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Abstract

This article is concerned with the Titchmarsh–Weyl m�(�) function for the di�erential equation d2y=dx2+[�−q(x)]y=0.
The test potential q(x) = x2, for which the relevant m�(�) functions are meromorphic, having simple poles at the points
� = 4k + 1 and � = 4k + 3, is studied in detail. We are able to calculate the m�(�) function both far from and near to
these poles. The calculation is then extended to several other potentials, some of which do not have analytical solutions.
Numerical data are given for the Titchmarsh–Weyl m�(�) function for these potentials to illustrate the computational
e�ectiveness of the method used. c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The purpose of this work is to test and apply a method for calculating the Titchmarsh–Weyl m�(�)
function for the second order di�erential equation

− d2y
dx2

+ q(x)y = �y: (1)

Several potentials are treated, some with and some without analytical solutions. We �rst check the
accuracy of the method by studying the test case q(x)= x2, for which m�(�) has a known analytical
form in terms of special functions. We succeed in calculating m�(�) to high accuracy even close
to the poles, a region which has not previously been explored in detail by numerical methods;
comparative calculations show that some previously proposed methods [4] are not so accurate in
this region. The high accuracy enables us to establish some numerical details about the formal
spectral sum expression for the m�(�) function and to establish various relationships which are not
readily available in the previous literature.
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The concept of the m�(�) function arose in the classic work of Weyl [12], in which he consid-
ered the square-integrable solutions of equation (1) on the half-open interval [0;∞), where q(x) is
real-valued and locally Lebesgue integrable in [0;∞) and � is a complex number. Eq. (1) is said to
be of limit-circle type if all solutions of it are L2(0;∞); if there is a solution which is not L2(0;∞)
for Im � 6= 0, the equation is said to be limit-point. Weyl’s classi�cation of Eq. (1) into limit-point
and limit-circle types has important consequences for the spectral theory associated with Eq. (1)
in the Hilbert space L2(0;∞), as further shown by Titchmarsh [9–11], who considered the analytic
properties of the square-integrable solutions of the di�erential equation and their relationship with
the m�(�) function.
The analytic form for m�(�) is known in those few cases where the closed analytic form of the

square-integrable solutions can be found. For example, when q(x) is a positive power of x, the only
known examples are q(x) = x2; for which the m�(�) function is a quotient of gamma functions, and
q(x) = x, for which the m�(�) function involves a quotient of sums of Bessel functions. In view
of the di�culty of �nding the m�(�) function in closed form, numerical approaches to calculating
m�(�) have been developed [2–4,8].
The results reported in this work were obtained by simply using the di�erential equation solver

NDSolve of the widely available Mathematica package. This solver uses an adaptive steplength
approach to maintain accuracy throughout the integration region. It emerges from our calculations
that this solver is highly e�ective even for a specialized task such as the calculation of the m�(�)
function and that it even compares favourably with some of the specialized programs speci�cally
designed to treat the m�(�) function.

2. Analytical properties of m�(�) for q(x) = x2

In this paper we use the real potential q(x) = x2 to provide a test case for our computational
method. The analytic solutions to Eq. (1) involve Hermite polynomials, and arise in the quantum
theory of the harmonic oscillator. The equation to be studied is

d2y
dx2

+ [�− x2]y = 0; (2)

which for −∞¡x¡ +∞ has a discrete spectrum; � is taken to be complex and is written as
� = u + iv. It is known that the parabolic cylinder functions Dn(z) of harmonic analysis [9] obey
Weber’s equation

d2y
dz2

+
[
n+

1
2
− 1
4
z2
]
y = 0: (3)

The change of variable z =
√
2x, transforms equation (3) to the form

d2y
dx2

+ [2n+ 1− x2]y = 0: (4)

The equations (2) and (4) are the same if � = (2n + 1), i.e., n = (� − 1)=2. Hence a solution of
Eq. (2) for the � value �= 2n+ 1 is

y = Dn(
√
2x); n= (�− 1)=2: (5)
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This result is valid even when � is complex and enables analytical results for the m�(�) function
for q(x)= x2 to be obtained in terms of gamma functions. For the case x ∈ [0;∞), with � complex,
we denote by �(x; �) and �(x; �) the solutions of the di�erential Eq. (4) which satisfy the initial
conditions

