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Abstract

In this work we explore the structure of the branching graph of the unitary group using Schur transitions. 
We find that these transitions suggest a new combinatorial expression for counting paths in the branching 
graph. This formula, which is valid for any rank of the unitary group, reproduces known asymptotic results. 
We proceed to establish the general validity of this expression by a formal proof. The form of this equation 
strongly hints towards a quantum generalization. Thus, we introduce a notion of quantum relative dimension 
and subject it to the appropriate consistency tests. This new quantity finds its natural environment in the 
context of RCFTs and fractional statistics; where the already established notion of quantum dimension has 
proven to be of great physical importance.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A great deal of information about physical systems can be encoded in the group theoretical 
structure of its symmetries. Often, the states of a theory can be labeled by irreducible represen-
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tations (irreps) of its symmetry group. Moreover, irreps of a group can be decomposed into 
irreps of its subgroups. The branching rules tell you the way this decomposition is carried 
out and the process can be depicted in terms of a so-called branching graph. Branching rules 
have relevant physical applications; for instance, in phenomena that involve symmetry breaking 
such as the Zeeman effect. In this article we explore some interesting properties of branching 
graphs.

The relationship between the branching graph of the unitary groups and the branching graph 
of the symmetric groups was extensively studied by Borodin and Olshanski (BO) in [1]. Their 
results can be seen as an extension of the celebrated Schur–Weyl duality. Inspired by the success 
of the latter in encoding some features of the AdS/CFT correspondence [2], one of the identities 
found in [1] involving both branching graphs was studied from a holographic perspective in [3]. 
In that work it was found that the data naturally associated with one side of the BO identity, 
namely the one linked to symmetric groups, is exactly reproduced by CFT three-point functions 
related to special backgrounds. From this observation we infer that the BO identity is endowed 
with physical content.

The BO identity is valid near the boundary of the unitary group’s branching graph, that is, 
when the rank (N ) tends to infinity. However, in this article we explore the structure of this graph 
when N is finite. Surprisingly, computing the same type of three-point function as mentioned 
above, this time at finite N , reveals the exact structure of the unitary branching graph. This 
structure is encoded in a set of probabilities naturally associated with the paths of the graph. The 
probabilities involve the concept of relative dimension of two irreps in the graph, which counts 
the number of paths which join the given irreps. Relative dimensions are hard to compute except 
for simple cases. However, by approaching them through our three-point function computations 
we are able to give a compact combinatorial form for the relative dimension, see Eq. (3.21). 
This formula is surprisingly simple (and easy to prove!) and, as far as we are aware, it has not 
appeared in the literature before. Moreover, the BO identity follows as a simple corollary of this 
formula.

Another appealing feature of our formula for the relative dimension is that it admits a natural 
generalization to the realm of affine Lie algebras. These algebras are of central importance in the 
study of rational conformal field theories (RCFT) [6] and fractional statistics [4,5]. The Hilbert 
spaces of this kind of models can be arranged into a finite number of representations (families) 
of their underlying affine Lie algebras. The size of each of these families in the Hilbert space 
is captured by a quantity called the quantum dimension; which reduces, in the classical limit, 
to the dimension of the representation itself. The point is, that all the objects appearing in our 
formula for the relative dimension naturally admit quantum generalizations. We are thus lead 
to propose a definition for a quantum relative dimension in Eq. (5.21), whose consistency we 
show. Quantum dimensions have some interesting physical interpretations in terms of quantum 
entanglement [7–9] and quantum chaos [10,11]. We hope that this notion of quantum relative 
dimension might find similar applications in the future.

This paper is organized as follows: Section 2 presents the relevant branching graphs and in-
troduces the key concept of relative dimension. In section 3, we compute certain three-point 
functions for Schur states at finite N and show how they secretly encode a formula for the rela-
tive dimension of the unitary graph. Then, in section 4 we give a proof for this formula. Finally, 
section 5 introduces the concept of quantum relative dimension. We place a number of examples 
and technical details in the appendices.
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2. GT graph, Young graph and BO identity

Recently, a tantalizing relationship between two representation theoretical graphs has been 
uncovered by Borodin and Olshanski [1]. On one side, we have the Young graph (Y) describing 
the branching of symmetric groups, while on the other we have the Gelfand–Tsetlin graph (GT) 
depicting that of unitary groups. In some sense, their result can be viewed as an extension of 
the celebrated Schur–Weyl duality. In this section we introduce these two graphs and present the 
duality relating them. For a closely related discussion and overview, please see [3].

2.1. The Young graph

First, we consider the Young graph, whose vertices are given by Young diagrams. The graph 
is leveled by the number of boxes in each diagram. Clearly, this graph is infinite since it is 
possible keep climbing by adding boxes indefinitely. Vertices in Y are connected if and only if 
their corresponding Young diagrams can be obtained from each other by adding or removing a 
single box. Recalling that Young diagrams with n boxes label irreducible representations (irreps) 
of the symmetric group Sn, it is possible to give a group-theoretic interpretation to Y; namely, 
the Young graph represents how irreps of Sn are subduced by irreps of Sn+1 for each level n. 
Hereafter, we will reserve the letters m and n to label the levels on this graph, while the letters μ
and ν will stand for Young diagrams.

Notice that from any given vertex μ ∈Y it is possible to follow at least one path downwards 
all the way to the bottom. Each of those paths corresponds to a way of decomposing the Young 
diagram μ one box at a time. In group theory terminology, each of these paths corresponds to a 
list of linked irreps associated with the chain of embeddings:

Sn ⊃ Sn−1 ⊃ · · · ⊃ S1. (2.1)

n = 3

n = 2
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As a matter of fact, the number of paths descending from μ matches the dimension of the ir-
rep μ; with each path corresponding to a state of the irrep. The dimension of μ can be computed 
by means of the so-called hook length formula as follows. To start, if (i, j) is a cell in μ, then its 
hook is the set

Hμ(i, j) = {(a, b) ∈ μ|a = i, b ≥ j} ∪ {(a, b) ∈ μ|b = j, a ≥ i}, (2.2)
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and its hook length is given by hμ(i, j) ≡ |Hμ(i, j)|. The hook length of the diagram μ is sim-
ply1

Hμ =
∏

(i,j)∈μ

hμ(i, j) . (2.3)

