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1. Introduction

Correlation-immune functions play an important role in cryptography. The
concept of correlation-immune functions was first introduced and studied by
Siegenthaler [10]. Correlation-immune functions are used in stream ciphers as
combining functions for running-key generators that are resistant to a correlation
attack [7]. Functions with high nonlinearity have important applications in
cryptography. The nonlinearity of functions is very important in evaluating the
security of some cryptosystems. In stream ciphers, the combining functions or the
filter functions employed in the running key generator must be selected with care.
Functions with low nonlinearity can be easily broken by the best approximation
attack [5]. In order to increase the security of the cipher system, the combining
functions selected should be correlation-immune functions with high nonlinearity.
By using vector-output Boolean functions as the combining functions, it is possible
to increase the speed of the cipher systems since we may get more than one bit at
each clock pulse. Vector-output Boolean functions with certain cryptographic
properties are also used to design S-boxes in block cipher systems.

In this paper, we study the binary vector-output correlation-immune functions.
Some important properties of vector-output correlation-immune functions are
obtained. A number of methods for constructing new vector-output correlation-
immune functions from old ones are discussed. The nonlinearity of the newly
constructed vector-output correlation-immune functions is studied. For some cases
we give the exact formulas for the nonlinearity of constructed vector-output
correlation-immune functions.

This paper is organized as follows. In Section 2 we introduce some basic definitions
and notations. We also review some basic properties which will be used in this paper.
In Section 3 we derive an important property of vector-output correlation-immune
functions. In Section 4 we discuss a number of methods for constructing new
correlation-immune functions from old ones. In Section 5 we study the nonlinearity of
the newly constructed vector-output correlation-immune functions. For some cases we
give the exact formulas for the nonlinearity of constructed vector-output correlation-
immune functions. In Section 6 we summarize and conclude this paper.

2. Preliminaries

Let Vn ¼ GFð2Þn be the n-dimensional vector space over GFð2Þ: For a vector
uAVn; the Hamming weight wHðuÞ is the number of 1’s in u: Let f ðxÞ be a function
from Vn to GFð2Þ (or simply, a function on Vn). The sequence of f ðxÞ is defined as

ðð�1Þf ða0Þ; ð�1Þf ða1Þ;y; ð�1Þf ða2n�1ÞÞ;
where ai; 0pip2n � 1; denotes the vector in Vn whose integer representation is i;
that is

i ¼
Xn

j¼1

ai
j2

j�1:
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A function f ðxÞ on Vn is said to be an affine function if it takes the form of

f ðxÞ ¼ c0"c1x1"?"cnxn;

where x ¼ ðx1; x2;y; xnÞ and ciAGFð2Þ; 0pipn: The Hamming distance between
two functions f ðxÞ and gðxÞ on Vn is defined by

dðf ; gÞ ¼ jfxAVnjf ðxÞagðxÞgj:
The nonlinearity of f ðxÞ; denoted by N f ; is defined as

N f ¼ min
jAAFn

dðf ;jÞ;

where AFn is the set of all affine functions on Vn:
Let a ¼ ða1; a2;y; anÞ and b ¼ ðb1; b2;y; bnÞ: If a; bAVn; the scalar product of a

and b is defined as /a; bS ¼ a1b1"?"anbn; where the addition and multiplication

are over GFð2Þ: If a; bAf�1;þ1gn; the scalar product of a and b is defined as
/a; bS ¼ a1b1 þ?þ anbn; where the addition and multiplication are over the reals.
Let a ¼ ða1; a2;y; amÞ and b ¼ ðb1; b2;y; bnÞ: The Kronecker product of a and b is
defined as a#b ¼ ða1b; a2b;y; ambÞ: Note that a#b is a vector with length mn:

Let f ðxÞ and gðxÞ be two functions on Vn; it is known that (see [9, Lemma 6])

dðf ; gÞ ¼ 2n�1 � 1

2
/x f ; xgS;

where x f and xg are the sequences of f ðxÞ and gðxÞ; respectively.
A function F from Vn to Vm can be expressed as

F ¼ ðf1; f2;y; fmÞ;
where each component function fi; 1pipm; is a function on Vn: The nonlinearity of
a function F from Vn to Vm is defined as

NF ¼ min
gANLCF

Ng;

where NLCF is the set of all nonzero linear combinations of the component
functions of F : This definition regarding NF was first introduced by Nyberg in [6].