�(0; �) = sin �; �′(0; �) =−cos �; (6)

�(0; �) = cos �; �′(0; �) = sin � (7)

for some � ∈ [0; �], where prime denotes di�erentiation with respect to x. The analytic function
m�(�), unique in the limit point case, is holomorphic in the upper and lower half-planes and is such
that the solution  of Eq. (4) de�ned by

 (x; �) = �(x; �) + m�(�)�(x; �) (x ∈ [0;∞)) (8)

has the property  (x; �) ∈ L2[0;∞), i.e.∫ ∞

0
|�(x; �) + m�(�)�(x; �)|2 dx¡∞: (9)

From Eqs. (6), (7) and (9), we obtain  and  ′ at the origin:

 (0; �) = sin �+ m�(�)cos �; (10)

 ′(0; �) =−cos �+ m�(�)sin �: (11)

Let

 (x; �) = C(�)Dn(
√
2x); n= (�− 1)=2; �= u+ iv: (12)

We now consider the two cases, �= 0 and �= �=2, in turn. When �= 0 we have

�(0) = 0; �′(0) =−1; �(0) = 1; �′(0) = 0: (13)

Therefore

m0(�) =−  (0; �)
 ′(0; �)

=− Dn(0)√
2D′

n(0)
; (14)

where Dn(0) and D′
n(0) can be given [1] as

Dn(0) =− 2n=2
√
�

�( 12 − 1
2n)

; (15)

D′
n(0) =−2

n=2+1=2√�
�(− 1

2n)
: (16)

Eqs. (14)–(16) give

m0(�) =
�(− 1

2n)
2�( 12 − 1

2n)
(17)

while setting n= (�− 1)=2 in Eq. (17), gives

m0(�) =
�( 14 − 1

4�)
2�( 34 − 1

4�)
: (18)
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The function m0(�) has poles at the points

�= (4n− 3); n= 1; 2; : : : (19)

because �(n) has a pole at n= 0, and at all negative integer values of n.
For the test case q(x) = x2, setting �; � + 2 and � − 2 in turn in Eq. (18) and using the property

z�(z) = �(z + 1) produces the relationships

(�− 1)m0(�− 2) = (�+ 1)m0(�+ 2) =− 1
m0(�)

(20)

and our independent numerical results were found to satisfy these relations to high accuracy for the
case q(x) = x2.
In the case �= 1

2�, the initial conditions (8) and (9) for � and � are

�(0; �) = 0; �′(0; �) =−1; �(0; �) = 1; �′(0; �) = 0: (21)

We then �nd

m�=2(�) =
 ′(0; �)
 (0; �)

=
{√

2
D′

n(0)
Dn(0)

}
=−2�(

3
4 − 1

4�)
�( 14 − 1

4�)
: (22)

The eigenvalues are given by �= (4n− 1), n= 1; 2; 3; : : : :

3. Numerical calculation of the function m�(�)

Much research has been done on the Titchmarsh–Weyl m-coe�cient, but so far theoretical studies
far outnumber numerical studies, which are principally represented by the works [2–4,8]. In the
present work, extensive analysis of some analytical and numerical calculations of the m-coe�cient
is presented.
All the computational algorithms which have been used to calculate the Titchmarsh–Weyl m-

coe�cient associated with the second order di�erential equation

−  ′′(x) + x2 (x) = � (x) (23)

are based on approaches which involve integrating Eq. (23) over the region 06x6X and looking
at the limit X → ∞. There are two obvious ways to perform an integration over the x region
considered:

1. Start at a large x value, x=X , with  (X )=0,  ′(X )=1 and integrate Eq. (23) for  backwards
to x = 0, forming the ratio − (0)= ′(0). As X is increased this computed ratio tends towards
its asymptotic value m0(�).

