On the constructions and nonlinearity of binary vector-output correlation-immune functions

Lusheng Chen, ${ }^{\text {a }}$ Fang-Wei Fu, ${ }^{\text {b,*, }}$ and Victor K.-W. Wei ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Nankai University, Tianjin 300071, P. R. China
${ }^{\mathrm{b}}$ Temasek Laboratories, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
${ }^{\text {c }}$ Department of Information Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Received 29 October 2002; accepted 12 August 2003
Dedicated to Professor Harald Niederreiter on the occasion of his 60th birthday.

Abstract

The binary vector-output correlation-immune functions are studied in this paper. Some important properties of vector-output correlation-immune functions are obtained. A number of methods for constructing new vector-output correlation-immune functions from old ones are discussed. The nonlinearity of the newly constructed vector-output correlation-immune functions is studied. For some cases we give the exact formulas for the nonlinearity of constructed vector-output correlation-immune functions.

(C) 2003 Elsevier Inc. All rights reserved.

Keywords: Cryptography; Stream ciphers; Correlation-immune functions; Resilient functions; Nonlinearity; Unbiased functions

[^0]
1. Introduction

Correlation-immune functions play an important role in cryptography. The concept of correlation-immune functions was first introduced and studied by Siegenthaler [10]. Correlation-immune functions are used in stream ciphers as combining functions for running-key generators that are resistant to a correlation attack [7]. Functions with high nonlinearity have important applications in cryptography. The nonlinearity of functions is very important in evaluating the security of some cryptosystems. In stream ciphers, the combining functions or the filter functions employed in the running key generator must be selected with care. Functions with low nonlinearity can be easily broken by the best approximation attack [5]. In order to increase the security of the cipher system, the combining functions selected should be correlation-immune functions with high nonlinearity. By using vector-output Boolean functions as the combining functions, it is possible to increase the speed of the cipher systems since we may get more than one bit at each clock pulse. Vector-output Boolean functions with certain cryptographic properties are also used to design S-boxes in block cipher systems.

In this paper, we study the binary vector-output correlation-immune functions. Some important properties of vector-output correlation-immune functions are obtained. A number of methods for constructing new vector-output correlationimmune functions from old ones are discussed. The nonlinearity of the newly constructed vector-output correlation-immune functions is studied. For some cases we give the exact formulas for the nonlinearity of constructed vector-output correlation-immune functions.

This paper is organized as follows. In Section 2 we introduce some basic definitions and notations. We also review some basic properties which will be used in this paper. In Section 3 we derive an important property of vector-output correlation-immune functions. In Section 4 we discuss a number of methods for constructing new correlation-immune functions from old ones. In Section 5 we study the nonlinearity of the newly constructed vector-output correlation-immune functions. For some cases we give the exact formulas for the nonlinearity of constructed vector-output correlationimmune functions. In Section 6 we summarize and conclude this paper.

2. Preliminaries

Let $V_{n}=G F(2)^{n}$ be the n-dimensional vector space over $G F(2)$. For a vector $u \in V_{n}$, the Hamming weight $w_{\mathrm{H}}(u)$ is the number of 1 's in u. Let $f(x)$ be a function from V_{n} to $G F(2)$ (or simply, a function on V_{n}). The sequence of $f(x)$ is defined as

$$
\left((-1)^{f\left(\alpha_{0}\right)},(-1)^{f\left(\alpha_{1}\right)}, \ldots,(-1)^{f\left(\alpha_{2}{ }^{n}-1\right)}\right)
$$

where $\alpha_{i}, 0 \leqslant i \leqslant 2^{n}-1$, denotes the vector in V_{n} whose integer representation is i, that is

$$
i=\sum_{j=1}^{n} \alpha_{j}^{i} 2^{j-1}
$$

A function $f(x)$ on V_{n} is said to be an affine function if it takes the form of

$$
f(x)=c_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n} x_{n}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $c_{i} \in G F(2), 0 \leqslant i \leqslant n$. The Hamming distance between two functions $f(x)$ and $g(x)$ on V_{n} is defined by

$$
d(f, g)=\left|\left\{x \in V_{n} \mid f(x) \neq g(x)\right\}\right|
$$

The nonlinearity of $f(x)$, denoted by N_{f}, is defined as

$$
N_{f}=\min _{\varphi \in A F_{n}} d(f, \varphi)
$$

where $A F_{n}$ is the set of all affine functions on V_{n}.
Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\beta=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. If $\alpha, \beta \in V_{n}$, the scalar product of α and β is defined as $\langle\alpha, \beta\rangle=a_{1} b_{1} \oplus \cdots \oplus a_{n} b_{n}$, where the addition and multiplication are over $G F(2)$. If $\alpha, \beta \in\{-1,+1\}^{n}$, the scalar product of α and β is defined as $\langle\alpha, \beta\rangle=a_{1} b_{1}+\cdots+a_{n} b_{n}$, where the addition and multiplication are over the reals. Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $\beta=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. The Kronecker product of α and β is defined as $\alpha \otimes \beta=\left(a_{1} \beta, a_{2} \beta, \ldots, a_{m} \beta\right)$. Note that $\alpha \otimes \beta$ is a vector with length $m n$.

Let $f(x)$ and $g(x)$ be two functions on V_{n}, it is known that (see [9, Lemma 6])

$$
d(f, g)=2^{n-1}-\frac{1}{2}\left\langle\xi_{f}, \xi_{g}\right\rangle
$$

where ξ_{f} and ξ_{g} are the sequences of $f(x)$ and $g(x)$, respectively.
A function F from V_{n} to V_{m} can be expressed as

$$
F=\left(f_{1}, f_{2}, \ldots, f_{m}\right)
$$

where each component function $f_{i}, 1 \leqslant i \leqslant m$, is a function on V_{n}. The nonlinearity of a function F from V_{n} to V_{m} is defined as

$$
N_{F}=\min _{g \in N L C_{F}} N_{g}
$$

where $N L C_{F}$ is the set of all nonzero linear combinations of the component functions of F. This definition regarding N_{F} was first introduced by Nyberg in [6].

Definition 1. Let F be a function from V_{n} to V_{m} and let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the set of random input variables with independent equiprobable distributions over $G F(2)$. If for every subset $T=\left\{j_{1}, j_{2}, \ldots, j_{t}\right\} \subseteq\{1,2, \ldots, n\}$ of cardinality t, random vector $Z=$ $F\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is independent of random vector $\left(X_{j_{1}}, X_{j_{2}}, \ldots, X_{j_{t}}\right)$, that is to say, for every $\left(b_{1}, b_{2}, \ldots, b_{t}\right) \in V_{t}$ and for every $\alpha \in V_{m}$,

$$
\operatorname{Pr}\left(Z=\alpha \mid X_{j_{i}}=b_{i}, \quad 1 \leqslant i \leqslant t\right)=\operatorname{Pr}(Z=\alpha)
$$

then F is said to be an (n, m, t)-correlation-immune function, or (n, m, t)-CI function for short.

It is easy to see from Definition 1 that
Lemma 1. F is an ($n, m, t)$-CI function if and only if it is an (n, m, s)-CI function for each s with $0 \leqslant s \leqslant t$.

Definition 2. Let F be a function from V_{n} to V_{m}, where $n \geqslant m \geqslant 1 . F$ is said to be an unbiased function, if for every $\alpha \in V_{m}$,

$$
\left|\left\{x \in V_{n} \mid F(x)=\alpha\right\}\right|=2^{n-m}
$$

Particularly, the unbiased functions on V_{n} are usually called balanced functions.
Definition 3. Let F be a function from V_{n} to V_{m}, where $n \geqslant m \geqslant 1 . F$ is said to be an (n, m, t)-resilient function if it is an unbiased (n, m, t)-CI function.

The concept of resilient functions was first introduced by Chor et al. [4] and Bennett et al. [1]. Resilient functions have found applications in the fault-tolerant distributed computing, quantum cryptographic key distribution and random sequence generation for stream ciphers.

