Exponential Convergence of Products of Stochastic Matrices*

JAC. M. ANTHONISSE AND HENK TIJMS

Mathematisch Centrum, 2e Boerhaavestraat 49, Amsterdam, The Netherlands

Submitted by H. J. Kushner

This paper considers a finite set of stochastic matrices of finite order. Conditions are given under which any product of matrices from this set converges to a constant stochastic matrix. Also, it is shown that the convergence is exponentially fast.

1. Introduction

This paper deals with a finite set \(\mathcal{P} \) of \(N \times N \) stochastic matrices, i.e., for each \(P = (p_{ij}) \in \mathcal{P}, \ p_{ij} \geq 0 \) and \(\sum_{j=1}^{N} p_{ij} = 1 \) for all \(i, j = 1, \ldots, N \). Non-homogeneous Markov chains were studied in among others, [3, 4, 9]; see also [5, 7].

Consider the following conditions introduced in [9].

C1. For each integer \(k \geq 1 \) and any \(P_i \in \mathcal{P} \ (1 \leq i \leq k) \) the stochastic matrix \(P_k \cdots P_1 \) is aperiodic and has a single ergodic class.

This condition is equivalent to each of the following two conditions.

C2. There is an integer \(v \geq 1 \) such that for each \(k \geq v \) and any \(P_i \in \mathcal{P} \ (1 \leq i \leq k) \) the matrix \(P_k \cdots P_1 \) is scrambling; i.e., any two rows of \(P_k \cdots P_1 \) have a positive entry in a same column (cf. [3]).

C3. There is an integer \(\mu \geq 1 \) such that for each \(k \geq \mu \) and any \(P_i \in \mathcal{P} \ (1 \leq i \leq k) \) the matrix \(P_k \cdots P_1 \) has a column with only positive entries.

We remark that in C2 (C3) it suffices to require the condition imposed on the matrix products only for those of length \(v(\mu) \). The equivalences C1 \(\iff \) C2 \(\iff \) C3 can be seen as follows. Using the fact that a stochastic matrix \(Q \) such that \(Q^n \) is scrambling for some \(n \geq 1 \) is aperiodic and has a single ergodic class, we have C3 \(\Rightarrow \) C2 \(\Rightarrow \) C1. Wolfowitz [9] proved that C1 \(\Rightarrow \) C2. However, an examination of the proof of Lemma 3 in [9] shows that this lemma remains true when we replace its conclusion that \(P_1 \) is scrambling by the conclusion that \(P_1 \) has a column with only positive entries. Using this, the proof of Lemma 4 in [9] next shows that C1 \(\iff \) C3.

* This paper is registered as Mathematical Centre Report BW 58/75.
The purpose of this paper is to show that under Cl for any sequence \(\{P_i, i \geq 1\} \) of matrices from \(\mathcal{P} \) the matrix product \(P_n \cdots P_1 \) converges to a constant stochastic matrix as \(n \to \infty \). Also, it is shown that the convergence is exponentially fast. Further, we give conditions imposed on the individual matrices from \(\mathcal{P} \) such that Cl holds. This paper, among others, may have applications in Markov decision theory (see [1, 8]).

2. Convergence of the Matrix Products

The following theorem generalizes the theorem in [9] and is related to Theorem 2 in [4]. Theorem 1 below shows not only that under Cl for any sequence \(\{P_i\} \) of matrices from \(\mathcal{P} \) the product matrix \(P_n \cdots P_1 \) converges to a constant stochastic matrix as \(n \to \infty \), but its proof which was suggested by the one given in [2, pp. 173–174] shows also that the convergence is exponentially fast where the convergence rate is uniformly bounded in all sequences \(\{P_i\} \).

THEOREM 1. Suppose that Cl holds. Then there is an integer \(\nu \geq 1 \), a number \(\alpha \) with \(0 < \alpha < 1 \) and for any sequence \(\{P_i, i \geq 1\} \) of matrices from \(\mathcal{P} \) there is a probability distribution \(\{\pi_j, 1 \leq j \leq N\} \) such that, for all \(i, j = 1, \ldots, N \),

\[
\|(P_n \cdots P_1)_{ij} - \pi_j\| \leq \alpha^{[n/\nu]} \quad \text{for all} \quad n \geq 1,
\]

where \([x]\) is the largest integer less than or equal to \(x \).