Using this quantity, the dimension of the irrep μ is given by

dimμ = m!
Hμ

. (2.4)

Another notion that will be central to our discussion is that of the relative dimension dim(μ, ν)

(with m ≥ n) of two irreps μ and ν, which is

dim(μ, ν) = (# paths from μ to ν) (2.5)

Now, we add an extra layer of structure to this graph and we do so in a more general setting. 
Let G be an arbitrary leveled graph. Given a pair of vertices μ, ν ∈ G such that μ is at a higher 
level than ν we define the quantity

G�m
n (μ, ν) ≡

(
# paths from ν to the ground floor

# paths from μ to the ground floor

)
× (# paths from μ to ν) , (2.6)

where m and n are the respective levels of the vertices. Observe that Eq. (2.6) satisfies∑
ν

G�m
n (μ, ν) = 1, (2.7)

where the sum runs over all the vertices ν at level n. Thus, for a fixed μ ∈ G, the quantity (2.6)
furnishes a probability distribution on each level n < m in the graph. Moreover, these distribu-
tions satisfy the compatibility condition∑

ν′

G�m
n′(μ, ν′)G�n′

n (ν′, ν) = G�m
n (μ, ν) (2.8)

for any intermediate level, i.e. n < n′ < m.
The above construction is valid for any leveled graph, Y for instance. In terms of the irrep’s 

dimensions, Eq. (2.6) can be expressed as

Y�m
n (μ, ν) = dimν

dimμ

dim(μ, ν). (2.9)

Below, we will also be interested in restrictions of the form Sn × Sm−n ⊂ Sm, as opposed 
to Sn ⊂ Sm discussed above. The number of times an irrep (ν, ν′) of Sn × Sm−n appears in 
the restriction of μ of Sm is given by the Littlewood–Richardson coefficients g(μ; ν, ν′). These 
coefficients satisfy the relationship

dim(μ, ν) =
∑

ν′
m−n

g(μ;ν, ν′)dimν′ . (2.10)

1 Frequently, the notation Hooksμ is used for Hμ , and we choose the latter to avoid long expressions in the following 
sections.
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2.2. The Gelfand–Tsetlin graph

The analogue of Y for the unitary groups U(N) goes under the name of Gelfand–Tsetlin graph
GT. The vertices of GT correspond to irreps of U(N), and the graph is leveled by the rank of 
the group N . The irreps of U(N) can be labeled by Young diagrams as well. More precisely, 
at level N we find all the Young diagrams with at most N rows. Since there is no bound on 
the number of columns, there is an infinite number of vertices at each level. The graph grows 
infinitely upwards as well. Notice that at each level all the diagrams appearing in the lower levels 
show up. Thus, when referring to a Young diagram as a vertex in GT one must always specify 
the level in question, for example (μ,N) ∈ GT.

Now, we introduce the criterion to decide whether two vertices are linked. For the GT graph 
this is less straightforward and requires us to introduce some technology. The signature of a 
vertex (μ,N) ∈ GT is a N -tuple of integers, where the first k numbers (k ≤ N is the number of 
rows of μ) are the lengths of the rows of μ and the rest are 0’s; for example

(
,5

)
←→ (2,1,0,0,0). (2.11)

We say that the signatures of two vertices in GT, (r1, r2, . . . , rN) and (s1, s2, . . . , sN−1) at levels 
N and N − 1, respectively, interlace if and only if

r1 ≤ s1 ≤ r2 ≤ s2 ≤ · · · ≤ rN−1 ≤ sN−1 ≤ rN . (2.12)

Vertices in the Gelfand–Tsetlin graph are connected if and only if their signatures interlace.
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Dim( ,3)

Once more, links form paths in this graph and as you follow the links all the way to the bottom 
you move through the restriction chain:

U(N) ⊃ U(N − 1) ⊃ · · · ⊃ U(1). (2.13)

As before, the number of downward paths taking from the vertex (μ, N) ∈ GT to the ground 
floor equals the dimension of the irrep, Dim[μ, N ]. We can define as well the relative dimension 
Dim([μ, M], [ν, N ]), which corresponds to the number of paths (if any) that join [μ, M] with 
[ν, N ] in the graph.2 The dimensions of irreps of U(N) can be computed using the formula

2 Hereafter we take M > N .
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Dim[ν,N] = fν(N)
dimν

n! , |ν| = n, (2.14)

where

fν(N) =
∏
i,j

(N − i + j), (2.15)

known as the weight, is a product over all the cells in ν and dimν is given by Eq. (2.4). Every 
descending path in GT can be represented by a so-called Gelfand–Tsetlin pattern, which are 
a convenient way of arranging the signatures of the vertices. The interested reader can take a 
look at the example in Appendix A to become familiar with these objects. Finally, since GT is a 
leveled graph, probabilities of the form (2.6) can be associated to it. Hence, we introduce

GT�M
N (μ,ν) = Dim[ν,N]

Dim[μ,M]Dim([μ,M], [ν,N]) , (2.16)

in analogy with Eq. (2.9). Clearly, GT�M
N (μ, ν) satisfies the normalization and compatibility 

conditions (2.7) and (2.8).

2.3. The Young Bouquet and the Borodin–Olshanski identity

In the previous sections we introduced two leveled graphs, Y and GT as well as their associ-
ated probability distributions. In spite of the similitudes of these two graphs, they are describing 
quite different mathematical objects. However, one might wonder whether there is any quantita-
tive relationship between them. This question was addressed by Borodin and Olshanski [1] by 
comparing the probability distributions (2.9) and (2.16). As a matter of fact, they compared the 
GT-distribution and a modified version of Y-distribution which we introduce now. A binomial 
projective system is a family of probability distributions

B�r ′
r (m,n) =

(
1 − r

r ′
)m−n( r

r ′
)n m!

(m − n)!n! , (2.17)

where r, r ′ ∈ R
+, r ′ > r and n, m are non-negative integers. One can readily check that the 

compatibility condition∑
l

B�r ′
r ′′(m, l)B�r ′′

r (l, n) = B�r ′
r (m,n) , (2.18)

for any intermediate level, i.e. r < r ′′ < r ′, is satisfied. By combining (2.17) with (2.9), Borodin 
and Olshanski define the Young Bouquet (YB) whose associated distribution reads

YB�r ′
r (μ, ν) =

(
1 − r

r ′
)m−n( r

r ′
)n m!