The following fact regarding unbiased functions can be found in [13].
Lemma 2. $F=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ is an unbiased function from V_{n} to V_{m} if and only if every nonzero linear combination

$$
f(x)=\bigoplus_{i=1}^{m} c_{i} f_{i}(x)
$$

of the component functions of F is a balanced function on V_{n}, where $x \in V_{n}$, $c_{1}, c_{2}, \ldots, c_{m} \in G F(2)$ and not all zeroes.

By the definition of balanced functions, it is easy to obtain
Lemma 3. Let $f_{i}\left(y_{i}\right)$ be a function on $V_{n_{i}}$, where $y_{i} \in V_{n_{i}}, 1 \leqslant i \leqslant r$. If at least one of $f_{1}\left(y_{1}\right), f_{2}\left(y_{2}\right), \ldots, f_{r}\left(y_{r}\right)$ is a balanced function, then

$$
f\left(y_{1}, y_{2}, \ldots, y_{r}\right)=f_{1}\left(y_{1}\right) \oplus f_{2}\left(y_{2}\right) \oplus \cdots \oplus f_{r}\left(y_{r}\right)
$$

is also a balanecd function.
For a function $f(x)$ on V_{n}, the Walsh transform of $f(x)$ is the real valued function over V_{n} defined as

$$
W_{f}(u)=\sum_{x \in V_{n}}(-1)^{f(x) \oplus\langle x, u\rangle}, \quad u \in V_{n}
$$

Note that $f(x)$ is a balanced function if and only if $W_{f}(\mathbf{0})=0$. Xiao and Massey [11] gave a characterization of an $(n, 1, t)$-correlation-immune function as follows.

Lemma 4. A function $f(x)$ on V_{n} is an ($\left.n, 1, t\right)$-correlation-immune function if and only if its Walsh transform satisfies

$$
W_{f}(u)=0, \text { for all } u \in V_{n} \text { with } 1 \leqslant w_{\mathrm{H}}(u) \leqslant t
$$

3. An important property of vector-output correlation-immune functions

The following lemma is a special case of the linear combination lemma given by Camion and Canteaut (see [2, Lemma 2]).

Lemma 5. Let $\eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{t}\right)$ be a random vector in V_{t} and let $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)$ be a random vector in V_{m}. Then η is independent of $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)$ if and only if η is independent of every nonzero linear combination $\oplus_{i=1}^{m} c_{i} \xi_{i}$ of $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$, where $c_{1}, c_{2}, \ldots, c_{m} \in G F(2)$ and not all zeroes.

From Lemma 5, we have the following important property regarding vectoroutput correlation-immune functions.

Theorem 1. $F=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ is an (n, m, t)-CI function if and only if every nonzero linear combination

$$
f(x)=\bigoplus_{i=1}^{m} c_{i} f_{i}(x)
$$

of the component functions of F is an $(n, 1, t)-C I$ function, where $x \in V_{n}$, and $c_{1}, c_{2}, \ldots, c_{m} \in G F(2)$ and not all zeroes.

Proof. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n random variables with independent equiprobable distributions over $G F(2)$, and let $Z_{i}=f_{i}\left(X_{1}, X_{2}, \ldots, X_{n}\right), i=1,2, \ldots, m$. By Definition 1 and Lemma $5, F=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ is an (n, m, t)-CI function \Leftrightarrow for every subset $\left\{j_{1}, j_{2}, \ldots, j_{t}\right\} \subseteq\{1,2, \ldots, n\}$ of cardinality t, random vector

$$
Z=F\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)
$$

is independent of $\left(X_{j_{1}}, X_{j_{2}}, \ldots, X_{j_{t}}\right) \Leftrightarrow$ for every subset $\left\{j_{1}, j_{2}, \ldots, j_{t}\right\} \subseteq\{1,2, \ldots, n\}$ of cardinality t, every nonzero linear combination

$$
\bigoplus_{i=1}^{m} c_{i} Z_{i}=\bigoplus_{i=1}^{m} c_{i} f_{i}\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

of $Z_{1}, Z_{2}, \ldots, Z_{m}$ is independent of $\left(X_{j_{1}}, X_{j_{2}}, \ldots, X_{j_{t}}\right) \Leftrightarrow$ every nonzero linear combination

$$
f(x)=\bigoplus_{i=1}^{m} c_{i} f_{i}(x)
$$

of the component functions of F is an $(n, 1, t)$-CI function, where $x \in V_{n}$.
It follows from Theorem 1 that if $F=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ is an ($\left.n, m, t\right)$-CI function, then $G=\left(f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{s}}\right)$ is an (n, s, t)-CI function for each subset $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\} \subseteq\{1,2, \ldots, m\}$ of cardinality $s, 1 \leqslant s \leqslant m$.

4. Matrix-product construction of vector-output correlation-immune functions

In this section, we study the matrix-product construction of vector-output correlation-immune functions. We first introduce the following result which can be found in [12, Theorem 17.3.6]. For completeness, we present a new proof here by using the technique of Walsh transform.

Lemma 6. Let $f_{1}\left(y_{1}\right)$ be an $\left(n_{1}, 1, t_{1}\right)$-CI function and $f_{2}\left(y_{2}\right)$ be an $\left(n_{2}, 1, t_{2}\right)-C I$ function, where $t_{1} \leqslant t_{2}, y_{1} \in V_{n_{1}}, y_{2} \in V_{n_{2}}$. Let

$$
f\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right) \oplus f_{2}\left(y_{2}\right)
$$

(a) If both f_{1} and f_{2} are not balanced, then f is an $\left(n_{1}+n_{2}, 1, t_{1}\right)$-CI function.
(b) If f_{1} is not balanced but f_{2} is balanced, then f is an $\left(n_{1}+n_{2}, 1, t_{2}\right)$-CI function.
(c) If f_{1} is balanced but f_{2} is not balanced, then f is an $\left(n_{1}+n_{2}, 1, t_{1}\right)$-CI function.
(d) If both f_{1} and f_{2} are balanced, then f is an $\left(n_{1}+n_{2}, 1, t_{1}+t_{2}+1\right)$-CI function.

Proof. The Walsh transform of $f\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right) \oplus f_{2}\left(y_{2}\right)$ is given by

$$
\begin{aligned}
W_{f}\left(u_{1}, u_{2}\right) & =\sum_{y_{1} \in V_{n_{1}}, y_{2} \in V_{n_{2}}}(-1)^{f_{1}\left(y_{1}\right) \oplus f_{2}\left(y_{2}\right) \oplus\left\langle\left(y_{1}, y_{2}\right),\left(u_{1}, u_{2}\right)\right\rangle} \\
& =\sum_{y_{1} \in V_{n_{1}}, y_{2} \in V_{n_{2}}}(-1)^{f_{1}\left(y_{1}\right) \oplus f_{2}\left(y_{2}\right) \oplus\left\langle y_{1}, u_{1}\right\rangle \oplus\left\langle y_{2}, u_{2}\right\rangle} \\
& =\sum_{y_{1} \in V_{n_{1}}}(-1)^{f_{1}\left(y_{1}\right) \oplus\left\langle y_{1}, u_{1}\right\rangle} \sum_{y_{2} \in V_{n_{2}}}(-1)^{f_{2}\left(y_{2}\right) \oplus\left\langle y_{2}, u_{2}\right\rangle} \\
& =W_{f_{1}}\left(u_{1}\right) W_{f_{2}}\left(u_{2}\right) .
\end{aligned}
$$

If $1 \leqslant w_{\mathrm{H}}\left(\left(u_{1}, u_{2}\right)\right) \leqslant t_{1}$, then either $1 \leqslant w_{\mathrm{H}}\left(u_{1}\right) \leqslant t_{1}$ or $1 \leqslant w_{\mathrm{H}}\left(u_{2}\right) \leqslant t_{1}$. By Lemma 4, for the case $1 \leqslant w_{\mathrm{H}}\left(u_{1}\right) \leqslant t_{1}$, we have $W_{f_{1}}\left(u_{1}\right)=0$ since $f_{1}\left(y_{1}\right)$ is an $\left(n_{1}, 1, t_{1}\right)$-CI function; for the case $1 \leqslant w_{\mathrm{H}}\left(u_{2}\right) \leqslant t_{1}$, we have $W_{f_{2}}\left(u_{2}\right)=0$ since $f_{2}\left(y_{2}\right)$ is an $\left(n_{2}, 1, t_{2}\right)$-CI function and $t_{1} \leqslant t_{2}$. Hence, $W_{f}\left(u_{1}, u_{2}\right)=0$ for all $\left(u_{1}, u_{2}\right) \in V_{n_{1}+n_{2}}$ with $1 \leqslant w_{\mathrm{H}}\left(\left(u_{1}, u_{2}\right)\right) \leqslant t_{1}$. The assertions (a) and (c) follow from Lemma 4.