2. Start at x = 0, using two functions u and v, with v(0) = u′(0) = 1, u(0) = v′(0) = 0. Integrate
forwards to x=X and form the ratio −v(X )=u(X ). As X is increased this ratio will tend towards
the function m0(�). Combining Eqs. (18) and (22) shows that

m0(�) =− 1
m�=2(�)

(24)

and so, in principle, the result of either forwards or backwards integration can be used to give
both m0(�) and m�=2(�), although in practice one or other of the methods may be more accurate
for a particular � value.
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In the calculations reported here we utilized Mathematica’s built-in di�erential equation solver. In
principle X should be ‘su�ciently close’ to in�nity when we integrate backwards from X using the
appropriate initial values. In fact, for the case of a test potential which grows rapidly with x, the X
value can often be taken to be fairly small to give a required level of accuracy, e.g. X = 5 is often
adequate for q(x) = x2.
In this work, we cross-checked the accuracy of the numerical m�(�) estimates produced by our

Mathematica [14] code by using various alternative numerical routines to calculate m�(�). Where the
exact analytic form is known, we give the true value to 25 places, and our calculated values agree
with the true value to 22 digits; in our numerical comparisons we used the Kirby code [8] with an
absolute tolerance of TOL = 10−11–10−14 as one of the alternative methods.
Setting �= 4n− 1± i�I in the �rst two members of Eq. (20) gives the ratio

r0 =
m0(4n+ 1∓ i�I)

m0(�= 4n− 3∓ i�I)
=
4n− 2∓ i�I
4n∓ i�I

(25)

which will be required in our later analysis.

4. Parameterizations of Titchmarsh–Weyl m�(�) functions at poles

If m�(z) is analytic in the upper half plane, maps the upper half plane to itself and satis�es the
Herglotz condition

Imm�(z)¿ 0 if Im z¿ 0 (26)

then it is known that m�(z) can be represented in the form [5,6]

m�(z) = C1 + C2z +
∫ ∞

−∞

[
1

�− z
− �

�2 + 1

]
d��(�); (27)

where C1 and C2 are uniquely determined real constants with C2¿0, while the spectral function
��(�n) is locally bounded, non-decreasing right-continuous and satis�es the convergence condition∫ ∞

−∞

d��(�)
�2 + 1

¡∞: (28)

The spectral density d��(�)=d� is given almost everywhere by

d��(�)
d�

= lim
�→0+

1
�
Im[m�(�+ i�)]: (29)

In quantum mechanical applications to the Schr�odinger equation, the spectral density may be
thought of as a local probability density for the energy of the system. Mathematically, the spectral
density provides a complete description of the absolutely continuous spectrum.
In the case of the discrete spectrum for q(x) = x2, the functions m0(�) and m�=2(�) are meromor-

phic, and the spectral function � is a step function on R. The spectrum of the di�erential operator
in L2(0;∞), subject to Neumann and Dirichlet boundary condition respectively, consists of poles
(eigenvalues) at �= (4K + 1) and �= (4K + 3) for K = 0; 1; 2; : : : .
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For �= 0, the corresponding m0(z) can then be expressed as a sum

m0(z) =
∫ ∞

−∞

1
�− z

d�(�) ≡
∞∑

K=0

C4K+1
(4K + 1)− z

: (30)

Setting z = 4J + 1 + i� with � → 0 allows us to extract the coe�cient C4J+1. At z = 4J + 1 + i�,
the m0(z) function has the real and imaginary parts

Rem0(4J + 1 + i�) =
∞∑
K=0
K 6= J

4(K − J )C4K+1
[4K − 4J ]2 + �2

= 0 + S1(�); (31)

Imm0(4J + 1 + i�) =
C4J+1
�

+
∞∑
K=0
K 6= J

C4K+1�
[4K − 4J ]2 + �2

≡ C4J+1
�

+ S2(�); (32)

Table 1
Analytic values of the Titchmarsh–Weyl function m0(�)=�((1− �)=4)=[2�(3− �)=4)], for �= �R+ i�I ≡ 4n− 3+ i10−12

and of m�=2(�) =−2�((3− �)=4)=(2�((1− �)=4)) for �= �R + i�I ≡ 4n− 1+ i10−12, over a wide range of values of the
quantum number n, for the case q(x) = x2

n Rem0(�) Imm0(�)