(m − n)!n!
dimν

dimμ

dim(μ, ν), (2.19)

where in the above |μ| = m and |ν| = n, and m ≥ n.
It is the Young Bouquet, which is found to have a deep connection with the GT graph. The 

identity found by Borodin and Olshanski reads [1]

lim
N
M

→ r
r′

GT�M
N ([μ,M], [ν,N]) = YB�r ′

r (μ, ν), (2.20)

where N, M → ∞ and N/M fixed. Formula (2.20) is a deep mathematical identity which de-
pends only on how the branching graphs and their boundaries (M, N → ∞) are constructed 
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Fig. 1. The Young diagram μ is placed in the top left corner, then its boxes are redistributed forming the diagrams ν
and ν′.

Fig. 2. The hook-shaped or two-ring geometry where all the side lengths have been explicitly written. We will consider 
large l, which accounts for thin and long hook shaped backgrounds.

which, in the end, it depends on how irreps of the groups are subduced [1,12]. Henceforth, we 
refer to Eq. (2.20) as the BO identity or YB/GT duality. One of the results of the present work 
is to provide a succinct demonstration of Eq. (2.20).

3. Schur transitions and the YB/GT duality

In the present section, inspired by computations of transition probabilities in U(M) N =
4 SYM we calculate probabilities of processes such as the one depicted in Fig. 1 where the 
background is given by Fig. 2. In previous work [3], it was shown that for large gauge groups 
these probabilities match the Young bouquet’s distribution YB�r ′

r (μ, ν). Below, we revisit these 
processes at finite N and M . Our findings lead us to conjecture a compelling expression for the 
relative dimensions of unitary groups. The proof of this conjecture will be provided in the next 
section. Moreover, we argue that using this expression, the YB/GT duality Eq. (2.20) can be 
easily deduced.

We will refer to processes such as the one portrayed in Fig. 1 as Schur transitions or multi-
graviton transitions. The latter terminology has its roots in the AdS/CFT correspondence [13], 
more precisely, in the work of Lin, Lunin and Maldacena (LLM) [14]. The LLM prescription 
allows one to construct a metric with an AAdS factor out of a large Young diagram such as B . 
In particular, under this procedure B would give rise to a domain wall geometry in the bulk (see 
[3] for more details). Moreover, under suitable circumstances, the small diagrams μ, ν and ν′
can be thought of as multigraviton excitations on the background generated by B [15]. Although 
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Fig. 3. One-to-one relation between Young diagrams and the bubbling plane.

we consider these transitions in a different context, we will still call them multigraviton transi-
tions. Hereafter, we will refer to the upper-rightmost corner of this hook-shaped diagram as the 
M-corner, and to the inward pointing corner as the N -corner.

In practice, the state corresponding to Fig. 2 is produced by acting on the vacuum with a Schur 
polynomial

χB(Z)|0〉 = |B〉 , (3.1)

constructed out of the scalar field Z of the N = 4 gauge theory. By attaching a Young diagram μ
or ν either to the M-corner or to the N -corner, we create multigraviton states in the outer edges 
of the rings in Fig. 3. The process whose amplitude we consider is described in Fig. 1, where the 
number of boxes is conserved, namely

|μ| = m, |ν| = n, |ν′| = m − n . (3.2)

We denote the probability of this transition by

P μν′
ν =P(Bμ → Bν′

ν ) . (3.3)

Moreover, we want the interaction between the multigravitons and the background to be 
purely gravitational. Therefore, we must consider excitations with vanishing angular momen-
tum in the Z direction, so the multigravitons must be constructed using a field in the theory 
different from Z. Let us use Y for that purpose. Multigraviton states are also half-BPS and as 
such they are given by Schur polynomials χμ(Y ) and χν(Y ), where μ and ν are Young diagrams 
with m and n boxes, respectively. The product of background and excitation can be written in 
terms of restricted Schur polynomials as [16]

χB(Z)χμ(Y ) = HBHμ

∑
Bν′

ν ,i

1

H
Bν′

ν

χ
Bν′

ν ,(B,μ)i
(Z,Y ), (3.4)

where the Bν′
ν are diagrams that can be formed from the product B × μ, and i runs over the 

multiplicities given by the Littlewood–Richardson coefficients g(Bν′
ν ; B, μ).3

In terms of correlators of Schur polynomials, the multigraviton transition probability P μν′
ν

reads

3 See Appendix D for a discussion.
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P μν′
ν =

|〈χ†
B(Z)χ†

μ(Y )χ
Bν′

ν ,(B,μ)
(Z,Y )〉|2

‖χB(Z)χμ(Y )‖2‖χ
Bν′

ν ,(B,μ)
(Z,Y )‖2

. (3.5)

Actually, we know that the Young bouquet distribution emerges from the sum over intermediate 
states of the above expression, i.e. P μ

ν ≡P(Bμ → Bν). Explicitly, this probability is given by

P μ
ν =

∑
ν′

|〈χ†
B(Z)χ†

μ(Y )χ
Bν′

ν ,(B,μ)
(Z,Y )〉|2

‖χB(Z)χμ(Y )‖2‖χ
Bν′

ν ,(B,μ)
(Z,Y )‖2

. (3.6)

This is the quantity that we compute in the following.
Recall that the two-point function of restricted Schur operators is given by [17]

〈χ†
R,(r,s)(Z,Y )χT,(t,u)(Z,Y )〉 = δRT δrt δsu

HR

HrHs

fR . (3.7)

Using Eqs. (3.4) and (3.7) we can compute all the quantities appearing in Eq. (3.6)

‖χB(Z)χμ(Y )‖2 = 〈χ†
B(Z)χ†

μ(Y )χB(Z)χμ(Y )〉 = fBfμ,

‖χ
Bν′

ν ,(B,μ)
(Z,Y )‖2 = 〈χ†

Bν′
ν ,(B,μ)

(Z,Y )χ
Bν′

ν ,(B,μ)
(Z,Y )〉 =

H
Bν′

ν

HBHμ

f
Bν′

ν
,

|〈χ†
B(Z)χ†

μ(Y )χ
Bν′

ν ,(B,μ)
(Z,Y )〉|2 = f 2

Bν′
ν

g(μ;ν, ν′). (3.8)