If f_{2} is a balanced ($n_{2}, 1, t_{2}$)-CI function, then by Lemma 4 and the definitions of balanced functions and Walsh transform, we have $W_{f_{2}}\left(u_{2}\right)=0$ for all $u_{2} \in V_{n_{2}}$ with $0 \leqslant w_{\mathrm{H}}\left(u_{2}\right) \leqslant t_{2}$. Since $1 \leqslant w_{\mathrm{H}}\left(\left(u_{1}, u_{2}\right)\right) \leqslant t_{2} \quad$ implies $0 \leqslant w_{\mathrm{H}}\left(u_{2}\right) \leqslant t_{2}$, we have $W_{f}\left(u_{1}, u_{2}\right)=0$ for all $\left(u_{1}, u_{2}\right) \in V_{n_{1}+n_{2}}$ with $1 \leqslant w_{\mathrm{H}}\left(\left(u_{1}, u_{2}\right)\right) \leqslant t_{2}$. Assertion (b) follows from Lemma 4.

If both f_{1} and f_{2} are balanced, then by Lemma 4 and the definitions of balanced functions and Walsh transform, we have $W_{f_{1}}\left(u_{1}\right)=0$ for all $u_{1} \in V_{n_{1}}$ with $0 \leqslant w_{\mathrm{H}}\left(u_{1}\right) \leqslant t_{1}$, and $W_{f_{2}}\left(u_{2}\right)=0$ for all $u_{2} \in V_{n_{2}}$ with $0 \leqslant w_{\mathrm{H}}\left(u_{2}\right) \leqslant t_{2}$. For $\left(u_{1}, u_{2}\right) \in V_{n_{1}+n_{2}}$ with $1 \leqslant w_{\mathrm{H}}\left(\left(u_{1}, u_{2}\right)\right) \leqslant t_{1}+t_{2}+1$, if $0 \leqslant w_{\mathrm{H}}\left(u_{1}\right) \leqslant t_{1}$, then $W_{f_{1}}\left(u_{1}\right)=$ 0 ; if $w_{\mathrm{H}}\left(u_{1}\right) \geqslant t_{1}+1$, then $0 \leqslant w_{\mathrm{H}}\left(u_{2}\right) \leqslant t_{2}$, which implies $W_{f_{2}}\left(u_{2}\right)=0$. Hence, $W_{f}\left(u_{1}, u_{2}\right)=0$ for all $\left(u_{1}, u_{2}\right) \in V_{n_{1}+n_{2}}$ with $1 \leqslant w_{\mathrm{H}}\left(\left(u_{1}, u_{2}\right)\right) \leqslant t_{1}+t_{2}+1$. Assertion (d) follows from Lemma 4.

The following theorem is a generalization of Lemma 6.
Theorem 2. Let $f_{i}\left(y_{i}\right)$ be an $\left(n_{i}, 1, t_{i}\right)$-CI function, where $y_{i} \in V_{n_{i}}, 1 \leqslant i \leqslant r$. Then

$$
f\left(y_{1}, y_{2}, \ldots, y_{r}\right)=f_{1}\left(y_{1}\right) \oplus f_{2}\left(y_{2}\right) \oplus \cdots \oplus f_{r}\left(y_{r}\right)
$$

is an $\left(\sum_{i=1}^{r} n_{i}, 1, t\right)$-CI function, where

$$
\begin{align*}
& t= \begin{cases}\min \left\{t_{1}, t_{2}, \ldots, t_{r}\right\} & \text { if } b_{1}=b_{2}=\cdots=b_{r}=0, \\
\sum_{i=1}^{r} b_{i} t_{i}+w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{r}\right)-1 & \text { if }\left(b_{1}, b_{2}, \ldots, b_{r}\right) \neq(0,0, \ldots, 0),\end{cases} \tag{1}\\
& b_{i}=\left\{\begin{array}{ll}
1 & \text { if } f_{i}\left(y_{i}\right) \text { is balanced, } \\
0 & \text { if } f_{i}\left(y_{i}\right) \text { is not balanced, }
\end{array} \quad i=1,2, \ldots, r,\right.
\end{align*}
$$

and $w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ represents the Hamming weight of the binary vector $\left(b_{1}, b_{2}, \ldots, b_{r}\right)$.

Proof. We show by mathematical induction that f is an $\left(\sum_{i=1}^{r} n_{i}, 1, t\right)$-CI function, where t is defined by (1). By Lemma 6, it is obvious that (1) is true for the case $r=2$.

Suppose (1) holds for $r<k$. Consider $r=k$. Let

$$
g\left(y_{1}, y_{2}, \ldots, y_{k-1}\right)=f_{1}\left(y_{1}\right) \oplus f_{2}\left(y_{2}\right) \oplus \cdots \oplus f_{k-1}\left(y_{k-1}\right)
$$

Then

$$
f\left(y_{1}, y_{2}, \ldots, y_{k}\right)=g\left(y_{1}, y_{2}, \ldots, y_{k-1}\right) \oplus f_{k}\left(y_{k}\right)
$$

By Lemma 3, if $\left(b_{1}, b_{2}, \ldots, b_{k-1}\right)$ is not a zero vector, then $g\left(y_{1}, y_{2}, \ldots, y_{k-1}\right)$ is balanced. By the induction hypothesis, $g\left(y_{1}, y_{2}, \ldots, y_{k-1}\right)$ is an $\left(\sum_{i=1}^{k-1} n_{i}, 1, s\right)$-CI function, where

$$
s= \begin{cases}\min \left\{t_{1}, t_{2}, \ldots, t_{k-1}\right\} & \text { if } b_{1}=b_{2}=\cdots=b_{k-1}=0 \\ \sum_{i=0}^{k-1} b_{i} t_{i}+w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{k-1}\right)-1 & \text { if }\left(b_{1}, b_{2}, \ldots, b_{k-1}\right) \neq(0,0, \ldots, 0)\end{cases}
$$

Let

$$
b= \begin{cases}0 & \text { if } b_{1}=b_{2}=\cdots=b_{k-1}=0 \\ 1 & \text { otherwise }\end{cases}
$$

Then, by Lemma $6, f\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is an $\left(\sum_{i=1}^{k} n_{i}, 1, t\right)$-CI function, where

$$
t= \begin{cases}\min \left\{s, t_{k}\right\} & \text { if } b=b_{k}=0 \\ b s+b_{k} t_{k}+w_{\mathrm{H}}\left(b, b_{k}\right)-1 & \text { otherwise }\end{cases}
$$

If $b=b_{k}=0$, it is obvious that

$$
t=\min \left\{t_{1}, t_{2}, \ldots, t_{k}\right\}
$$

If $b=0$ and $b_{k}=1$, then

$$
t=t_{k}
$$

$$
=\sum_{i=1}^{k} b_{i} t_{i}+w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{k}\right)-1
$$

If $b=1$ and $b_{k}=0$, then

$$
\begin{aligned}
t & =s \\
& =\sum_{i=0}^{k-1} b_{i} t_{i}+w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{k-1}\right)-1 \\
& =\sum_{i=0}^{k} b_{i} t_{i}+w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{k}\right)-1 .
\end{aligned}
$$

If $b=1$ and $b_{k}=1$, then

$$
\begin{aligned}
t & =s+t_{k}+1 \\
& =\sum_{i=0}^{k-1} b_{i} t_{i}+w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{k-1}\right)-1+t_{k}+1 \\
& =\sum_{i=0}^{k} b_{i} t_{i}+w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{k}\right)-1
\end{aligned}
$$