1 0.39106641913741697655495979545 1:128379167095512573896158951× 1012
2 0.05448581368176941654046004984 5:641895835477562869480795598× 1011
3 0.02323343577545967843821755162 4:231421876608172152110596737× 1011
4 0.01348422165092727070947213095 3:526184897173476793425497289× 1011
5 0.00904386199364458312592444484 3:085411785026792194247310131× 1011
6 0.00659676990176672871620834530 2:776870606524112974822579119× 1011
7 0.00508284789379862876248869877 2:545464722647103560254030859× 1011
8 0.00407043408438262886102164099 2:363645813886596163093028656× 1011
9 0.00335438238108398874410368127 2:215917950518683902899714365× 1011
10 0.00282606515767211839676154552 2:092811397712090352738619122× 1011
11 0.00242316047507450118283114086 1:988170827826485835101688166× 1011
12 0.00210762726878738688990269146 1:897799426561645569869793250× 1011
13 0.00185506993236554736932777088 1:818724450454910337791885198× 1011
14 0.00164920004957819567037493611 1:748773510052798401722966536× 1011
15 0.00147877112497254592693533593 1:686317313265198458804289160× 1011
16 0.00133579445895872781499280867 1:630106736156358510177479521× 1011
17 0.00121445582663988287789452366 1:579165900651472306734433286× 1011
18 0.00111043351423648354122918156 1:532719844749958415359891131× 1011
19 0.00102045542878122788671356034 1:490144293506904014933227488× 1011
20 0.00094200354445364349582590337 1:450929969993564435592879396× 1011
21 0.00087311189428000351981797831 1:414656720743725324703057412× 1011
250 0.00002022259290831155394564609 4:032389082589647120381689242× 1010
251 0.00002010149994084313789534717 4:024324304424467826140925863× 1010

250 000 0.00000000063662263716650421038 1:273241454598458670828047994× 109
250 001 0.00000000063661881743832068045 1:273238908115549473910706337× 109
2 500 001 0.00000000002013168182204221357 4:026336767042119417872531773× 108
2 500 002 0.00000000002013166974304036774 4:026335961775088116261168843× 108
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Table 1a
(Contd.)

n −Rem�=2(�) Imm�=2(�)

1 0.34624632882067862078623936045 2:256758334191025147792318293× 1012
2 0.23727470145713978770531926076 3:385137501286537721688477413× 1012
3 0.19080782990622043082888415751 4:231421876608172152110596760× 1012
4 0.16383938660436588940993989560 4:936658856042867510795696218× 1012
5 0.14575166261707672315809100591 5:553741213048225949645158245× 1012
6 0.13255812281354326572567431531 6:109115334353048544609674069× 1012
7 0.12239242702594600820069691775 6:618208278882469256660480240× 1012
8 0.11425155885718075047865363576 7:090937441659788489279085972× 1012
9 0.10754279409501277299044627322 7:534121031763525269859028845× 1012
10 0.10189066377966853619692318216 7:952683311305943340406752669× 1012
11 0.09704434282951953383126090043 8:350317476871240507427090303× 1012
12 0.09282908829194476005145551749 8:729877362183569621401048953× 1012
13 0.08911894842721366531279997573 9:093622252274551688959425992× 1012
14 0.08582054832805727397205010350 9:443376954285111369304019300× 1012
15 0.08286300607811218211817943163 9:780640416938151061064877132× 1012
16 0.08019141716019472648819381427 1:010666176416942276310037303× 1013
17 0.07776250550691496073240476695 1:042249494429971722444725969× 1013
18 0.07554163847844199364994640383 1:072903891324970890751923792× 1013
19 0.07350072762087953787651928313 1:102706777195108971050588341× 1013
20 0.07161672053197225088486747638 1:131725376594980259762445929× 1013
21 0.06987049674341224384523151976 1:160018511009854766256507077× 1013
250 0.02014174310340154036606208826 4:024324304424467826140925863× 1013
251 0.02010154010351985409027139392 4:032372953033316761793207714× 1013

