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Abstract

Generalizing self-duality oR?x 2 to higher dimensions, we consider the Donaldson-Uhlenbeck-Yau equations on
R%'x 52 and their noncommutative deformation for the gauge group U(2). Imposing SO(3) invariance (up to gauge
transformations) reduces these equations to vortex-type equations for an Abelian gauge field and a compleMalEoon
a specialSZ-radiusR depending on the noncommutativitywe find explicit solutions in terms of shift operators. These vortex-
like configurations or]Rg" determine SO(3)-invariant multi-instantons]ﬁgﬂ XS}% for R = R(#). The latter may be interpreted
as sub-branes of codimensiom idside a coincident pair of noncommutativefranes with ars? factor of suitable size.

0 2003 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Noncommutative deformation is a well established framework for stretching the limits of conventional (classical
and quantum) field theories [1,2]. On the nonperturbative side, all celebrated classical field configurations have been
generalized to the noncommutative realm. Of particular interest thereof are BPS configurations, which are subject
to first-order nonlinear equations. The latter descend from the 4d Yang—Mills (YM) self-duality equations and have
given rise to instantons [3], monopoles [4] and vortices [5], among others. Their noncommutative counterparts
were introduced in [6,7] and [8], respectively, and have been studied intensely for the past five years (see [9] for a
recent review).

String/M theory embeds these efforts in a higher-dimensional context, and so it is important to formulate BPS-
type equations in more than four dimensions. In fact, noncommutative instantons in higher dimensions and their
brane interpretations have recently been considered in [10-12]. Yet already 20 years ago, generalized self-duality
equations for YM fields in more than four dimensions were proposed [13,14] and their solutions investigated, e.g.,
in [14,15]. For Uk) gauge theory on a Kahler manifold these equations specialize to the Donaldson—Uhlenbeck—
Yau (DUY) equations [16,17]. They are the natural analogues of the 4d self-duality equations.

In this Letter we generalize the DUY equations to the nhoncommutative s%ﬁes $2 and construct explicit
U(2) multi-instanton solutions even though these equations are not integrable. The key lies in a clever ansatz for
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the gauge potential, due to Taubes [5], which we generalize to higher dimensions and to the noncommutative
setting. This SO(3)-invariant ansatz reduces the U(2) DUY equations to vortex-type equat[@flt 6orn=1

the latter are the standard vortex equation@@nwhile forn = 2 they are intimately related to the Seiberg—Witten
monopole equations dRy [18].

2. Donaldson-Uhlenbeck—Yau equationson R3" x S2

2.1. Manifold R?* x §?

We consider the manifol®?* x $2 with the Riemannian metric

2n 2n+2
ds®= ) 8 detdx” + R3(d9? +sif 9 dp?) = »  g;jdx’ dx/, (2.1)
w,v=1 i,j=1
wherex®, ..., x*, ..., x%" are coordinates oR?" while x2*+1 =y andx?'*2 = ¢ parametrize the standard two-
spheres? with constant radiug, i.e., 0< ¢ < 27 and 0< ¢ < 7. The volume two-form ors? reads
Jdetgidd Adp =1wppdf Adp =00 = @y =—wep = R?sin®. (2.2)
The manifoldR?* x §2 is K&hler, with local complex coordinates, ..., z*, y where
4 =x2"1_jy 2 7 =x2"1 1 ix2 \witha=1,...,n (2.3)
and
R siny R siny
= Y exp—ig), y=—— explig), 2.4
Y= A cos) SPTIO Y= T cosp) R (2.4)
so that - cosy = Rgﬁj\_,. In these coordinates, the metric takes the form
_ 4R4
ds? =8, dz dz? + ——— dy dy 2.5
ab (RZ4+y52 0 (2.5)

with 8,z = 8%¢ = 1 (other entries vanish), and the Kahler two-form reads
4

(R? +yy)?

For later use, we also note here the derivatives

9:-'5{aa5dzmd55+ dyAdy} =_'§aa,;dz“Ad25+demd¢. (2.6)

1 . 1 .
0ze = E(aza_l +1i024), 0za = 5(82a—1 —1024), (2.7)

whered, =d/ax* foru=1,...,2n.

Classical field theory on the noncommutative deformaﬁkﬁi of R?* may be realized in a star-product
formulation or in an operator formalism. While the first approach alters the product of functiof€"othe
second one turns these functiofisinto linear operators’ acting on then-harmonic-oscillator Fock spack.