Definition 1. Let F be a function from Vn to Vm and let fX1;X2;y;Xng be the set of
random input variables with independent equiprobable distributions over GFð2Þ: If
for every subset T ¼ fj1; j2;y; jtgDf1; 2;y; ng of cardinality t; random vector Z ¼
FðX1;X2;y;XnÞ is independent of random vector ðX j1 ;X j2 ;y;X jtÞ; that is to say,

for every ðb1; b2;y; btÞAVt and for every aAVm;

PrðZ ¼ ajX ji ¼ bi; 1piptÞ ¼ PrðZ ¼ aÞ;
then F is said to be an ðn;m; tÞ-correlation-immune function, or ðn;m; tÞ-CI function
for short.

It is easy to see from Definition 1 that

Lemma 1. F is an ðn;m; tÞ-CI function if and only if it is an ðn;m; sÞ-CI function for

each s with 0pspt:
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Definition 2. Let F be a function from Vn to Vm; where nXmX1: F is said to be an
unbiased function, if for every aAVm;

jfxAVnjFðxÞ ¼ agj ¼ 2n�m:

Particularly, the unbiased functions on Vn are usually called balanced functions.

Definition 3. Let F be a function from Vn to Vm; where nXmX1: F is said to be an
ðn;m; tÞ-resilient function if it is an unbiased ðn;m; tÞ-CI function.

The concept of resilient functions was first introduced by Chor et al. [4] and Bennett
et al. [1]. Resilient functions have found applications in the fault-tolerant distributed
computing, quantum cryptographic key distribution and random sequence genera-
tion for stream ciphers.

The following fact regarding unbiased functions can be found in [13].

Lemma 2. F ¼ ðf1; f2;y; fmÞis an unbiased function from Vn to Vm if and only if every

nonzero linear combination

f ðxÞ ¼
Mm
i¼1

cifiðxÞ

of the component functions of F is a balanced function on Vn; where xAVn;
c1; c2;y; cmAGFð2Þ and not all zeroes.

By the definition of balanced functions, it is easy to obtain

Lemma 3. Let fiðyiÞ be a function on Vni
; where yiAVni

; 1pipr: If at least one of

f1ðy1Þ; f2ðy2Þ;y; frðyrÞ is a balanced function, then

f ðy1; y2;y; yrÞ ¼ f1ðy1Þ"f2ðy2Þ"?"frðyrÞ

is also a balanecd function.

For a function f ðxÞ on Vn; the Walsh transform of f ðxÞ is the real valued function
over Vn defined as

W f ðuÞ ¼
X

xAVn

ð�1Þf ðxÞ"/x;uS; uAVn:

Note that f ðxÞ is a balanced function if and only if W f ð0Þ ¼ 0: Xiao and Massey

[11] gave a characterization of an ðn; 1; tÞ-correlation-immune function as follows.

Lemma 4. A function f ðxÞ on Vn is an ðn; 1; tÞ-correlation-immune function if and only

if its Walsh transform satisfies

W f ðuÞ ¼ 0; for all uAVn with 1pwHðuÞpt:
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3. An important property of vector-output correlation-immune functions

The following lemma is a special case of the linear combination lemma given by
Camion and Canteaut (see [2, Lemma 2]).

Lemma 5. Let Z ¼ ðZ1; Z2;y; ZtÞ be a random vector in Vt and let x ¼ ðx1; x2;y; xmÞ
be a random vector in Vm: Then Z is independent of x ¼ ðx1; x2;y; xmÞ if and only if Z
is independent of every nonzero linear combination "m

i¼1 cixi of x1; x2;y; xm; where

c1; c2;y; cmAGFð2Þ and not all zeroes.