250 000 0.00063662009067722879345685121 1:273238908115549473910706337× 1015
250 001 0.00063661881743959391681549030 1:273241454593365705009654158× 1015
2 500 000 0.00020131685848378980610382104 4:026336767042119417872531773× 1015
2 500 001 0.00020131681822042616201939390 4:026337572309472826296415347× 1015

where S1(�) and S2(�) are in�nite series in even and odd positive powers of �, respectively. Our
integrator was found to be capable of computing m0(�) even at points very close to the poles, where
it tends to in�nity. This thus made it possible to �nd the residues C4J+1 directly from Eq. (32) by
using the su�ciently small probe value �=10−12 and computing Imm0(4J +1+i�). In this way we
obtained the numerical value C1 = 1:128379167095512573896158951 together with a long sequence
of C4K+1 values which obeyed the law

C4K+1
C4K+5

=
2K + 2
2K + 1

(33)

to extremely high accuracy. This result, which does not appear to have been given in the previous
literature, was initially conjectured solely on the basis of our numerical calculation, which involves
using Eq. (32) and approaching each pole by decreasing the imaginary part of �. As pointed out
by the referee, one can derive this result analytically. Setting n= K + 1 in Eq. (25) and taking the
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limit �I → 0 yields Eq. (33) directly; even though both of the m0(�) functions in Eq. (25) then
have a pole at �I = 0, their ratio correctly gives the ratio of the residues at these poles. The leading
coe�cient C1 equals −1 times the residue of m0(�) at �= 1. Setting �= 1 + � in Eq. (18) gives

C1 = lim
�→0
2

[− �
4�(− �

4 )
�( 12 − �

4 )

]
: (34)

From the property z�(z)=�(z+1) it follows that as � → 0 the bracketed quantity in the numerator
gives in the limit �(1)=1. The denominator gives �( 12)=

√
�, leading to the result C1=2=

√
�, which

agrees to all digits with our computed C1 value. This a posteriori analysis indicates the numerical
accuracy of our computations of the m-function even near a pole. For a more general q(x) there will
be no such rational number ratio such as that of Eq. (33) between the CK coe�cient associated with
the poles. The sum in Eq. (31) converges very slowly indeed. For example, taking even 107 terms,
with the CK as given by Eq. (33), we �nd Rem0(1 + i10−12) = 0:390965, whereas the truncated
analytical result is Rem0(1 + i10−12) = 0:391066.

5. Numerical results and discussion

The Mathematica Code [14] gives results which compare favourably with those of more special-
ized codes [8], particularly near poles of the m�(�) function. The accuracy of our results permitted
the discovery or veri�cation of various relationships which link values of m0(�) and m�=2(�) even
at di�erent �R values and which are computationally useful. It also led to the formula (33), re-
lating the coe�cients CN in the spectral sum formalism, which had not previously been studied
computationally. The poles of the functions m0(�) and m�=2(�) can be regarded as the real eigen-
values of an associated boundary value problem with Neumann or Dirichlet boundary conditions
at the regular endpoint. This fact enables the pole positions to be found by a shooting process for
more complicated potentials q(x). We found that the Mathematica Code [14] is also highly accu-
rate for this auxiliary task, as con�rmed by comparison with the method of [7] for several test
cases.
Tables 1 and 1a shows some m0(�) and m�=2(�) values at points very close to the poles over

a wide range of values of state number n (16n6250002). It is clear that Rem�(�) is very small
compared to Imm�(�) in these regions.
Table 2 shows m�(�) for di�erent index values K of the imaginary part �I = 10K =−96K68 for

�=(1+ i10K and 3+ i10K) very close to the �=0 and �= �=2 poles, respectively. We note that as
the value of K changes from 1 to 8 we �nd Rem�(�) ' Imm�(�), but when K changes from −1
to −9 the real part is almost constant while the imaginary part increases by a factor of 10 as the
index K changes by −1. This is in accord with the spectral sum representation (30) of the m�(�)
functions.
Table 3 shows m�(�) values at �R ± i10−N (�R = 1; 3; N = 5; 9). We observed marked di�erences

in the behaviour of m�(�) at �R ± i10−N and at �R; we deliberately choose these critical points in
order to understand the typical features of their behaviour. For example at Z = 1 ± 10−9 + i10−9
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Table 2
Values of the Titchmarsh–Weyl function m0(� = 1 + i10K) and m�=2(� = 3 + i10K) for −96K68, with q(x) = x2. The
full results are analytical calculations; the underlined digits show the accuracy of our numerical calculations