1 From now on we use the Einstein summation convention for repeated indices.
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The noncommutative spaﬁﬁ” may then be defined by declaring its coordinate functiths. ., 2 to obey the
Heisenberg algebra relations

[#%, %] =io" (2.8)

with a constant antisymmetric tens@t’. The coordinates can be chosen in such a way that the ngattix will
be block-diagonal with nonvanishing components

g2a—121 _ _p2a2a—1_. ga (2.9)

We assume that ali® > 0; the general case does not hide additional complications. For the noncommutative
version of the complex coordinates (2.3) we have

[2%,27] = —25"79* =: 6> = —6"* < 0, and all other commutators vanish (2.10)

The Fock spac@{ is spanned by the basis states

n

ke kz, . k) = [[(20%kaY) 7229 10) fork,=0,1.2,..., (2.11)
a=1
which are connected by the action of creation and annihilation operators subject to
2h sa
Z Z b
, =59, 212
& ) e12)
We recall that, in the operator realizatign— f, derivatives off get mapped according to
doa f > 0,520, f] =102 £, dza f > Oap[ 20, f] = i f. (2.13)

whered,; is defined viay:0° = §¢ so thaty,; = —0;, = g;%; Finally, we have to replace
n
/ d'x f > (]_[ 2719”) Try f. (2.14)
R2n a=1

TensoringRg” with a commutatives? means extending the noncommutativity matriky vanishing entries in
the two new directions. A more detailed description of noncommutative field theories can be found in the review
papers [2].

2.2. Donaldson—-Uhlenbeck—Yau equations

Let M2, be a complex; = n+1 dimensional Kahler manifold with some local real coordinates (x')
and a tangent space basis:= 3/dx’ for i, j = 1,...,2q, so that a metric and the Kahler two-form read
ds? = g;;dx’dx/ and £2 = 2;; dx’ A dx/, respectively. Consider a rark complex vector bundle ovewy,
with a gauge potentiald = A; dx’ and the curvature two-forn¥ = dA + A A A with components?;; =
9;A; —3;A; +[A;, A;]. Both A4; and F;; take values in the Lie algebrai). The Donaldson—-Uhlenbeck—Yau
(DUY) equations [16,17] oM, are

*x2AF=0 and F2=0, (2.15)
where2 is the Kahler two-formF %2 is the (0, 2) part of 7, andx is the Hodge operator. In our local coordinates
(x') we haveg!(x2 A F) = (2, F )29 = 2 F;; 29 where2'/ are defined via2/ 2 = ;. Due to the anti-
Hermiticity of , it follows that alsaF2° = 0. Forg = 2 the DUY equations (2.15) coincide with the anti-self-dual
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Yang—Mills (ASDYM) equations

«F=—F (2.16)

introduced in [3].
Specializing now\/,, to beR%" x $2, the DUY equations (2.15) in the local complex coordindtés y) take
the form

(R? + y3)?
4 R4
wherea,b=1,...,n. Using formulae (2.4), we obtain

S F 1z + Fyi5=0, Fuy=0 and ZEi;=0, (2.17)

a0 dp 1 . .
f —f-aﬂa_ +fz&¢ﬁ=§(s|nﬁfz&ﬂ—|fza(p), (218)
A, ¢)| 1 siny 1 (1+ cosi)?
_ - = _ =T 2.19
Fys ]%sz%y) 2i vy Fo0= 5 Resing 0 (2.19)

and finally write the Donaldson—-Uhlenbeck—Yau equation®&hx $2 in the alternative form

1
R2siny

The transition to the noncommutative DUY equations is trivially achieved by going over to operator-valued
objects everywhere. In particular, the field strength components in (2.20) then?-‘[pad 8X,A ax,A +

[A,,A,], where, e.g.A, are simultaneously (@) and operator valued. To avoid a cluttered notation, we drop
the hats from now on.

208 F 5+ Fop=0,  Fas=0,  sindFay—iFa,=0. (2.20)

3. Generalized vortex equations on R3"
3.1. Noncommutative generalization of Taubes ansatz

Considering the particular case (2.16) of the SU(2) DUY equatioriB%r S2, Taubes introduced an SO(3)-
invariant ansatzfor the gauge potentiall which reduces the ASDYM equations (2.16) to the vortex equations on
RR? [5] (see also [21]). Here we extend Taubes’ ansatz to the higher-dimensional mak#foid S? and reduce
the noncommutativieU(2) Donaldson-Uhlenbeck—Yau equations (2.20) to generalized vortex equaticmgé,on
including their commutatived(= 0) limit. In Section 4, we will write down explicit solutions of the generalized
noncommutative vortex equations &®%* which determine multi-instanton solutions of the noncommutative YM
equations oiR?" x 2.