Proof. We first introduce some notation. For any \(N \times N \) stochastic matrix \(Q \), define its ergodic coefficient by

\[
\gamma(Q) = \min_{i_1, i_2} \sum_{j=1}^{N} \min(q_{i_1j}, q_{i_2j})
\]

and, for \(j = 1, \ldots, N \), let

\[
M_j(Q) = \max_{i} q_{ij} \quad \text{and} \quad m_j(Q) = \min_{i} q_{ij}.
\]

Observe that \(\gamma(Q) > 0 \) if and only if \(Q \) is scrambling. By [9, Lemma 4] we can choose an integer \(\nu \geq 1 \) such that the matrix \(P_1 \cdots P_1 \) is scrambling for any \(P_i \in \mathcal{P} (1 \leq i \leq \nu) \). Then, by the finiteness of \(\mathcal{P} \),

\[
\gamma = \min\{\gamma(P_1 \cdots P_1) | P_i \in \mathcal{P}(1 \leq i \leq \nu)\} > 0.
\]

Now choose any sequence \(\{P_i, i \geq 1\} \) of matrices from \(\mathcal{P} \). For any \(n \geq m \geq 1 \), put for abbreviation \(P_{n,m} = P_n \cdots P_m \). From \((P_{n+1,1})_{ij} = \sum_k (P_{n+1})_{ik}(P_{n,1})_{kj} \) it follows that for all \(j = 1, \ldots, N \),

\[
M_j(P_{n+1,1}) \leq M_j(P_{n,1}) \quad \text{and} \quad m_j(P_{n+1,1}) \geq m_j(P_{n,1}) \quad \text{for all} \quad n \geq 1.
\]
Now, fix i, h and $n > v$. For any number a, let $a^+ = \max(a, 0)$ and $a^- = \min(a, 0)$, so that $a = a^+ - a^-$ and $a^+ \geq 0$. Using the fact that $(a - b)^+ = a - \min(a, b)$ and that $\sum_{j=1}^{N} a_j^+ = \sum_{j=1}^{N} a_j^-$ when $\sum_{j=1}^{N} a_j = 0$, we get for any $j = 1, \ldots, N$,

\[(P_{n,1})_{ij} - (P_{n,1})_{hj}\]

\[= \sum_{k=1}^{N} \{(P_{n,n-v+1})_{ik} - (P_{n,n-v+1})_{hk}\}(P_{n-v,1})_{kj}\]

\[= \sum_{k=1}^{N} \{(P_{n,n-v+1})_{ik} - (P_{n,n-v+1})_{hk}\}^+ (P_{n-v,1})_{kj} + \]

\[\quad - \sum_{k=1}^{N} \{(P_{n,n-v+1})_{ik} - (P_{n,n-v+1})_{hk}\}^- (P_{n-v,1})_{kj}\]

\[\leq \sum_{k=1}^{N} \min \{(P_{n,n-v+1})_{ik}, (P_{n,n-v+1})_{hk}\} \{M_j(P_{n-v,1}) - m_j(P_{n-v,1})\}\]

\[= \left(1 - \sum_{k=1}^{N} \min \{(P_{n,n-v+1})_{ik}, (P_{n,n-v+1})_{hk}\}\right) \{M_j(P_{n-v,1}) - m_j(P_{n-v,1})\}\]

\[\leq (1 - \gamma)(M_j(P_{n-v,1}) - m_j(P_{n-v,1})).\]

Since i and h were arbitrarily chosen, it follows that for all $j = 1, \ldots, N$

\[M_j(P_{n,1}) - m_j(P_{n,1}) \leq (1 - \gamma)(M_j(P_{n-v,1}) - m_j(P_{n-v,1})) \quad \text{for all } n > v.\]

A repeated application of this inequality and the fact that $M_j(Q) - m_j(Q) \leq 1$ for any stochastic matrix Q show that, for all $j = 1, \ldots, N$,

\[M_j(P_{n,1}) - m_j(P_{n,1}) \leq (1 - \gamma)[\alpha / \gamma] \quad \text{for all } n \geq 1. \quad (3)\]

Together, (2) and (3) prove that for any $j = 1, \ldots, N$ there is a finite number $\pi_j \geq 0$ such that $M_j(P_{n,1})$ is monotone decreasing to π_j as $n \to \infty$ and $m_j(P_{n,1})$ is monotone increasing to π_j as $n \to \infty$. Next this result, inequality (3), and the definitions of M_j and m_j imply (1) with $\alpha = 1 - \gamma$. Clearly, $\sum \pi_j = 1$ since $P_n \cdots P_1$ is a stochastic matrix for all n.