From Lemma 5, we have the following important property regarding vector-
output correlation-immune functions.

Theorem 1. F ¼ ðf1; f2;y; fmÞ is an ðn;m; tÞ-CI function if and only if every nonzero

linear combination

f ðxÞ ¼
Mm
i¼1

cifiðxÞ

of the component functions of F is an ðn; 1; tÞ-CI function, where xAVn; and

c1; c2;y; cmAGFð2Þ and not all zeroes.

Proof. Let X1;X2;y;Xn be n random variables with independent equiprobable
distributions over GFð2Þ; and let Zi ¼ fiðX1;X2;y;XnÞ; i ¼ 1; 2;y;m: By Defini-
tion 1 and Lemma 5, F ¼ ðf1; f2;y; fmÞ is an ðn;m; tÞ-CI function 3 for every
subset fj1; j2;y; jtgDf1; 2;y; ng of cardinality t; random vector

Z ¼ FðX1;X2;y;XnÞ ¼ ðZ1;Z2;y;ZmÞ

is independent of ðX j1 ;X j2 ;y;X jtÞ3 for every subset fj1; j2;y; jtgDf1; 2;y; ng of
cardinality t; every nonzero linear combination

Mm
i¼1

ciZi ¼
Mm
i¼1

cifiðX1;X2;y;XnÞ

of Z1;Z2;y;Zm is independent of ðX j1 ;X j2 ;y;X jtÞ3 every nonzero linear

combination

f ðxÞ ¼
Mm
i¼1

cifiðxÞ

of the component functions of F is an ðn; 1; tÞ-CI function, where xAVn: &

It follows from Theorem 1 that if F ¼ ðf1; f2;y; fmÞ is an ðn;m; tÞ-CI function,
then G ¼ ðfi1 ; fi2 ;y; fisÞ is an ðn; s; tÞ-CI function for each subset

fi1; i2;y; isgDf1; 2;y;mg of cardinality s; 1pspm:
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4. Matrix-product construction of vector-output correlation-immune functions

In this section, we study the matrix-product construction of vector-output
correlation-immune functions. We first introduce the following result which can be
found in [12, Theorem 17.3.6]. For completeness, we present a new proof here by
using the technique of Walsh transform.

Lemma 6. Let f1ðy1Þ be an ðn1; 1; t1Þ-CI function and f2ðy2Þ be an ðn2; 1; t2Þ-CI

function, where t1pt2; y1AVn1 ; y2AVn2 : Let

f ðy1; y2Þ ¼ f1ðy1Þ"f2ðy2Þ:

(a) If both f1 and f2 are not balanced, then f is an ðn1 þ n2; 1; t1Þ-CI function.
(b) If f1 is not balanced but f2 is balanced, then f is an ðn1 þ n2; 1; t2Þ-CI function.
(c) If f1 is balanced but f2 is not balanced, then f is an ðn1 þ n2; 1; t1Þ-CI function.
(d) If both f1 and f2 are balanced, then f is an ðn1 þ n2; 1; t1 þ t2 þ 1Þ-CI function.

Proof. The Walsh transform of f ðy1; y2Þ ¼ f1ðy1Þ"f2ðy2Þ is given by

W f ðu1; u2Þ ¼
X

y1AVn1 ; y2AVn2

ð�1Þf1ðy1Þ"f2ðy2Þ"/ðy1;y2Þ;ðu1;u2ÞS

¼
X

y1AVn1 ; y2AVn2

ð�1Þf1ðy1Þ"f2ðy2Þ"/y1;u1S"/y2;u2S

¼
X

y1AVn1

ð�1Þf1ðy1Þ"/y1;u1S
X

y2AVn2

ð�1Þf2ðy2Þ"/y2;u2S

¼Wf1ðu1ÞWf2ðu2Þ:

If 1pwHððu1; u2ÞÞpt1; then either 1pwHðu1Þpt1 or 1pwHðu2Þpt1: By Lemma 4,
for the case 1pwHðu1Þpt1; we have Wf1ðu1Þ ¼ 0 since f1ðy1Þ is an ðn1; 1; t1Þ-CI
function; for the case 1pwHðu2Þpt1; we have Wf2ðu2Þ ¼ 0 since f2ðy2Þ is an