We begin with the u(2)-valued operator one-fosnon Rg" x §2. Imposing SO(3) invariance up to a gauge
transformation, Taubes [5] found far= 1 andé = 0 that theS2 dependence of4 must be collected in the
su(2) matrix

P
Q=i (eigossigﬁ e_iigﬁ ) =1i(sinY cosp o1 + Sin® sing o2 + cOSY 03) (3.1)

2 Similarly, Witten's ansatz [19] for gauge fields & reduces (2.16) to the vortex equations on the hyperbolic sﬁgc(scf. [20] for the
noncommutativeR#).
3 Asitis well known [2], in the noncommutative case one should use U(2) instead of SU(2).
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and its differential @. Note thatQ? = —1 and% = —siny Q g—g. Our slight generalization of his ansatz to
R2" x §% reads L= (3 9))

1, .
A=5{(IQ—)/1)A+(¢>1—1)QdQ+¢2dQ}, (3.2)

where the constant parametrizes the additional u(1) piece. The one-fdrea A, (x) dx* with A, € u(1) =ZiR
andu =1,...,2n is anti-Hermitian whilep1 2 = ¢1,2(x) € R are Hermitian, all being operators # only. Note
that this form reduces the non-Abelian connectidrio the Abelian object$A, ¢1, ¢2) whose noncommutative
character thus does not interfere with the u(2) structure. Calculation of the curvature

1 . .
f:dA"'A/\A:E.E/Xm/\dXJ

= %}‘W dxt Adx” + Fpp dxt A do 4+ Fpp dxH A dp + Fye dd A dg (3.3)
for A of the form (3.2) yields
2F 0 =10(3. Ay — 0 Au—y[Au, Al) — yl(E)MAv —0,A, — 1;—7/’/2[@, Av]), (3.4)
4Fup = {0(20,p1+1Aud2 +ig2A, — y[Ayu, ¢1l) +1(20,¢2 — 1Aud1 — 1A, — y[A,, 4)2])}%,
(3.5)
4Fup ={0(20u¢1 +iAup2+id2A, — y[Au, d1]) + 1(20,¢2 — 1A, 1 —idp1A, — y[Ap, ¢2])}%,
(3.6)
2Fpe ={0(L— 9% — 93) + Lig1, $21} sind. (3.7)

In the complex coordinates (2.3) withe = %(Aza_l +iA2,) andA; = —A,« we have

l+y2

Foa—12a = —Q(azaAza —0:aAza — y[Aga, Aza]) - iyl(azaAZa —0zaAza — [Aza, Aﬁ]) (3.8)
which agrees with 2F .a.
3.2. \ortex-type equationsin R

Introducinge := ¢1 + i and substituting (3.7) and (3.8) into the first equation from (2.20), we obtain

_ ) 14+ y2
_8ab{ Q(azaAZ[; — 8Z[;Aza —y[Aza, AZ[;]) + Iyl(az"Azb — 825Aza — 2y [Aa, AﬂJ)}

1 .
+ m(Q(2—¢¢T —¢'¢) +i1]p, ")) =0 (3.9)
which splits into the two equations
8(0.0A; — 0540 — y[As, A :i 2o — ot 3.10
{az" s — 0:5Aza —Y[Aza, Zb]} 4R2( dp' — '), (3.10)
i 1+y? 1
yé b{azaAZ,; — 05z — [Aa, AEE]} = m[¢,¢>T] (3.11)

after separating into the su(2) (proportional@pand u1) (proportional to 1) components.
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The second equation from (2.20) can be written as

. 1+y?
Q(aza AZE — 8251425 —vI[A;za, Azg]) + Iyl(ﬁzaAzg — BZE‘AZ‘_‘ — T[Aza, Azg]) =0. (3.12)
After some algebra, using (3.5) and (3.6), we find that the third equation from (2.20) is equivalent to
2040+ (L—y)Azap + 1+ y)pAza =0. (3.13)

Let us consider the commutative ca8€ = 0 and puty = 0. Then the Donaldson—-Uhlenbeck—Yau equations
onR?% x §2 for A defined in (3.2) reduce to

1

80 Ay — D5 Aca} = 5o (1= ), (3.14)
0za Azg — angza =0, (3.15)
d:ap + Azagp =0, (3.16)

where¢ is the complex conjugate of the scalar figldEgs. (3.14)—(3.16) generalize the vortex equations [5] on
RR? to the higher-dimensional spaBg” .