We remark that C1 holds when relation (1) applies for any sequence $\{P_i\}$, so that C1 is both sufficient and necessary for the assertion of Theorem 1.

By [5, Theorem 4.7, p. 90] the integer v in condition C2 can always be taken less than or equal to $v^* = (1/2)(3^N - 2^{N+1} + 1)$. Hence, by C1 \iff C2, one may decide whether C1 holds by checking all matrix products of at most length v^*. This may be practically impossible when N is large. We now discuss conditions.
imposed on the individual matrices from \mathcal{P} such that C_1 holds. Before doing this, we first remark that it was pointed out in [3, p. 235] that C_1 does not generally hold when each $P \in \mathcal{P}$ is aperiodic and has a single ergodic class (see also [6]). Clearly C_1 holds when each $P \in \mathcal{P}$ is scrambling since in that case any product of P's is scrambling. The next theorem gives sufficient conditions for a strong version of C_3 under the assumption that the set \mathcal{P} has the following "product" property.

A. The set \mathcal{P} is the Cartesian product of finite sets of probability distributions.

Theorem 2. Suppose that the set \mathcal{P} has property A. Further, assume that each $P \in \mathcal{P}$ has a single ergodic class and that there is an integer s with $1 \leq s \leq N$ such that, for each $P \in \mathcal{P}$, $p_{ss} > 0$ and s is an ergodic state of P. Then there is an integer μ with $1 \leq \mu \leq N - 1$ such that for all $k \geq \mu$ and any $P_i \in \mathcal{P}(1 \leq i \leq k)$ the sth column of the matrix $P_k \cdots P_1$ has only positive entries.

Proof. Let $S(0) = \{s\}$. Define the sets $R(k - 1)$ and $S(k)$ for $k \geq 1$ by

$$R(k - 1) = \bigcup_{j=0}^{k-1} S(j)$$

and

$$S(k) = \left\{ i \mid i \notin R(k - 1), \sum_{j \in R(k-1)} p_{ij} > 0 \text{ for all } P \in \mathcal{P} \right\}.$$

From this definition it follows that there is a first integer μ with $1 \leq \mu \leq N - 1$ such that $R(\mu) = \{1, \ldots, N\}$ when we can prove that $S(k) \neq \emptyset$ when $R(k - 1) \neq \{1, \ldots, N\}$. To do this, assume to the contrary that there is an integer $k \geq 1$ such that $S(k) = \emptyset$ and $R(k - 1) \neq \{1, \ldots, N\}$. Then, for each $i \notin R(k - 1)$, we can find a matrix $P_i \in \mathcal{P}$ such that $p_{ij}^{(i)} = 0$ for all $j \in R(k - 1)$. Now, by property A, there is a matrix $P^* \in \mathcal{P}$ whose ith row is equal to the ith row of $P_i^{(i)}$ for all $i \notin R(k - 1)$. Then, $p_{ij}^{*} = 0$ for all $i \notin R(k - 1)$ and $j \in R(k - 1)$. However, this is a contradiction since $s \in R(k - 1)$ and it is assumed that P^* has a single ergodic class and that s is ergodic under P^*. This proves the existence of the above integer μ. Now, choose $k \geq \mu$, $P_i \in \mathcal{P}(1 \leq i \leq k)$ and $j \neq s$. By the construction of the sets $S(h)$, we have $(P_k \cdots P_{k-m+1})_{js} > 0$ for some m with $1 \leq m \leq \mu$. Now since $p_{ss} > 0$ for all P, we get $(P_k \cdots P_1)_{is} > 0$ for all i, which proves the desired result.

References