X , No. K Rem0(� = 1 + i10K) Imm0(� = 1 + i10K)

8 0.00007071067776510136096292717 0.0000707106784722081421494747440
7 0.00022360678656963880263340182 0.0002236068089303185776314385385
6 0.00070710642763306854255846285 0.0007071071347398497295479289971
5 0.00223605679713195064896703238 0.0022360791578117270444064831115
4 0.00707071424963383738060326965 0.0070714213564194433457305048946
3 0.02234949663303401029153879206 0.0223718573267845027511667994716

8 8000 2 0:07035621862039376656445574060 0:0710633696178231998887229073869
8 8000 1 0:21206913372094869804031448142 0:2345777326670125989999425143289
10 9000 0 0:38158898413911704906907013733 0:117441835220918644394663802× 101
8 6000 −1 0:39096637013407974412977764126 0:112886133586577323189099487× 102
10 104 −2 0:39106541808764829366940620579 0:112838399109086980343834798× 103
9 9000 −3 0:39106640912686328191804043455 0:112837921533569704965760896× 104
8 8000 −4 0:39106641903731143400777550704 0:112837916757791444174425809× 105
8 9000 −5 0:39106641913641592112892788093 0:112837916710033659257694894× 106
10 104 −6 0:39106641913740696600069943021 0:112837916709556081408296703× 107

−7 0.39106641913741687644941720170 0:112837916709551305629802698× 108
−8 0.39106641913741697555390437942 0:112837916709551257872017758× 109
−9 0.39106641913741697654494925120 0:11283791670955125739443991× 1010

X , No. K −Rem�=2(� = 3 + i10K) Imm�=2(� = 3 + i10K)

8 0:7071067705799458684744752× 104 0:707106791793149304070900184× 104
7 0:2236067642089612637036780× 104 0:223606831291000588697117346× 104
6 0:7071057205269944634108438× 103 0:707107841847338022257921953× 103
5 0:2236034436675784405393503× 103 0:223610151871510688350792051× 103
4 0:7070007213569516578254384× 102 0:707212853390512126927241576× 102
3 0:2232715833351843473058372× 102 0:223942403476875792970411256× 102

8 6000 2 0:6965624524541532455743379× 101 0:717774860127502305622301987× 101
8 6000 1 0:1921639059228228593918796× 101 0:258984680254351217840302984× 101
10 9000 0 0:41124038393095234580849775372 0:273042568855748993696234619× 10
10 9000 −1 0:34692859559761374363143959708 0:226163233543288726122328753× 102
10 104 −2 0:34625315491557321609953557528 0:225680708872354837170606291× 103
10 104 −3 0:34624639708197048582152809498 0:225675882173780322617849984× 104
10 104 −4 0:34624632950329157372870708162 0:225675833906649307386163053× 105
10 104 −5 0:34624632882750475003190931817 0:225675833423977982706753947× 106
10 104 −6 0:34624632882074688208156817400 0:225675833419151269458507145× 107

−7 0:34624632882067930339919258104 0:225675833419103002326024534× 108
−8 0.34624632882067862761236882507 0:225675833419102519654699708× 109
−9 0.34624632882067862085450058751 0:22567583341910251482798645× 1010

Eq. (30) takes the form

m0(�) =
C1

∓10−9 − i10−9 +
C5

4∓ 10−9 − i10−9 + · · ·= ∓10−9 + i10−9
10−18 − i10−18 C1 +

C5
4− 10−9 − i10−9 :

(35)
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Table 3
Values of the Titchmarsh–Weyl functions m0(�R + i�I ) and m�=2(�R + i�I ) for di�erent values of �R and �I , for the case
q(x) = x2. The full results are analytical ones, the underlined digits show results from our numerical calculations

�R �I Rem0(�R + i�I ) Imm0(�R + i�I )