For the noncommutative cagé’ # 0 we chooser = —1. Comparing (3.10) and (3.11), we obtain a constraint
equation on the fielg,

2-¢0" —9"9=—[0.¢"] = ¢To=1, (3.17)
and the following noncommutative generalization of the vortex equations @ir@ensions:

. . 1
8F = 8{0.0A; — 05 Az +[Aza, Ay} = m(l —¢0"), (3.18)
FZE’ZE =0z Azg — angza +[Aza, AZE] =0, (3.19)
d:a¢p + Azap = 0. (3.20)

These equations and their antecedent DUY equatiod@ﬁém $2 are not integrable even far= 1. Therefore,

neither dressing nor splitting approaches, developed in [22] for integrable equations on noncommutative spaces,
can be applied. The modified ADHM construction [6] also does not work in this case. However, some special
solutions can be obtained by choosing a proper ansatz as we shall see next.

4. Multi-instanton solutions on R2" x §2
4.1. Solutions of the constrained vortex-type equations

We are going to present explicit solutions to the noncommutative generalized vortex equations (3.18)—(3.20)
subject to the constraint (3.17). The latter can be solved by putting

p=Sy, ¢'=5], (4.1)
whereSy is an orderA shift operator acting on the Fock spakei.e.,
Shsy=1 while SySh=1- Py, (4.2)

with Py being a Hermitian ranky projector:Pf, =Py = P,‘:,.
It is convenient to introduce the operators

X0 =Aga —i—@ab-Zb, Xza = Az + Oap 2° (4.3)
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in terms of which
Fozp = [Xza, X514 0,5, Fazp =Xz, X5 (4.4)
We now employ the shift-operator ansatz (see, e.g., [7,23])

74>

Xea=0;Sv" Sk, Xua =6 Sy’ S], (4.5)
for which
Py
7a2b Gab PN 5ab_ Zaﬁ, anzg == O (46)

sinced ; = 2;% . After substituting (4.1) and (4.6) into the first vortex equation (3.18), we obtain the condition

z 1 1 1 1
by p _ —
54 GabPN_mPN < ﬁ‘i“i‘e—n—ﬁ (47)
The remaining vortex equations (3.19) and (3.20) are identically satisfied by (4.1) and (4.6).
Hence, fory = —1 we have established d&?" a whole class of noncommutative constrained vortex-type
configurations
Au=0,5(5n2" S —2),  p=sn. (4.8)

parametrized by shift operatoss;. Our particular form (3.2) fotd then yields a plethora of solutions to the
noncommutative DUY equations %" x 2. These configurations generalize U(2) multi-instantons fignx $2

to Rﬁ” x §2. To substantiate this interpretation we finally calculate their topological charge.

4.2. Topological charge

Fory = —1, from (3.7) and (3.8) we get

Fop= %(Q —iDsing Py,  Fou—124=(i1— Q)Faza = (Q —i1) 270. (4.9)
Employing

(0 —iD)"™=(=2)"(Q —i1),  tra2(Q —il)=—2i (4.10)
we have

troxo FA---AF =0+ Dtrogo FroFza. .. Fon—12:F vy el AdeZ A AP AdY A do
n+1
(—2i)”+l Py
on+2 HZ=19
With this, the topological charge indeed becomes

= — 2w 0¢ TrH/tI’QXz]:/\-«-/\]:
n+ 1!\ 27 1 (EALALY

=m+1)! dxl AdxZ A Ade? Asing do A dg. (4.11)
a

S2 n+1
Co\n+l nl [ 1
i (—2i) ( Py )f .
= 2709 | Try =5—— sing do A dy
(271) 2n+2 (H ) Ha 10
2
1 :
= E(TrH PN)fsmﬁdﬁ/\dq):N. (4.12)

2
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5. Concluding remarks

By solving the noncommutative Donaldson—Uhlenbeck—Yau equations we have presented explicit U(2) multi-
instantons oﬂRﬁ” x §2 which are uniquely determined by Abelian vortex-type configuratiorRﬁmehe existence

of these solutions required the condition (4.7) relating$headiusk to 6 via R = (23_1_; A)~Y/2. We see that

any commutative limit§¢— 0) forcesR — 0 as well, and the configuration becomes localize®% (for n = 1)
or disappears (for > 1). The moduli space of ou¥-instanton solutions is that of rank-projectors in the:-
oscillator Fock space.

Since standard instantons localize all compact coordinates in the ambient space they have been interpreted ac
sub-branes inside pbranes [1,2,9-12]. The presence of an NS backgra#field deforms such configurations
noncommutatively. In the same vein, the solutions presented in this Letter may be viewed as a collestion of
sub-branes of codimension 2re., as Dp — 2n)-branes located inside two coincidenptranes, with all branes
sharing a common two-sphesg.
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