Above fB , fμ, and f
Bν′

ν
stand for the weights (Eq. (2.15)) of the Young diagrams B , μ, and Bν′

ν

respectively.
It can be shown that for B as in Fig. 3 we have g(Bν′

ν ; B, μ) = g(μ; ν, ν′). Using this fact 
together with Eqs. (3.8), the expression (3.6) reads

P μ
ν =

∑
ν′
m−n

g(μ;ν, ν′)
f

Bν′
ν

fBfμ

HBHμ

H
Bν′

ν

. (3.9)

Observe that up until now we have made no approximations, thus, the result in Eq. (3.9) is exact. 
As shown in [3], in the large N , M and l limits (3.6) reproduces the probability distribution of 
the Young bouquet (YB). In the following calculation we explore what happens if we drop the 
large M and N assumption. For this computation, it will prove convenient for the reader to have 
Fig. 4 in sight. First of all, for the hook-lengths we have

HBHμ

H
Bν′

ν

= Hμ

HνHν′

5∏
κ=1

H
(κ)
B

H
(κ)

Bν′
ν

= m!
(m − n)!n!

dimν′dimν

dimμ

5∏
κ=1

H
(κ)
B

H
(κ)

Bν′
ν

, (3.10)

where H(κ)
B stands for the hook-length contributions coming from the colored regions in Fig. 4

and κ = 1, . . . , 5. Meanwhile, the contribution of the weights is given by

f
Bν′

ν

fBfμ

= fν[N(lN + 1)]fν′ [M(lM + 1)]
fμ[M] . (3.11)

In the large l limit, the only non-trivial contributions to Eq. (3.10) come from regions κ = 1, 2. 
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Fig. 4. The colored regions in Bν′
ν contributing to Eq. (3.9). Let RI (ν) stand for the length of the I th row in ν and CJ (ν)

for the height of the J th column of ν, with similar definitions for ν′ . Region (1) comprises the area between rows M −N

and M − N + C1(ν), and columns 1 to lNN ; region (2), rows 1 to C1(ν′) and columns lNN + R1(ν) + 1 and lMM ; 
region (3) same rows as (2) but columns lN + 1 to lNN + R1(ν); region (4) rows C1(ν′) to M − N and same columns 
as (3); region (5) has the same rows as (2) and columns from 1 to lNN . (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)

In particular, region κ = 1 contributes

H
(1)
B

H
(1)

Bν′
ν

=
C1(ν)∏
I=1

RI (ν)∏
j=1

N − I − j + RI (ν) + 1

N(lN + 1) − I − j + RI (ν) + 1
, (3.12)

where RI (ν) is the length of the I th row in ν and CJ (ν) the height of the J th column of ν (see 
Fig. 4). From this, we find

H
(1)
B

H
(1)

Bν′
ν

= fν[N ]
fν[N(lN + 1)] . (3.13)

Meanwhile, region κ = 2 yields

lim
l→∞

H
(2)
B

H
(2)

Bν′
ν

→ fν′ [M − N ] [l(M − N)]n−m. (3.14)

In turn, for the weight contributions we find

lim
l→∞fν′ [M(lM + 1)] → [l(M − N)]m−n . (3.15)

Hence, it follows that

lim
l→∞

f
Bν′

ν

fBfμ

HBHμ

H ν′
= m!

(m − n)!n!
dimν′dimν

dimμ

fν[N ]fν′ [M − N ]
fμ[M] . (3.16)
Bν
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Therefore, Eq. (3.9) reads

P̂ μ
ν ≡ lim

l→∞P μ
ν = m!

n!(m − n)!
(

fν[N ]dimν

fμ[M]dimμ

) ∑
ν′
m−n

g(μ;ν, ν′)dimν′fν′ [M − N ]. (3.17)

This formula will be central in the following discussion.
Let us consider two interesting limits of the above expression. First, taking N, M → ∞ with 

M/N fixed, Eq. (3.17) goes like

P̂ μ
ν ∼

(
m

n

)(
1 − N

M

)m−n( N

M

)n dimν

dimμ

dim(μ, ν) . (3.18)

Thus, upon the identification N/M ↔ r ′/r , we recover the Young bouquet distribution 
Eq. (2.19). Moreover, since we are in the large M, N regime, the YB/GT duality Eq. (2.20)
implies

P̂ μ
ν = GT�M

N ([μ,M], [ν,N]) . (3.19)

Alternatively, we could keep M and N fixed and take μ = ν. In this scenario we have

P̂ μ
μ = fμ [N ]

fμ [M]
. (3.20)

The key point is, that the above expression also corresponds to the GT distributions. Since these 
are rather different regimes we are led to conjecture that

P̂ μ
ν = GT�M

N ([μ,M], [ν,N]) , (3.21)

holds in general. Using Eqs. (2.14), (2.16) and (3.17), this claim can be expressed succinctly as 
a formula for the unitary group’s relative dimensions

Dim[μ,M;ν,N] =
∑

ν′
m−n

g(μ;ν, ν′)Dim[ν′,M − N ] . (3.22)

Examples verifying the correctness of this expression are provided in Appendix B. In the fol-
lowing section we give a proof of Eq. (3.22) for the relative dimension. As we shall see, given 
formula (3.22) the YB/GT duality Eq. (2.20) follows as a simple corollary.

It is worth to mention that the branching graph rules, and so the above formulas, are identical 
for SU(N) groups. The interlacing condition is the same. The difference between the SU(N)

and U(N) branching graphs is that at level N , only Young diagrams with at most N − 1 rows 
are allowed for SU(N) as opposed to a maximum of N rows that allows U(N) irreps. In other 
words, irreps of SU(N) are characterized by signatures with N − 1 integers. Clearly the SU(N)

branching graph is a subgraph of the U(N) graph.

4. A proof of the relative dimension formula

Recall that the GT graph organizes the irreps of unitary groups such that the number of paths 
descending from a vertex to the bottom matches the dimension of the irrep. To compute this 
number, we might use the formula (2.14). Alternatively, we could count the number of trian-
gular patterns formed by interlacing signatures like those in Eq. (A.2). As we have seen, the 
use of leveled graphs allows us to introduce the concept of relative dimension; which counts 
downward paths connecting two irreps e.g. [μ, M] and [ν, N ]. There is no formula analogous 
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to (2.14) to compute the relative dimension immediately. Rather, we are compelled to perform a 
direct counting of GT patterns; this time, truncated in such a way that the last line corresponds 
to the signature of [ν, N ]. We refer to these patterns as partial or trapezoidal GT patterns. In 
general, carrying out this enumeration is quite cumbersome. At the end of the previous section, 
we claimed that the relative dimension can be computed using formula (3.22) instead. A number 
of examples of how this formula works can be found in Appendix B. In this section, we provide 
a proof for our claim.