By the above discussion, we know that (1) is true. This completes the proof.
For convenience, let

$$
\begin{aligned}
& \psi\left(\left(b_{1}, b_{2}, \ldots, b_{r}\right),\left(t_{1}, t_{2}, \ldots, t_{r}\right)\right) \\
& \quad=\left\{\begin{array}{cc}
\min \left\{t_{1}, t_{2}, \ldots, t_{r}\right\} & \text { if } b_{1}=b_{2}=\cdots=b_{r}=0, \\
\sum_{i=1}^{r} b_{i} t_{i}+w_{\mathrm{H}}\left(b_{1}, b_{2}, \ldots, b_{r}\right)-1 & \text { if }\left(b_{1}, b_{2}, \ldots, b_{r}\right) \neq(0,0, \ldots, 0),
\end{array}\right.
\end{aligned}
$$

where $r \geqslant 1, b_{i}=0$ or $1, t_{i}$ is a nonnegative integer, $i=1,2, \ldots, r$.
Below we study the matrix-product construction of vector-output correlationimmune functions.

Theorem 3. Let $F_{j}=\left(f_{j 1}, f_{j 2}, \ldots, f_{j m}\right)$ be an $\left(n_{j}, m, t_{j}\right)$-CI function, $j=1,2, \ldots, r$. Let w be the number of unbiased functions in $F_{1}, F_{2}, \ldots, F_{r}$. Let $A=\left(a_{i j}\right)_{r \times s}$ be an $r \times s$ matrix over $G F(2)$ such that $r \geqslant s$ and $\operatorname{Rank}(A)=s$. Let d be the minimum weight of the linear code generated by A^{T}, where A^{T} denotes the transpose of matrix A. Let

$$
F\left(y_{1}, y_{2}, \ldots, y_{r}\right)=\left(F_{1}\left(y_{1}\right), F_{2}\left(y_{2}\right), \ldots, F_{r}\left(y_{r}\right)\right) A
$$

where $y_{j} \in V_{n_{j}}, j=1,2, \ldots, r$. If $w \leqslant r-d$, then F is an $\left(\sum_{j=1}^{r} n_{j}, s m, t\right)$-CI function, where

$$
t=\min \left\{t_{1}, t_{2}, \ldots, t_{r}\right\}
$$

If $w>r-d$, then F is an $\left(\sum_{j=1}^{r} n_{j}, s m, t\right)$-resilient function, where

$$
t=t_{i_{1}}+t_{i_{2}}+\cdots+t_{i_{w-r+d}}+w-r+d-1
$$

and $\left\{i_{1}, i_{2}, \ldots, i_{w}\right\} \subseteq\{1,2, \ldots, r\}$ such that $F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{w}}$ are unbiased and $t_{i_{1}} \leqslant t_{i_{2}} \leqslant \cdots \leqslant t_{i_{w}}$.

Proof. For each k with $1 \leqslant k \leqslant s$,

$$
\begin{aligned}
& \left(F_{1}\left(y_{1}\right), F_{2}\left(y_{2}\right), \ldots, F_{r}\left(y_{r}\right)\right)\left(\begin{array}{c}
a_{1 k} \\
a_{2 k} \\
\vdots \\
a_{r k}
\end{array}\right) \\
& \quad=a_{1 k} F_{1}\left(y_{1}\right) \oplus a_{2 k} F_{2}\left(y_{2}\right) \oplus \cdots \oplus a_{r k} F_{r}\left(y_{r}\right) \\
& \quad=\left(\bigoplus_{j=1}^{r} a_{j k} f_{j 1}\left(y_{j}\right), \bigoplus_{j=1}^{r} a_{j k} f_{j 2}\left(y_{j}\right), \ldots, \bigoplus_{j=1}^{r} a_{j k} f_{j m}\left(y_{j}\right)\right) .
\end{aligned}
$$

Consider an arbitrary nonzero linear combination of the component functions of F,

$$
\begin{aligned}
f\left(y_{1}, y_{2}, \ldots, y_{r}\right) & =\bigoplus_{k=1}^{s} \bigoplus_{i=1}^{m} c_{k i} \bigoplus_{j=1}^{r} a_{j k} f_{j i}\left(y_{j}\right) \\
& =\bigoplus_{j=1}^{r} \bigoplus_{k=1}^{s} a_{j k} \bigoplus_{i=1}^{m} c_{k i} f_{j i}\left(y_{j}\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
C & =\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
c_{s 1} & c_{s 2} & \ldots & c_{s m}
\end{array}\right)_{s \times m}, \quad \beta_{i}=\left(\begin{array}{c}
c_{1 i} \\
c_{2 i} \\
\vdots \\
c_{s i}
\end{array}\right), \quad i=1,2, \ldots, m, \\
\alpha_{j} & =\left(a_{j 1}, a_{j 2}, \ldots, a_{j s}\right), \quad j=1,2, \ldots, r .
\end{aligned}
$$

Then

$$
f\left(y_{1}, y_{2}, \ldots, y_{r}\right)=\bigoplus_{i=1}^{m} \alpha_{1} \beta_{i} f_{1 i}\left(y_{1}\right) \oplus \bigoplus_{i=1}^{m} \alpha_{2} \beta_{i} f_{2 i}\left(y_{2}\right) \oplus \cdots \oplus \bigoplus_{i=1}^{m} \alpha_{r} \beta_{i} f_{r i}\left(y_{r}\right)
$$

Let $A_{r \times s} C_{s \times m}=B_{r \times m}$. Then each column vector of B is a linear combination of the column vectors of A. Thus when the j th column vector of C is not a zero vector, the number of ones in the j th column of B is at least d where d is the minimum weight of the linear code generated by A^{T}. Therefore, there are at least d rows of B which are not zero vectors. In fact, as C is an arbitrary nonzero $(0,1)$-matrix, there is at least one column of B in which there are at least d ones. Suppose for contradiction that there are only μ rows in B which are not zero vectors and $\mu<d$. Then the number of ones in each column of B is less than or equal to $\mu(<d)$, which leads to contradiction.

Since

$$
A C=B=\left(\begin{array}{cccc}
\alpha_{1} \beta_{1} & \alpha_{1} \beta_{2} & \ldots & \alpha_{1} \beta_{m} \\
\alpha_{2} \beta_{1} & \alpha_{2} \beta_{2} & \ldots & \alpha_{2} \beta_{m} \\
\ldots & \ldots & \ldots & \ldots \\
\alpha_{r} \beta_{1} & \alpha_{r} \beta_{2} & \ldots & \alpha_{r} \beta_{m}
\end{array}\right) \text {, }
$$

there are at least d vectors in $\left(\alpha_{j} \beta_{1}, \alpha_{j} \beta_{2}, \ldots, \alpha_{j} \beta_{m}\right), j=1,2, \ldots, r$, which are not zero vectors. Therefore, there are at least d functions in

$$
\bigoplus_{i=1}^{m} \alpha_{1} \beta_{i} f_{1 i}\left(y_{1}\right), \quad \bigoplus_{i=1}^{m} \alpha_{2} \beta_{i} f_{2 i}\left(y_{2}\right), \quad \ldots, \quad \bigoplus_{i=1}^{m} \alpha_{r} \beta_{i} f_{r i}\left(y_{r}\right)
$$

which are not zero.
Since $F_{j}\left(y_{j}\right)=\left(f_{j 1}\left(y_{j}\right), f_{j 2}\left(y_{j}\right), \ldots, f_{j m}\left(y_{j}\right)\right)$ is an $\left(n_{j}, m, t_{j}\right)$-CI function, by Theorem 1, when $\left(\alpha_{j} \beta_{1}, \alpha_{j} \beta_{2}, \ldots, \alpha_{j} \beta_{m}\right)$ is not a zero vector, $\oplus_{i=1}^{m} \alpha_{j} \beta_{i} f_{j i}\left(y_{j}\right)$ is an $\left(n_{j}, 1, t_{j}\right)$-CI function, $j=1,2, \ldots, r$.

