(p− 2n)-branes located inside two coincident Dp-branes, with all brane
sharing a common two-sphereS2

R .
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