Our demonstration follows easily using some basic Schur function’s technology, Appendix C
contains a summary of the relevant tools. The key point is that Schur functions evaluated at xi = 1
yield the dimension of the irreps of unitary groups [18], that is

Sμ(1,1, . . . ,1︸ ︷︷ ︸
M

) = Dim[μ,M]. (4.1)

In turn, the relative dimension can be written as

Sμ/ν(1,1, . . . ,1︸ ︷︷ ︸
M−N

) = Dim[μ,M;ν,N], (4.2)

where Sμ/ν are skew Schur functions. The product of Schur functions can be written in terms of 
Littlewood–Richardson coefficients as

SνSν′ =
∑
μ

g(μ;ν, ν′)Sμ . (4.3)

From this product rule and Eq. (C.7) we find that

Sμ/ν =
∑
ν′

g(μ;ν, ν′)Sν′ . (4.4)

Writing out the variables

Sμ/ν(x1, . . . , xM−N) =
∑
ν′

g(μ;ν, ν′)Sν′(x1, . . . , xM−N) , (4.5)

and then setting them to 1 yields

Dim[μ,M;ν,N] =
∑
ν′

g(μ;ν, ν′)Dim[ν′,M − N ] , (4.6)

which is identical to (3.21), thus, proving our claim. Observe that there is a appealing paral-
lelism between relative dimensions of the both graphs mediated by the Littlewood–Richardson 
coefficients, see Eq. (2.10).

As an application of this result, we provide a straightforward proof of the YB/GT duality 
(2.20). It goes as follows, since

GT�M
N (μ,ν) =

(
Dim[ν,N]
Dim[μ,M]

)
Dim[μ,M;ν,N]

=
(

Dim[ν,N]
Dim[μ,M]

)∑
ν′

g(μ;ν, ν′)Dim[ν′,M − N ] , (4.7)

then, Eq. (2.14) implies
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GT�M
N (μ,ν) = m!

n!(m − n)!
dimν

dimμ

fν(N)

fμ(M)

∑
ν′

g(μ;ν, ν′)fν′(M − N)dimν′ . (4.8)

Finally, considering the limit M, N → ∞ we find

GT�M
N (μ,ν) = m!

n!(m − n)!
(

1 − N

M

)m−n(
N

M

)n dimν

dimμ

dim(μ, ν) , (4.9)

where we made use of Eq. (2.10). Clearly, the above expression matches the Young bouquet’s 
distribution (2.19) upon making the identification N/M → r/r ′; this proves Eq. (2.20). Notice 
that one of the key steps in this computation is that the leading term of the factor fν′(M − N)

in Eq. (4.8) is independent of the shape of ν′. It would be interesting to explore what happens as 
one considers subleading contributions to this formula, we leave that question for future work.

Once more, we would like to remind the reader that all the above formulas calculated for the 
U(N) branching graph also hold for the SU(N) branching graph. The latter being a subgraph of 
the U(N) graph. The branching (or interlacing) condition is exactly the same. The only difference 
is that irreps of SU(N) are labeled by Young diagrams with at most N − 1 instead of N rows.

5. Towards a quantum relative dimension?

In the context of rational conformal field theories (RCFTs)4 there is a natural generalization 
of the notion of the dimension of an irreducible representation. RCFTs are characterized by the 
fact that the operator content of the theory can be organized into a finite number of families. 
This class contains very interesting systems such as minimal models and Wess–Zumino–Witten 
(WZW) theories. In the following, we shall concern ourselves mainly with the latter type. These 
models are endowed, alongside the Virasoro symmetry algebra, with currents that conform to an 
affine Lie algebra structure gk[

ja
m, jb

n

]
= i

∑
c

fabcj
c
m+n + k mδab δm+n , (5.1)

where fabc are the structure constants of the Lie algebra g, and k is the so-called level of the 
model. Although these theories generally have an infinite number of Virasoro families, the fam-
ilies can be rearranged into a finite number of affine Lie algebra representations. To each such 
family, it is possible to associate a character defined as

χμ(τ) = Tr μ e2πiτ(L0−c/24) , (5.2)

where μ is a label for the affine primary.
The quantum dimension of a family is defined as

d̂μ(gk) = lim
τ→i0+

χμ(τ)

χ0(τ )
, (5.3)

and it estimates the size with respect to the vacuum of the Hilbert space associated with an affine 
family. A central fact in the study of RCFTs is that under modular transformations the characters 
transform linearly as

χμ (−1/τ) =
∑
λ

Sμλ χλ(τ ) . (5.4)

4 See [6] for an excellent review on the subject.
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The matrix S is commonly known as the modular S-matrix. Many important quantities and struc-
tures of the RCFT are encoded in S ; the quantum dimension is no exception, indeed we have

d̂μ(gk) = Sμ 0

S00
. (5.5)

Besides their own intrinsic interests RCFTs, it is worth studying them due to their relationship 
to Chern–Simons theory [19] and topological phases of matter such as fractional quantum Hall 
fluids [4]. Moreover, both the quantum dimension and the modular S-matrix have appeared in a 
number of recent works. For example, in [8,9] it was shown that after inserting any operator in 
the family of μ, the Rényi entropy of the system jumps by


S(n) = log(d̂μ) . (5.6)

More recently, it was discovered that a particular combination of these quantities, called the 
anyon monodromy

Cμν = 1

d̂μd̂ν

S∗
μν

S00
(5.7)

serves as a diagnostic of quantum chaos [10,11].
For concreteness and in order to make contact with the previous section let us consider level-k

WZW models where the underlying Lie algebra is SU(N). The affine primaries in these models, 
are in one to one correspondence with Young diagrams with less than N rows and at most k
columns. Before proceeding, we introduce the so-called q-numbers (which can be defined for 
any affine Lie algebra)