By Theorem 2 and Lemma $1, f\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ is an $\left(\sum_{j=1}^{r} n_{j}, 1, t\right)$-CI function, where

$$
\begin{aligned}
& t=\min _{1 \leqslant j_{1}<j_{2}<\cdots<j_{d} \leqslant r} \psi\left(\left(b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}}\right),\left(t_{j_{1}}, t_{j_{2}}, \ldots, t_{j_{d}}\right)\right), \\
& b_{j}= \begin{cases}1 & \text { if } F_{j} \text { is unbiased, } \\
0 & \text { if } F_{j} \text { is not unbiased, } \quad j=1,2, \ldots, r .\end{cases}
\end{aligned}
$$

Again by Theorem 1, $F\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ is an $\left(\sum_{j=1}^{r} n_{j}, s m, t\right)$-CI function.
If $w>r-d$, that is, at least $r-d+1$ of $F_{1}, F_{2}, \ldots, F_{r}$ are unbiased, then by Lemma 2 and the above discussion, there is at least one of

$$
\bigoplus_{i=1}^{m} \alpha_{1} \beta_{i} f_{1 i}\left(y_{1}\right), \quad \bigoplus_{i=1}^{m} \alpha_{2} \beta_{i} f_{2 i}\left(y_{2}\right), \quad \ldots, \quad \bigoplus_{i=1}^{m} \alpha_{r} \beta_{i} f_{r i}\left(y_{r}\right)
$$

which is balanced. Therefore, by Lemma $3, f\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ is balanced. Again by Lemma 2, $F\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ is an unbiased function from V_{n} to $V_{s m}$, where $n=$ $\sum_{j=1}^{r} n_{j}$. So it follows from Definition 3 that $F\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ is an $\left(\sum_{j=1}^{r} n_{j}, s m, t\right)$ resilient function.

Now we calculate the t given in (2).
If $w \leqslant r-d$, then there are at least d of $F_{1}, F_{2}, \ldots, F_{r}$ which are not unbiased. Let $F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{w}}$ be unbiased and $F_{i_{w+1}}, F_{i_{w+2}}, \ldots, F_{i_{r}}$ be not unbiased, where
$\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ is a permutation of $\{1,2, \ldots, r\}$. Then

$$
\begin{aligned}
& \min _{1 \leqslant j_{1}<j_{2}<\cdots<j_{d} \leqslant r} \psi\left(\left(b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}}\right),\left(t_{j_{1}}, t_{j_{2}}, \ldots, t_{j_{d}}\right)\right) \\
& b_{j_{1}}=b_{j_{2}}=\cdots=b_{j_{d}}=0 \\
& = \\
& \min _{1 \leqslant j_{1}<j_{2}<\cdots<j_{d} \leqslant r} \min \left\{t_{j_{1}}, t_{j_{2}}, \ldots, t_{j_{d}}\right\} \\
& b_{j_{1}}=b_{j_{2}}=\cdots=b_{j_{d}}=0 \\
& =\min \left\{t_{i_{w+1}}, t_{i_{w+2}}, \ldots, t_{i_{r}}\right\}, \\
& \min _{1 \leqslant j_{1}<j_{2}<\cdots<j_{d} \leqslant r} \psi\left(\left(b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}}\right),\left(t_{j_{1}}, t_{j_{2}}, \ldots, t_{j_{d}}\right)\right) \\
& b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}} \text { are not all zeroes } \\
& =\quad \min _{1 \leqslant j_{1}<j_{2}<\cdots<j_{d} \leqslant r} \quad b_{j_{1}} t_{j_{1}}+b_{j_{2}} t_{j_{2}}+\cdots+b_{j_{d}} t_{j_{d}}+w_{\mathrm{H}}\left(b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}}\right)-1 \\
& b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}} \text { are not all zeroes } \\
& =\min \left\{t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{w}}\right\}, \\
& t=\min _{1 \leqslant j_{1}<j_{2}<\cdots<j_{d} \leqslant r} \psi\left(\left(b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}}\right),\left(t_{j_{1}}, t_{j_{2}}, \ldots, t_{j_{d}}\right)\right) \\
& =\min \left\{\min \left\{t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{w}}\right\}, \min \left\{t_{i_{w+1}}, t_{i_{w+2}}, \ldots, t_{i_{r}}\right\}\right\} \\
& =\min \left\{t_{1}, t_{2}, \ldots, t_{r}\right\} .
\end{aligned}
$$

If $w>r-d$, then it is easy to show that

$$
\begin{aligned}
t & =\min _{1 \leqslant j_{1}<j_{2}<\cdots<j_{d} \leqslant r} \psi\left(\left(b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}}\right),\left(t_{j_{1}}, t_{j_{2}}, \ldots, t_{j_{d}}\right)\right) \\
& =\min _{1 \leqslant j_{1}<j_{2}<\cdots<j_{d} \leqslant r} b_{j_{1}} t_{j_{1}}+b_{j_{2}} t_{j_{2}}+\cdots+b_{j_{d}} t_{j_{d}}+w_{\mathrm{H}}\left(b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{d}}\right)-1 \\
& =t_{i_{1}}+t_{i_{2}}+\cdots+t_{i_{w-r+d}}+w-r+d-1,
\end{aligned}
$$

where $\left\{i_{1}, i_{2}, \ldots, i_{w}\right\} \subseteq\{1,2, \ldots, r\}$ such that $F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{w}}$ are unbiased and $t_{i_{1}} \leqslant t_{i_{2}} \leqslant \cdots \leqslant t_{i_{w}}$.

5. Nonlinearity of matrix-product vector-output Boolean functions

Chen and Fu [3] presented a lower bound for the nonlinearity of matrix-product vector-output Boolean functions.

Lemma 7. Let $F_{j}=\left(f_{j 1}, f_{j 2}, \ldots, f_{j m}\right)$ be a function from $V_{n_{j}}$ to $V_{m}, j=1,2, \ldots$, . Let $A=\left(a_{i j}\right)_{r \times s}$ be an $r \times s$ matrix over $G F(2)$ such that $r \geqslant s$ and $\operatorname{Rank}(A)=s$. Let d be the minimum weight of the linear code generated by A^{T}, where A^{T} denotes the transpose of matrix A. Let

$$
F\left(y_{1}, y_{2}, \ldots, y_{r}\right)=\left(F_{1}\left(y_{1}\right), F_{2}\left(y_{2}\right), \ldots, F_{r}\left(y_{r}\right)\right) A
$$

where $y_{j} \in V_{n_{j}}, j=1,2, \ldots, r$. Assume

$$
N_{F_{j_{1}}} \leqslant N_{F_{j_{2}}} \leqslant \cdots \leqslant N_{F_{j_{r}}},
$$

where $\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}$ is a permutation of $\{1,2, \ldots, r\}$. Then

$$
\begin{equation*}
N_{F} \geqslant 2^{n-1}-2^{\left(\sum_{k=d+1}^{r} n_{j_{k}}\right)-1} \prod_{k=1}^{d}\left(2^{n_{j_{k}}}-2 N_{F_{j_{k}}}\right), \tag{3}
\end{equation*}
$$

where $n=\sum_{j=1}^{r} n_{j}$.
In this section, we further study the nonlinearity of matrix-product vector-output Boolean functions. For some cases we give the exact formulas for the nonlinearity of matrix-product vector-output Boolean functions.

The following lemma slightly generalizes a result of Sarkar and Maitra [8]. For completeness, we present a new proof here by using the technique of sequences of Boolean functions.