−1 1 0:770176746844200480445114289 0:25024384358692375419254108913
1 −1 0:381588984139117049069070137 −1:17441835220918644394663802838
−1 −1 0:770176746844200480445114289 −0:25024384358692375419254108913
1 1 0:381588984139117049069070137 1:17441835220918644394663802838
1 10−9 0:391066419137416976544949251 1:1283791670955125739443998× 109
1− 10−9 10−9 5:64189583938822706037256× 108 5:6418958354775628699631963× 108
1 + 10−9 10−9 −5:64189583156689867762422× 108 5:6418958354775628699631963× 108
1− 10−5 10−9 1:12838306647108838127843× 105 11:2837915581654501443872355978
1 + 10−5 10−9 −1:12837524514270561291779× 105 11:2837915581654505448094060173
1 −10−9 0:391066419137416976544949251 −1:1283791670955125739443991× 109
−1 10−9 0:886226925452758013504748388 3:07142847356944025113879× 10−10

�R �I Rem�=2(�R + i�I ) Imm�=2(�R + i�I )

−1 1 −1:174418352209186443946638028 0:38158898413911704906907013733
1 −1 −0:250243843586923754192541089 −0:77017674684420048044511428946
−1 −1 −1:174418352209186443946638028 −0:38158898413911704906907013733
1 1 −0:250243843586923754192541089 0:77017674684420048044511428946
3 10−9 −0:346246328820678620854500587 2:2567583341910251482798645× 109
3− 10−9 10−9 1:12837916674926624458793× 109 1:1283791670955125743837056× 109
3 + 10−9 10−9 −1:12837916744175890222929× 109 1:1283791670955125743837056× 109
3− 10−5 10−9 2:25675484911139921375746× 105 22:5675831167219657431111551664
3 + 10−5 10−9 −2:25676177403797549080729× 105 22:5675831167219684735629683495
3 −10−9 −0.346246328820678620854500587 −2:2567583341910251482798645× 109
−3 10−9 −1:772453850905516027316639623 2:71941230738869963276989× 10−10

Therefore, Rem0(�) ' ∓C1109 and Imm0(�) ' C1109; here we pick the dominant pole contribution.
At the poles the imaginary part is dominated by the pole, and the real part is dominated by a
‘background’ term of Eq. (31).
In Table 3, we compare our numerical results with analytical ones. The general agreement con�rms

the accuracy of our results; only at very large and very small � values does the numerical calculation
show a decline in accuracy.
The numerical results throughout Table 3 obey the necessary complex conjugation property

m(�R + i�I) = m(�R − i�I): (36)

After making exhaustive tests for the case q(x) = x2 we studied other potentials. Table 4 shows
specimen m0(�) function values for several forms of potential q(x). Three of these have analytical
solutions; besides the quoted formula for q(x) = x2 we have:
(i) for q(x) = 0,

m0(�) =− i√
�

for Im �¿0 (37)
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Table 4
Comparison of some values of the Titchmarsh–Weyl function m0(�) for several forms of potential as calculated by us
and by other methods. For the potentials q(x)=0; x; x2 the full results are analytical ones, and those with upper and lower
underlining correspond to Ref. [4] and to our calculations, respectively. For the potentials q(x) = x3; x10; sin x the full
results are our calculated results and the underlined digits are those of Ref. [4]

q(x) �R �I Rem0(�) Imm0(�)

1 1 0:32179713264527913123677217 0:7768869870150186536720794
−1 −1 −0:776886987015018653672079 0:3217971264527913123677217

0 10 10 0:1017611864088040996933812 0:2456732363513115284902715
50 50 0:0455089860562227341304357 0:1098684113467809966039801
100 100 0:0321797126452791312367721 0:0776886987015018653672079
10−6 10−6 1:3717221641984483454429751 1:00000188162078127149× 10−6
10−3 10−3 1:3727211623659022261189035 1:00188344791034295536× 10−3

x 1 1 0:4696702972593739875665920 1:0654819506470864134341151
10 10 0:1017528827429881489577980 0:2469426558743188358632783
10−6 10−6 1:479338721463321794138406 1:16187126990458777817× 10−6
10−3 10−3 1:480499426333420181009282 1:16413881316375640513× 10−3

x2 1 1 0:3815889841391170490690701 1:174418352209186443946638
10 10 0:101452515838038047113286 0:245796385047395760930097
1 10−3 0:3910664091268632819180404 0:112837921533569704965× 104
10−6 10−6 1:501316185204737536 1:176434149957516154× 10−6
10−3 10−3 1:502491438461537521 0:001178690677493518