[x] = qx/2 − q−x/2

q1/2 − q−1/2
q = exp

(
− 2πi

k + Cg

)
, (5.8)

where Cg is the dual Coxeter number of the Lie algebra. It is crucial to notice that

lim
k→∞[x] = x , (5.9)

this limit is known as the classical limit of the WZW model. For the case at hand, namely SU(N)k
theories, Cg = N . The quantum dimensions in SU(N)k models can be written succinctly in terms 
of the Schur function

Sμ (x1, x2, . . . , xN) =
det

[
x

l(μ)i+N−i
j

]
det

[
xN−i
j

] j = 1, . . . , N , (5.10)

as [20]

d̂μ(N) = q−N(N−1)κμ/2 Sμ

(
qN−1, qN−2, . . . , 1

)
. (5.11)

In equation (5.11) we introduced the quantity

κμ = 1

N

N−1∑
j=1

μi , (5.12)

where the μi are the Dynkin labels of μ. Moreover, in equation (5.10) li (μ) stands for the number 
of boxes in the ith row of μ’s Young diagram. Finally, the Schur function (5.10) can be expressed
conveniently in terms of the quantities
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E0<m<N = q
(N−1)m

2

m∏
l=1

[N + 1 − l]

[l]
, E0 = 1 , (5.13)

as

Sμ

(
qN−1, qN−2, . . . , 1

)
= det(EμT

i +j−i ) . (5.14)

In [20] the quantum dimensions of the fundamental, symmetric and antisymmetric represen-
tations are computed explicitly and they read

d̂μ(N) = [N ]

d̂μ(N) = [N ][N + 1]
[2]

d̂μ(N) = [N ][N − 1]
[2] . (5.15)

Now, we present another example for future use and in order to familiarize the reader with the 
computation. Let μ be the adjoint representation, which is labeled by the Young diagram

(5.16)

for which we have μT = (2, 1, 0, . . . , 0). Thus, the matrix in Eq. (5.14) reads

(EμT
i +j−i ) =

⎛
⎜⎜⎜⎜⎜⎝

E2 E3 . . . . . . EN+1
E0 E1 E2 . . . EN−1
0 0 E0 . . . EN−3
...

...
. . .

...

0 0 . . . . . . E0

⎞
⎟⎟⎟⎟⎟⎠ . (5.17)

Computing the determinant and using Eq. (5.13) we find

d̂μ(N) = q−3(N−1)/2 (E2E1 − E3)

= [N ] [N − 1] [N + 1]

[3]
. (5.18)

Notice that due to property (5.9), in the classical (k → ∞) limit, the dimensions (5.15) and 
(5.18) reduce to the values obtained using the hook-length formula (2.14). Thus, displaying the 
pertinence of the terminology quantum dimension.

The previous discussion suggests the possibility of finding a quantum version of the relative 
dimension. Indeed, the argument of Section 4 can be immediately generalized once we take into 
account some key features. For example, the analogue of Eq. (4.3) for the WZW characters reads

χμχν =
∑
ν′

N ν′
μ,ν χν′ , (5.19)

where the N ν′
μ,ν are the fusion coefficients of the model. In fact, these coefficients can be retrieved 

from the modular S-matrix (5.4) using the Verlinde formula [21]

N ν′
μ,ν =

∑ SνλSμλSλν′

S0λ

. (5.20)

λ
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Thus, we introduce the quantum relative dimension

D̂im[μ,M;ν,N] =
∑
ν′

N ν′
μ,ν d̂ν′(M − N) . (5.21)

Finally, using the Kac–Walton formula [22] it is easy to show that

lim
k→∞N ν′

μ,ν = g(μ;ν, ν′) . (5.22)

Hence, the relative quantum dimension duly reduces to its classical counterpart in the large-k
limit

lim
k→∞ D̂im[μ,M;ν,N] = Dim[μ,M;ν,N] . (5.23)

Moreover, it is easy to show that

D̂im[μ,M; ∅,0] = d̂μ(M) . (5.24)

Thus Eq. (5.21) furnishes a consistent generalization of the notion of relative dimension to the 
context of affine Lie algebras and RCFTs. In future work, we shall explore physical applications 
of this formula as well as its relationship to affine branching rules.

6. Conclusions and outlook

In this work we probed the structure of the branching graph of the unitary group using Schur 
transitions. We found that these transitions yield a new combinatorial expression for the relative 
dimensions of this graph. This formula, which is valid at any rank, is displayed in Eq. (3.22) and 
is one of the main results of this paper. In section 4 we establish the validity of this expression 
by providing a formal proof. As a first application of this formula we show that the Borodin–
Olshanski identity can be succinctly derived. Indeed, it seems that large N matrix model type 
techniques, such as the ones employed in this work, are proving to be highly effective at tackling 
questions in representation theory.

The form of equation (3.22) strongly suggests a quantum generalization. We define a notion 
of quantum relative dimension in Eq. (5.21) and subject it to the appropriate consistency tests. 
This new quantity finds its natural environment in the context of RCFTs and fractional statistics; 
where the already established notion of quantum dimension has proven to be of great physical 
importance.
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Appendix A. Gelfand–Tsetlin patterns example

In this appendix, we list the Gelfand–Tsetlin patterns for a particular U(N) irreducible repre-
sentation so that the reader may gain more familiarity with these objects. Consider the vertex

(μ,N) =
(

,3

)
, (A.1)

whose signature is (2, 1, 0). The number of valid Gelfand–Tsetlin patterns are eight in this case. 
They are:⎛

⎝ 2 1 0
2 1

2

⎞
⎠,

⎛
⎝ 2 1 0

2 1
1

⎞
⎠,

⎛
⎝ 2 1 0

2 0
2

⎞
⎠,

⎛
⎝ 2 1 0

2 0
1

⎞
⎠,

⎛
⎝ 2 1 0

2 0
0

⎞
⎠,

⎛
⎝ 2 1 0

1 1
1

⎞
⎠,

⎛
⎝ 2 1 0

1 0
1

⎞
⎠,

⎛
⎝ 2 1 0

1 0
0

⎞
⎠.

(A.2)

Note that the rule is that in each level down, the numbers must be in between as the interlace 
condition dictates. Each row in a GT pattern is the signature of the irrep of the unitary group at 
the corresponding level, where that irrep has been subduced from the irrep corresponding to the 
level above. As described in section 2, each GT pattern is a path in GT.