Lemma 8. Let $f_{i}\left(y_{i}\right)$ be a function on $V_{n_{i}}$, where $y_{i} \in V_{n_{i}}, 1 \leqslant i \leqslant r$. Let

$$
f\left(y_{1}, y_{2}, \ldots, y_{r}\right)=f_{1}\left(y_{1}\right) \oplus f_{2}\left(y_{2}\right) \oplus \cdots \oplus f_{r}\left(y_{r}\right)
$$

Then the nonlinearity of f is given by

$$
\begin{equation*}
N_{f}=2^{n-1}-\frac{1}{2} \prod_{i=1}^{r}\left(2^{n_{i}}-2 N_{f_{i}}\right) \tag{4}
\end{equation*}
$$

where $n=\sum_{i=1}^{r} n_{i}$.
Proof. Let ξ_{f} be the sequence of f and $\xi_{f_{i}}$ be the sequence of $f_{i}, i=1,2, \ldots, r$. Then $\xi_{f}=\xi_{f_{1}} \otimes \xi_{f_{2}} \otimes \cdots \otimes \xi_{f_{r}}$.
Let $\theta_{i}\left(y_{i}\right)$ be an arbitrary affine function on $V_{n_{i}}$ and its sequence be $\xi_{\theta_{i}}, i=1,2, \ldots, r$. Let

$$
\theta\left(y_{1}, y_{2}, \ldots, y_{r}\right)=\theta_{1}\left(y_{1}\right) \oplus \theta_{2}\left(y_{2}\right) \oplus \cdots \oplus \theta_{r}\left(y_{r}\right) .
$$

Then θ is an arbitrary affine function on V_{n}. Let ξ_{θ} be the sequence of θ. Then

$$
\xi_{\theta}=\xi_{\theta_{1}} \otimes \xi_{\theta_{2}} \otimes \cdots \otimes \xi_{\theta_{r}}
$$

Since

$$
\begin{aligned}
\left\langle\xi_{f}, \xi_{\theta}\right\rangle & =\left\langle\xi_{f_{1}} \otimes \xi_{f_{2}} \otimes \cdots \otimes \xi_{f_{r}}, \xi_{\theta_{1}} \otimes \xi_{\theta_{2}} \otimes \cdots \otimes \xi_{\theta_{r}}\right\rangle \\
& =\left\langle\xi_{f_{1}}, \xi_{\theta_{1}}\right\rangle\left\langle\xi_{f_{2}}, \xi_{\theta_{2}}\right\rangle \cdots\left\langle\xi_{f_{r}}, \xi_{\theta_{r}}\right\rangle \\
& =\prod_{i=1}^{r}\left(2^{n_{i}}-2 d\left(f_{i}, \theta_{i}\right)\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
N_{f} & =\min _{\theta \in A F_{n}} d(f, \theta) \\
& =\min _{\theta \in A F_{n}}\left(2^{n-1}-\frac{1}{2}\left\langle\xi_{f}, \xi_{\theta}\right\rangle\right) \\
& =2^{n-1}-\frac{1}{2} \max _{\theta \in A F_{n}}\left\langle\xi_{f}, \xi_{\theta}\right\rangle \\
& =2^{n-1}-\frac{1}{2} \prod_{i=1}^{r} \max _{\theta_{i} \in A F_{n_{i}}}\left(2^{n_{i}}-2 d\left(f_{i}, \theta_{i}\right)\right) \\
& =2^{n-1}-\frac{1}{2} \prod_{i=1}^{r}\left(2^{n_{i}}-2 N_{f_{i}}\right) .
\end{aligned}
$$

Let $r=2$ and $f_{2}\left(y_{2}\right)=0$ in Lemma 8, one can obtain
Lemma 9. Let h be a function on $V_{n_{1}}$. Set $f\left(y_{1}, y_{2}\right)=h\left(y_{1}\right)$, where $y_{1} \in V_{n_{1}}, y_{2} \in V_{n_{2}}$. Then f is a function on $V_{n_{1}+n_{2}}$ whose nonlinearity is given by $N_{f}=2^{n_{2}} N_{h}$.

By Lemmas 8 and 9, it immediately follows
Lemma 10. Let f_{i} be a function on $V_{n_{i}}, i=1,2, \ldots, r$. Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in V_{r}$. Let

$$
f\left(y_{1}, y_{2}, \ldots, y_{r}\right)=a_{1} f_{1}\left(y_{1}\right) \oplus a_{2} f_{2}\left(y_{2}\right) \oplus \cdots \oplus a_{r} f_{r}\left(y_{r}\right)
$$

where $y_{i} \in V_{n_{i}}, i=1,2, \ldots, r$. Then

$$
N_{f}=2^{n_{1}+n_{2}+\cdots+n_{r}-1}-\frac{1}{2} \prod_{i=1}^{r}\left(2^{n_{i}}-2 a_{i} N_{f_{i}}\right)
$$

Theorem 4. Let f_{j} be a function on $V_{n_{j}}, j=1,2, \ldots, r$. Let $A=\left(a_{i j}\right)_{r \times s}$ be an $r \times s$ matrix over $G F(2)$ such that $r \geqslant s$ and $\operatorname{Rank}(A)=s$. Let L be the linear code generated by A^{T} and its minimum weight be d. Let

$$
F\left(y_{1}, y_{2}, \ldots, y_{r}\right)=\left(f_{1}\left(y_{1}\right), f_{2}\left(y_{2}\right), \ldots, f_{r}\left(y_{r}\right)\right) A
$$

where $y_{j} \in V_{n_{j}}, j=1,2, \ldots, r$. Then

$$
\begin{equation*}
N_{F}=2^{n_{1}+n_{2}+\cdots+n_{r}-1}-\frac{1}{2} \max _{\alpha \in L^{*}}\left(\prod_{j=1}^{r}\left(2^{n_{j}}-2 a_{j} N_{f_{j}}\right)\right), \tag{5}
\end{equation*}
$$

where L^{*} is the set of nonzero codewords of L and $\alpha=\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in L^{*}$. Particularly, if $n_{1}=n_{2}=\cdots=n_{r}=n$ and $N_{f_{1}}=N_{f_{2}}=\cdots=N_{f_{r}}=N$, then

$$
N_{F}=2^{r n-1}-2^{(r-d) n-1}\left(2^{n}-2 N\right)^{d}
$$

Proof. For any nonzero vector $c \in V_{s}$,

$$
\begin{aligned}
f\left(y_{1}, y_{2}, \ldots, y_{r}\right) & =F\left(y_{1}, y_{2}, \ldots, y_{r}\right) c^{T} \\
& =\left(f_{1}\left(y_{1}\right), f_{2}\left(y_{2}\right), \ldots, f_{r}\left(y_{r}\right)\right) A c^{T}
\end{aligned}
$$

is a nonzero linear combination of the component functions of F. Note that $c A^{T} \in L^{*}$. Therefore, an arbitrary nonzero linear combination $f\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ of the component functions of F can be expressed as

$$
\begin{aligned}
f\left(y_{1}, y_{2}, \ldots, y_{r}\right) & =\left(f_{1}\left(y_{1}\right), f_{2}\left(y_{2}\right), \ldots, f_{r}\left(y_{r}\right)\right) \alpha^{T} \\
& =a_{1} f_{1}\left(y_{1}\right) \oplus a_{2} f_{2}\left(y_{2}\right) \oplus \cdots \oplus a_{r} f_{r}\left(y_{r}\right),
\end{aligned}
$$

where $\alpha=\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in L^{*}$. By the definition of nonlinearity, we have

$$
N_{F}=\min _{\alpha \in L^{*}} N_{f} .
$$

Therefore, Eq. (5) follows immediately from Lemma 10.
If $n_{1}=n_{2}=\cdots=n_{r}=n$ and $N_{f_{1}}=N_{f_{2}}=\cdots=N_{f_{r}}=N$, then by (5), we have

$$
\begin{aligned}
N_{F}= & 2^{r n-1}-\frac{1}{2} \max _{\alpha \in L^{*}}\left(\prod_{j=1}^{r}\left(2^{n}-2 a_{j} N\right)\right) \\
= & 2^{r n-1}-\frac{1}{2} \max _{\alpha \in L^{*}}\left(\prod_{j=1}^{r}\left(2^{n}-2 a_{j} N\right)\right) \\
& w_{\mathrm{H}}(\alpha)=d \\
= & 2^{r n-1}-2^{(r-d) n-1}\left(2^{n}-2 N\right)^{d} .
\end{aligned}
$$