x3 1 1 0:376140361363089676 1:236863636812636230
10 10 0:101701733899843375 0:245545371969524286
1 10−3 0:527282613383399577× 102 2:282357394677736658
10−6 10−6 1:373666850619829559 0:867606980891772141× 10−7
10−3 10−3 1:374533587662528876 0:000868924470552375

x10 1 1 0:672248823752825658 1:338682596287334186
10 10 0:102570952567255889 0:253121181826114601
1 10−3 5:101566591730516390 0:016155822396907007
10−6 10−6 1:460868872107597675 0:129937473194902683× 10−5
10−3 10−3 1:462166942020863048 0:001302500414846814

sin x 1 1 0:453432242497456955 0:968392998820420218
10 10 0:101769674829265222 0:246960011415918746

(ii) for q(x) = x,

m0(�) =− 1√
�

J1=3(z) + J−1=3(z)
J2=3(z)− J−2=3(z)

; z =
2
3
�3=2: (38)

Table 5 also shows results for the cases q(x) = x3; x10; sin x, for various values of �R and �I. In
all cases comparison is given with the method of [4] and with analytical results when available.
The results suggest that the calculation can be extended with con�dence to other potentials. It is
important to point out that the choice of the distance X and the number of steps have played an
important role in controlling the rate of convergence in our calculations. The general consideration
governing our choice is that as � increases the value of X and the number of steps both increase.
To select the best converged m0(�) we require stability of the results with respect to the variation
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Table 5
Convergence of some m0(�) for q(x)= x2, for several sets of parameters X and step numbers, No. The underlined results
correspond to analytic (exact) values

�R �I Rem0(�) Imm0(�) X , No.

1.479338 1:16187× 10−6 4, 4000
10−6 10−6 1.4793387214 1:161871269× 10−6 5, 5000

1.47933872146332179 1:1618712699045877× 10−6 8, 8000
1.47933872146332179 1:1618712699045877× 10−6 9, 9000
1:47933872146332179413840610 1:1618712699045877781712× 10−6
0.3815889 1.174418 4, 4000
0.38158898413911705 1.1744183522091864439 6, 6000

1 1 0.3815889841391170490 1.1744183522091864439 9, 9000
0.3815889841391170490 1.1744183522091864439 10; 104

0:38158898413911704906907013 1:174418352209186443946638028
0.03217874 0.0776891 2, 2000

102 102 0.0321787414838014 0.0776891008204308 4, 4000
0.03217874148380144639 0.077689100820430866316 6, 6000
0.03217874148380144639 0.077689100820430866316 8, 8000
0:03217874148380144639202038 0:077689100820430866316046290
0.9099338 0.5967293 4, 4000

10−6 1 0.909933085104183 0.596729369127333 6, 6000
0.90993308510418309 0.596729369127333680 9, 9000
0.90993308510418309 0.596729369127333680 10; 104

0:90993308510418309570813775 0:596729369127333680443653829

of X and of the number of steps for a given � value. This feature is made very clear in Table 5
and strengthens our con�dence in the quoted results.
Even higher accuracies can be achieved at the expense of greater computation times; in general,

increasing the parameter � increases the required computation time. Because of the variable precision
available, Mathematica is, of course perform codes such as the Kirby one [8] which retain a �xed
double precision accuracy, although we found that the improved accuracy generally requires greater
running time than that of Kirby’s code for similar calculations.
The Mathematica code used in the calculations requires the input of a maximum number of allowed

steps and of a speci�ed error tolerance. It then monitors the rate of change of the solution and adjusts
the step length locally throughout the integration to achieve the stated tolerance. The method used
for a non-sti� problem is an implicit Adams method with an order which is internally varied up
to a maximum of 12 to attain the required accuracy. Since the code is a commercial product, it
is not possible for a user to access the code to reveal complete details of the technique used. In
new applications, it is accordingly important to use as many test cases, comparisons with other
techniques and internal consistency checks as possible. In the present application this requirement
has been amply ful�lled, as the discussion indicates. Nevertheless, in view of the many works being
published which use commercial packages, we wish to stress the above general guidelines about
their critical application in new specialized problem areas.
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6. For further reading

[13]
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