Lastly, the basis states in the carrier space of a U(N) irrep are in one-to-one correspondence 
with the GT patterns. To illustrate this, consider again the above example. The dimension of this 
U(3) irrep may be calculated from equation (2.14). The result is eight which is in one-to-one 
correspondence with the eight GT patterns in (A.2).

Appendix B. Some relative dimensions computed by counting GT patterns

In this appendix we give some extra examples of counting partial (or trapezoidal) GT pat-
terns from a signature [μ, M] to signature [ν, N ], which gives you the relative dimension 
Dim[μ, M; ν, N ]. Remember that we claim that

Dim[μ,M;ν,n] = 1

(m − n)!
∑

ν′
m−n

g(μ;ν, ν′)dimν′fν′ [M − N ], (B.1)

which is obtained from (3.17) after dividing by Dim[ν,N ]
Dim[μ,M] . Let see some cases.

In the example

Dim
[

,M; ∅,N
]

= 1

2
(M − N)(M − N + 1), (B.2)

we pass from signature (2,0, . . . ,0︸ ︷︷ ︸
M

) to signature (0,0, . . . ,0︸ ︷︷ ︸
N

) in M − N steps. An effective way 

of counting it is to consider the number of “1’s” that appear in a partial GT pattern. So with no 
“1’s” we can write M − N partial patterns. With one “1” we can write M − N − 1, with two 
“1’s” M − N − 2 and so on. So the total number of partial GT patterns can be calculated as
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Dim
[

,M; ∅,N
]

=
M−N∑
i=1

i = 1

2
(M − N)(M − N + 1), (B.3)

as (3.22) predicts.
Using the same kind of combinatorics one can calculate by “brute force” the following relative 

dimensions

Dim
[

,M; ,N
]

= M − N

Dim
[

,M; ∅,N
]

= 1

2
(M − N)(M − N − 1)

Dim
[

,M; ,N
]

= M − N

Dim
[

,M; ,N
]

= M − N

Dim
[

,M; ,N
]

= (M − N)2

Dim
[

,M; ∅,N
]

= 1

3
(M − N)(M − N − 1)(M − N + 1) (B.4)

and match the prediction of (3.22).
The reader might be suspicious because the above examples are multiplicity free since LR 

numbers are always 1. Let us show in detail an example where this is not the case. We will 
compute the relative dimension

Dim
[

,M; ,N
]
. (B.5)

Applying formula (3.22) we can see that

Dim
[

,M; ,N
]

= Dim [M − N ] + Dim [M − N ] + 2 Dim [M − N ]

= (M − N)3, (B.6)

where the factor 4 in the third term is the product of the multiplicity and the dimension of the 
irrep, both being 2.
Let us compute directly (B.5). We should count all the paths in the graph that join the irrep with 
signature (3,2,1,0, . . . ,0︸ ︷︷ ︸

M

) with the irrep with signature (2,1,0,0, . . . ,0︸ ︷︷ ︸
N

). In the following we 

will call

[(3,2,1),M] ≡ (3,2,1,0, . . . ,0︸ ︷︷ ︸
M

), [(2,1),N] ≡ (2,1,0,0, . . . ,0︸ ︷︷ ︸
N

). (B.7)

This is tantamount to counting the number of partial GT patterns we can write starting from 
(3, 2, 1, 0, . . . , 0) and reaching (2, 1, 0, . . . , 0) in M −N steps. We will solve a recursion relation 
for it. Since GT is multiplicity free, irreps at consecutive levels are either singled link or not 
linked. Using the interlazing rule of the graph we know that the second to last level, which is 
N + 1, is connected to [(2, 1), N ] via the following eight irreps:

[(2,1),N + 1], [(2,2),N + 1], [(3,2),N + 1], [(3,3),N + 1],
[(3,1),N + 1], [(3,1,1),N + 1], [(2,2,1),N + 1], [(2,1,1),N + 1], (B.8)
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so actually we can write

Dim[(3,2,1),M; (2,1),N ] = Dim[(3,2,1),M; (2,1),N + 1] + Dim[(3,2,1),M; (2,2),N + 1]
= Dim[(3,2,1),M; (3,2),N + 1] + Dim[(3,2,1),M; (3,2,1),N + 1]
= Dim[(3,2,1),M; (3,1),N + 1] + Dim[(3,2,1),M; (3,1,1),N + 1]
= Dim[(3,2,1),M; (2,2,1),N + 1]

+ Dim[(3,2,1),M; (2,1,1),N + 1]. (B.9)

It turns out that seven of the eighth terms appearing in (B.9) are easily computed. For example

Dim[(3,2,1),M; (3,2),N + 1] = M − N − 1 (B.10)

is easy to verify since the last “1” in (3, 2, 1) must go to “0” and it has M − N − 1 locations. A 
similar reasoning can be used to see that

Dim[(3,2,1),M; (3,1,1),N + 1] = Dim[(3,2,1),M; (2,2,1),N + 1] = M − N − 1.

(B.11)

We can also see that

Dim[(3,2,1),M; (2,2),N + 1] = (M − N − 1)2. (B.12)

In this case note that the second “2” in (3, 2, 1) cannot change, and “3” must go to “2” together 
with “1” going to “0” independently. Both have M − N − 1 locations. The rest follow the same 
logic:

Dim[(3,2,1),M; (3,1),N + 1] = Dim[(3,2,1),M; (2,1,1),N + 1] = (M − N − 1)2.

(B.13)

We also know that

Dim[(3,2,1),M; (3,2,1),N + 1] = 1, (B.14)

that is, there is just one path that joins two irreps in the graph with the same Young Diagram 
independently of M − N .
Plugging all these results in (B.9) we see that

Dim[(3,2,1),M; (2,1),N] = Dim[(3,2,1),M; (2,1),N + 1] + 1

+ 3(M − N)(M − N − 1). (B.15)

This recurrence is easily solved. We start with

Dim[(3,2,1),M; (2,1),M − 1] = 1, (B.16)

since the graph is multiplicity free. Then we apply (B.15) to see that

Dim[(3,2,1),M; (2,1),M − 2] = Dim[(3,2,1),M; (2,1),M − 1] + 1

+ 3(M − (M − 2) − 1)(M − (M − 2)). (B.17)

We easily see that

Dim[(3,2,1),M; (2,1),M − j ] =
j∑

[1 + 3i(i − 1)]. (B.18)

i=1
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Now, M − j = N implies that j = M − N , so

Dim[(3,2,1),M; (2,1),N] =
M−N∑
i=1

[1 + 3i(i − 1)]

= M − N + 3
(M − N − 1)(M − N)(M − N + 1)

3
= (M − N)3. (B.19)

So, it exactly matches (B.6).