Example 1. Let $A=\left(a_{i j}\right)_{r \times(r-1)}$ be an $r \times(r-1)$ matrix over $G F(2)$, where

$$
a_{i j}= \begin{cases}1 & \text { if } i=j \text { or } i=r, \quad 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant r-1 . \\ 0 & \text { otherwise, }\end{cases}
$$

It is obvious that the minimum weight of the linear code generated by A^{T} is 2 . It is also easy to observe that every vector of V_{r} with even weight is a codeword of the linear code generated by A^{T}. Let f_{j} be a function on $V_{n}, j=1,2, \ldots, r$. Let

$$
\begin{aligned}
F\left(y_{1}, y_{2}, \ldots, y_{r}\right) & =\left(f_{1}\left(y_{1}\right), f_{2}\left(y_{2}\right), \ldots, f_{r}\left(y_{r}\right)\right) A \\
& =\left(f_{1}\left(y_{1}\right) \oplus f_{r}\left(y_{r}\right), f_{2}\left(y_{2}\right) \oplus f_{r}\left(y_{r}\right), \ldots, f_{r-1}\left(y_{r-1}\right) \oplus f_{r}\left(y_{r}\right)\right)
\end{aligned}
$$

where $y_{j} \in V_{n}, j=1,2, \ldots, r$. Then, by Theorem 4, we have

$$
N_{F}=2^{r n-1}-2^{(r-2) n-1}\left(2^{n}-2 N_{f_{j_{1}}}\right)\left(2^{n}-2 N_{f_{j_{2}}}\right)
$$

where $\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}$ is a permutation of $\{1,2, \ldots, r\}$ such that $N_{f_{j_{1}}} \leqslant N_{f_{j_{2}}} \leqslant \cdots \leqslant N_{f_{j_{r}}}$.
The following lemma is a generalization of Lemma 9 from single-output Boolean functions to vector-output Boolean functions.

Lemma 11. Let H be a function from $V_{n_{1}}$ to V_{m}. Set $F\left(y_{1}, y_{2}\right)=H\left(y_{1}\right)$, where $y_{1} \in V_{n_{1}}, y_{2} \in V_{n_{2}}$. Then F is a function from $V_{n_{1}+n_{2}}$ to V_{m} whose nonlinearity is given by $N_{F}=2^{n_{2}} N_{H}$.

Proof. Let $F=\left(f_{1}, f_{2}, \ldots, f_{m}\right), H=\left(h_{1}, h_{2}, \ldots, h_{m}\right)$. For any $c_{1}, c_{2}, \ldots, c_{m} \in G F(2)$ and not all zeroes, let

$$
\begin{aligned}
& f\left(y_{1}, y_{2}\right)=c_{1} f_{1}\left(y_{1}, y_{2}\right) \oplus c_{2} f_{2}\left(y_{1}, y_{2}\right) \oplus \cdots \oplus c_{m} f_{m}\left(y_{1}, y_{2}\right), \\
& h\left(y_{1}\right)=c_{1} h_{1}\left(y_{1}\right) \oplus c_{2} h_{2}\left(y_{1}\right) \oplus \cdots \oplus c_{m} h_{m}\left(y_{1}\right) .
\end{aligned}
$$

Since $F\left(y_{1}, y_{2}\right)=H\left(y_{1}\right)$, we have $f\left(y_{1}, y_{2}\right)=h\left(y_{1}\right)$. Therefore, by Lemma $9, N_{f}=$ $2^{n_{2}} N_{h}$. By the definition of nonlinearity, it follows that

$$
\begin{gathered}
N_{F}=\min _{c_{1}, \ldots, c_{m} \in G F(2)} N_{f}=2^{n_{2}} \min _{c_{1}, \ldots, c_{m} \in G F(2)} N_{h}=2^{n_{2}} N_{H} . \\
\\
\text { and not all zeroes }
\end{gathered}
$$

For the special case of all functions are equal, the following lemma is a generalization of Lemma 8 from single-output Boolean functions to vector-output Boolean functions.

Lemma 12. Let $F=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ be a function from V_{n} to V_{m}. Let

$$
G\left(y_{1}, y_{2}, \ldots, y_{r}\right)=F\left(y_{1}\right) \oplus F\left(y_{2}\right) \oplus \cdots \oplus F\left(y_{r}\right)
$$

where $y_{j} \in V_{n}, j=1,2, \ldots, r$. Then

$$
N_{G}=2^{r n-1}-\frac{1}{2}\left(2^{n}-2 N_{F}\right)^{r}
$$

Proof. For any $c_{1}, c_{2}, \ldots, c_{m} \in G F(2)$ and not all zeroes, let

$$
f(x)=c_{1} f_{1}(x) \oplus c_{2} f_{2}(x) \oplus \cdots \oplus c_{m} f_{m}(x)
$$

where $x \in V_{n}$. Then

$$
\begin{aligned}
g\left(y_{1}, y_{2}, \ldots, y_{r}\right) & =c_{1} \bigoplus_{j=1}^{r} f_{1}\left(y_{j}\right) \oplus c_{2} \bigoplus_{j=1}^{r} f_{2}\left(y_{j}\right) \oplus \cdots \oplus c_{m} \bigoplus_{j=1}^{r} f_{m}\left(y_{j}\right) \\
& =\bigoplus_{i=1}^{m} c_{i} f_{i}\left(y_{1}\right) \oplus \bigoplus_{i=1}^{m} c_{i} f_{i}\left(y_{2}\right) \oplus \cdots \oplus \bigoplus_{i=1}^{m} c_{i} f_{i}\left(y_{r}\right) \\
& =f\left(y_{1}\right) \oplus f\left(y_{2}\right) \oplus \cdots \oplus f\left(y_{r}\right)
\end{aligned}
$$

is an arbitrary nonzero linear combination of the component functions of G. Therefore, by Lemma 8,

$$
N_{g}=2^{r n-1}-\frac{1}{2}\left(2^{n}-2 N_{f}\right)^{r} .
$$

By the definition of nonlinearity, it follows that

$$
\begin{aligned}
& N_{G}=\min _{c_{1}, \ldots, c_{m} \in G F(2)} N_{g} \\
& \text { and not all zeroes } \\
& \begin{array}{l}
=2^{r n-1}-\frac{1}{2}\left(2^{n}-2 \min _{c_{1}, \ldots, c_{m} \in G F(2)} \begin{array}{l}
\text { and not all zeroes }
\end{array} N_{f}\right)^{r} \\
=2^{r n-1}-\frac{1}{2}\left(2^{n}-2 N_{F}\right)^{r} . \quad \square
\end{array}
\end{aligned}
$$

By Lemmas 11 and 12, we generalize Lemma 10 from single-output Boolean functions to vector-output Boolean functions for the case of all functions are equal.

Lemma 13. Let F be a function from V_{n} to V_{m}. Let $c=\left(c_{1}, c_{2}, \ldots, c_{r}\right) \in V_{r}$. Let

$$
G\left(y_{1}, y_{2}, \ldots, y_{r}\right)=c_{1} F\left(y_{1}\right) \oplus c_{2} F\left(y_{2}\right) \oplus \cdots \oplus c_{r} F\left(y_{r}\right)
$$

where $y_{j} \in V_{n}, j=1,2, \ldots, r$. Then

$$
N_{G}=2^{r n-1}-\frac{1}{2} \prod_{j=1}^{r}\left(2^{n}-2 c_{j} N_{F}\right)
$$

Below we generalize Theorem 4 from single-output Boolean functions to vectoroutput Boolean functions for the case of all functions are equal.