Appendix C. Schur functions and skew Schur functions

Let us write some definitions on Schur and skew Schur symmetric functions. More details can 
be found in [18]. Schur functions of N variables furnish a basis of symmetric functions of those 
variables. They are labeled by Young diagrams and they can be defined as

Sμ(x1, . . . , xN) = 1

n!
∑
σ∈Sn

χμ(σ )pσ (x1, . . . , xN), (C.1)

where μ is a Young diagram whose number of boxes n determines the degree of the homo-
geneous polynomial Sμ(x1, . . . , xN). In (C.1), χμ(σ ) is the character of the symmetric group 
corresponding to the irrep μ and evaluated at σ ∈ Sn, and pσ (x1, . . . , xN) are another basis of 
symmetric functions called power sums and defined as

pσ (x1, . . . , xN) = (
x

σ1
1 + · · · + x

σ1
N

)(
x

σ2
1 + · · · + x

σ2
N

) · · · (xσr

1 + · · · + x
σr

N

)
, (C.2)

where (σ1, . . . , σr) is the cycle structure of σ ∈ Sn.
Schur polynomials labeled by μ are homogeneous of degree m = |μ|. It is obvious that if we mul-
tiply two Schur polynomials of the same variables Sν(x1, . . . , xN)Sμ(x1, . . . , xN), with |μ| = m

and |ν| = n, we obtain a homogeneous symmetric polynomial of degree n +m. This polynomial 
can of course be written in terms of Schur polynomials of n + m degree. The coefficients that 
appear in this expansion are the Littlewood–Richardson numbers

Sν(x1, . . . , xN)Sμ(x1, . . . , xN) =
∑

|λ|=m+n

g(μ, ν;λ)Sλ(x1, . . . , xN). (C.3)

Schur functions can be defined in alternative ways, but the virtue of (C.1) is that it makes explicit 
the characteristic map that relates class functions of the symmetric group (functions of Sn that 
are invariant under the change σ → gσg−1) with symmetric functions. The symmetric function 
basis for characteristic maps is always pσ . So definition (C.1) can be expressed as ch: χμ �→ Sμ.

In the space of symmetric functions we can define an inner product which would assign a 
complex number to a pair of functions. This would act like and integration on the variables of the 
functions. Instead of defining such integral, since the inner product is a bilinear, it is customary to 
define it on every couple of elements of a basis. The convention is to define the inner product on 
symmetric functions according to the characteristic map. Now, so since for characters we have 
the famous orthogonality relation

1

n!
∑

χμ(σ )χν(σ ) = δμν, (C.4)

σ∈Sn
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the inner product of symmetric functions is usually defined as

〈Sμ,Sν〉 = δμν. (C.5)

Sometimes it may be useful to define the inner product in other bases

〈hλ,mμ〉 = δλμ, (C.6)

where {hλ|λ 
 n} and {mμ|μ 
 n} are the complete and the monomial basis of symmetric func-
tions, respectively.

The definition of skew Schur functions Sμ/ν , which are homogeneous of degree m − n of the 
variables in which Sμ and Sν were originally defined, uses (C.3) and (C.5) and can be stated as

〈Sμ/ν, Sν′ 〉 = 〈Sμ,SνSν′ 〉, μ 
 m, ν 
 n, ν′ 
 m − n. (C.7)

Appendix D. Restricted Schur polynomials

An exactly orthogonal basis for the 1/2-BPS sector of free N = 4 super Yang–Mills theory 
with a U(N) gauge group was found to be Schur polynomials χR(Z), labeled by irreducible 
representation (irrep) R of the symmetric and unitary group [23]. Such a basis may be used to 
explore large N non-planar limits of the theory. Furthermore, these operators have an interpreta-
tion in the dual string theory. When R has long columns or long rows (each row or column having 
O(N) boxes) then χR(Z) is dual to a system of giant gravitons in the S5 or AdS5 [23–26].

This basis was then extended to 1/4-BPS sector of the gauge theory in the form of restricted 
Schur polynomials. Using two of the complex valued scalar fields, these operators are

χR(r,s)αβ(Z,Y ) = 1

n!m!
∑

σ∈Sn+m

χR(r,s)αβ(σ )Tr(σZ⊗n ⊗ Y⊗m). (D.1)

The restricted Schur may be thought of as a particular linear combination of all possible multi-
matrix, multi-trace operators, where the sum is over permutations of the symmetric group. R is 
an (irrep) of Sn+m and is labeled by a Young diagram with n +m boxes. Next, (r, s) is an irrep of 
Sn × Sm that may be subduced from R, with r and s being Young diagrams with n and m boxes. 
The α and β are multiplicity labels with which (r, s) is subduced from R. Finally, χR(r,s)αβ(σ )

is called the restricted character and is simply the trace of the matrix representing σ in irrep R, 
but restricted to the block whose row index is labeled by α and whose column index is labeled 
by β . See [27] for further details.

The exact two-point function of the restricted Schurs was computed in [17] and found to be 
diagonal in the operator’s labels. Also, the product of two Schur polynomials may be expanded 
in terms of the restricted Schurs. Letting r and s be Young diagrams with n and m boxes, [16]
finds

χr(Z)χs(Y ) = n!m!
(n + m)!drds

∑
T ,t,u,γ,ρ

dT χT (t,u)γρ(Z,Y ) (D.2)

The expansion coefficients involve simple group theoretic factors such as the dimension of an 
irrep. When R has O(N) boxes in each column or row, and n � m, the interpretation of (D.1) in 
the string theory is that of a system of giant gravitons with m strings attached [27]. Amongst the 
other bases found for the 1/4-BPS sector it has been argued that restricted Schur polynomials is 
the most natural basis for studying open string dynamics of their dual D-brane states [16]. To this 
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end, the spectral problem of restricted Schurs and its dual system has been extensively studied in 
[28–33].

Generalizations of restricted Schur polynomials to fermion fields, gauge fields and three com-
plex scalar fields have been studied in [34–36]. Generalizations of restricted Schurs to an SO(N)

gauge group have been studied in [37,38].
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