Theorem 5. Let F be a function from V_{n} to V_{m}. Let $A=\left(a_{i j}\right)_{r \times s}$ be an $r \times s$ matrix over GF(2) such that $r \geqslant s$ and $\operatorname{Rank}(A)=s$. Let L be the linear code generated by A^{T} and its minimum weight be d. Let

$$
G\left(y_{1}, y_{2}, \ldots, y_{r}\right)=\left(F\left(y_{1}\right), F\left(y_{2}\right), \ldots, F\left(y_{r}\right)\right) A
$$

where $y_{j} \in V_{n}, j=1,2, \ldots, r$. Then

$$
\begin{equation*}
N_{G}=2^{r n-1}-2^{(r-d) n-1}\left(2^{n}-2 N_{F}\right)^{d} . \tag{6}
\end{equation*}
$$

Proof. Let $\alpha_{j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{r j}\right)^{T}, j=1,2, \ldots, s$. Let

$$
H\left(y_{1}, y_{2}, \ldots, y_{r}\right)=\left(F\left(y_{1}\right), F\left(y_{2}\right), \ldots, F\left(y_{r}\right)\right)
$$

Then

$$
\begin{aligned}
G\left(y_{1}, y_{2}, \ldots, y_{r}\right) & =\left(F\left(y_{1}\right), F\left(y_{2}\right), \ldots, F\left(y_{r}\right)\right) A \\
& =\left(H\left(y_{1}, y_{2}, \ldots, y_{r}\right) \alpha_{1}, H\left(y_{1}, y_{2}, \ldots, y_{r}\right) \alpha_{2}, \ldots, H\left(y_{1}, y_{2}, \ldots, y_{r}\right) \alpha_{s}\right)
\end{aligned}
$$

where

$$
H\left(y_{1}, y_{2}, \ldots, y_{r}\right) \alpha_{j}=a_{1 j} F\left(y_{1}\right) \oplus a_{2 j} F\left(y_{2}\right) \oplus \cdots \oplus a_{r j} F\left(y_{r}\right), \quad j=1,2, \ldots, s
$$

For any $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s} \in G F(2)$ and not all zeroes, let

$$
\begin{aligned}
E\left(y_{1}, y_{2}, \ldots, y_{r}\right) & =\lambda_{1} H \alpha_{1} \oplus \lambda_{2} H \alpha_{2} \oplus \cdots \oplus \lambda_{s} H \alpha_{s} \\
& =H\left[\lambda_{1} \alpha_{1} \oplus \lambda_{2} \alpha_{2} \oplus \cdots \oplus \lambda_{s} \alpha_{s}\right] .
\end{aligned}
$$

Note that

$$
c=\left(c_{1}, c_{2}, \cdots, c_{r}\right)=\left(\lambda_{1} \alpha_{1} \oplus \lambda_{2} \alpha_{2} \oplus \cdots \oplus \lambda_{s} \alpha_{s}\right)^{T}
$$

is a nonzero codeword of the linear code L generated by A^{T}. Therefore, E can be expressed as

$$
\begin{aligned}
E\left(y_{1}, y_{2}, \ldots, y_{r}\right) & =H\left(y_{1}, y_{2}, \ldots, y_{r}\right) c^{T} \\
& =c_{1} F\left(y_{1}\right)+c_{2} F\left(y_{2}\right)+\cdots+c_{r} F\left(y_{r}\right)
\end{aligned}
$$

where $c \in L^{*}$. Note that E is a function from $V_{n r}$ to V_{m}, and any nonzero linear combination of the component functions of E is a nonzero linear combination of the component functions of G. Hence, by the definition of nonlinearity, for any $c \in L^{*}$,

$$
N_{H c^{T}} \geqslant N_{G} .
$$

Therefore,

$$
N_{G} \leqslant \min _{c \in L^{*}} N_{H c^{T}}
$$

By Lemma 13, we have

$$
\begin{align*}
N_{G} & \leqslant \min _{c \in L^{*}}\left(2^{r n-1}-\frac{1}{2} \prod_{j=1}^{r}\left(2^{n}-2 c_{j} N_{F}\right)\right) \\
& =2^{r n-1}-\frac{1}{2} \max _{c \in L^{*}} \prod_{j=1}^{r}\left(2^{n}-2 c_{j} N_{F}\right) \\
& =2^{r n-1}-2^{(r-d) n-1}\left(2^{n}-2 N_{F}\right)^{d}, \tag{7}
\end{align*}
$$

where $c=\left(c_{1}, c_{2}, \ldots, c_{r}\right)$. On the other hand, by Lemma 7, we have

$$
\begin{equation*}
N_{G} \geqslant 2^{r n-1}-2^{(r-d) n-1}\left(2^{n}-2 N_{F}\right)^{d} \tag{8}
\end{equation*}
$$

Combining (7) with (8) yields (6). This completes the proof.

6. Conclusion

In this paper, we study the constructions and nonlinearity of binary vector-output correlation-immune functions. It is shown that a vector-output Boolean function F is an (n, m, t) vector-output correlation-immune function if and only if every nonzero linear combination of the component functions of F is an $(n, 1, t)$ correlationimmune function. The matrix-product construction of vector-output correlationimmune functions is studied. A number of methods for constructing new vectoroutput correlation-immune functions from old ones are discussed. Furthermore, we
study the nonlinearity of matrix-product vector-output Boolean functions. For some cases we give the exact formulas for the nonlinearity of matrix-product vector-output Boolean functions.

Acknowledgments

The authors would like to thank the anonymous reviewers and the Guest Editor Chaoping Xing for their valuable suggestions and comments that helped to improve the paper.

References

[1] C.H. Bennett, G. Brassard, J.M. Robert, Privacy amplification by public discussion, SIAM J. Comput. 17 (2) (1988) 210-229.
[2] P. Camion, A. Canteaut, Correlation-immune and resilient functions over a finite alphabet and their applications in cryptography, Designs Codes Cryptography 16 (1999) 121-149.
[3] L. Chen, F.-W. Fu, On the constructions of new resilient functions from old ones, IEEE Trans. Inform. Theory 45 (6) (1999) 2077-2082.
[4] B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, R. Smolensky, The bit extraction problem or t-resilient functions, Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, 1985, pp. 396-407.
[5] C. Ding, G.Z. Xiao, W. Shan, The Stability Theory of Stream Ciphers, in: Lecture Notes in Computer Science, Vol. 561, Springer, Berlin, 1991.
[6] K. Nyberg, On the construction of highly nonlinear permutations, in: Advances in CryptologyEUROCRYPT'92, Lecture Notes in Computer Science, Vol. 658, Springer, Berlin, 1993, pp. 92-98.
[7] R.A. Rueppel, Analysis and Design of Stream Ciphers, Springer, Berlin, 1986.
[8] P. Sarkar, S. Maitra, Construction of nonlinear Boolean functions with important cryptographic properties, in: Advances in Cryptology-EUROCRYPT'2000, Lecture Notes in Computer Science, Vol. 1807, Springer, Berlin, 2000, pp. 485-506.
[9] J. Seberry, X.M. Zhang, Y. Zheng, Nonlinearity and propagation characteristics of balanced Boolean functions, Inform. Comput. 119 (1) (1995) 1-13.
[10] T. Siegenthaler, Correlation immunity of nonlinear combining functions for cryptographic applications, IEEE Trans. Inform. Theory 30 (5) (1984) 776-780.
[11] G.Z. Xiao, J.L. Massey, A spectral characterization of correlation-immune combining functions, IEEE Trans. Inform. Theory 34 (3) (1988) 569-571.
[12] Y. Yang, X. Lin, Codes and Cryptography, Posts and Telecommunications Press, Beijing, China, 1992 (in Chinese).
[13] X.M. Zhang, Y. Zheng, Cryptographically resilient functions, IEEE Trans. Inform. Theory 43 (5) (1997) 1740-1747.

[^0]: ${ }^{2}$ This research work is supported in part by the DSTA project (POD 0103223), and the National Natural Science Foundation of China under the Grant 60172060, the Trans-Century Training Program Foundation for the Talents by the Education Ministry of China, and the Foundation for University Key Teacher by the Education Ministry of China.
 *Corresponding author.
 E-mail addresses: 1schen@nankai.edu.cn (L. Chen), tslfufw@nus.edu.sg (F.-W. Fu), kwwei@ie.cuhk.edu.hk (V.K.-W. Wei).
 ${ }^{1}$ On leave from the Department of Mathematics, Nankai University, Tianjin 300071, P. R. China