ðn2; 1; t2Þ-CI function and t1pt2: Hence, W f ðu1; u2Þ ¼ 0 for all ðu1; u2ÞAVn1þn2 with

1pwHððu1; u2ÞÞpt1: The assertions (a) and (c) follow from Lemma 4.
If f2 is a balanced ðn2; 1; t2Þ-CI function, then by Lemma 4 and the definitions of

balanced functions and Walsh transform, we have Wf2ðu2Þ ¼ 0 for all u2AVn2 with

0pwHðu2Þpt2: Since 1pwHððu1; u2ÞÞpt2 implies 0pwHðu2Þpt2; we have
W f ðu1; u2Þ ¼ 0 for all ðu1; u2ÞAVn1þn2 with 1pwHððu1; u2ÞÞpt2: Assertion (b)

follows from Lemma 4.
If both f1 and f2 are balanced, then by Lemma 4 and the definitions of balanced

functions and Walsh transform, we have Wf1ðu1Þ ¼ 0 for all u1AVn1 with

0pwHðu1Þpt1; and Wf2ðu2Þ ¼ 0 for all u2AVn2 with 0pwHðu2Þpt2: For

ðu1; u2ÞAVn1þn2 with 1pwHððu1; u2ÞÞpt1 þ t2 þ 1; if 0pwHðu1Þpt1; then Wf1ðu1Þ ¼
0; if wHðu1ÞXt1 þ 1; then 0pwHðu2Þpt2; which implies Wf2ðu2Þ ¼ 0: Hence,

W f ðu1; u2Þ ¼ 0 for all ðu1; u2ÞAVn1þn2 with 1pwHððu1; u2ÞÞpt1 þ t2 þ 1: Assertion

(d) follows from Lemma 4. &
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The following theorem is a generalization of Lemma 6.

Theorem 2. Let fiðyiÞ be an ðni; 1; tiÞ-CI function, where yiAVni
; 1pipr: Then

f ðy1; y2;y; yrÞ ¼ f1ðy1Þ"f2ðy2Þ"?"frðyrÞ

is an ð
Pr

i¼1 ni; 1; tÞ-CI function, where

t ¼
minft1; t2;y; trg if b1 ¼ b2 ¼ ? ¼ br ¼ 0;Pr

i¼1 biti þ wHðb1; b2;y; brÞ � 1 if ðb1; b2;y; brÞað0; 0;y; 0Þ;

�
ð1Þ

bi ¼
1 if fiðyiÞ is balanced;

0 if fiðyiÞ is not balanced;

�
i ¼ 1; 2;y; r;

and wHðb1; b2;y; brÞ represents the Hamming weight of the binary vector

ðb1; b2;y; brÞ:

Proof. We show by mathematical induction that f is an ð
Pr

i¼1 ni; 1; tÞ-CI function,
where t is defined by (1). By Lemma 6, it is obvious that (1) is true for the case r ¼ 2:

Suppose (1) holds for rok: Consider r ¼ k: Let

gðy1; y2;y; yk�1Þ ¼ f1ðy1Þ"f2ðy2Þ"?"fk�1ðyk�1Þ:
Then

f ðy1; y2;y; ykÞ ¼ gðy1; y2;y; yk�1Þ"fkðykÞ:
By Lemma 3, if ðb1; b2;y; bk�1Þ is not a zero vector, then gðy1; y2;y; yk�1Þ is

balanced. By the induction hypothesis, gðy1; y2;y; yk�1Þ is an ð
Pk�1

i¼1 ni; 1; sÞ-CI
function, where

s ¼
minft1; t2;y; tk�1g if b1 ¼ b2 ¼ ? ¼ bk�1 ¼ 0;Pk�1

i¼0 biti þ wHðb1; b2;y; bk�1Þ � 1 if ðb1; b2;y; bk�1Það0; 0;y; 0Þ:

(

Let

b ¼
0 if b1 ¼ b2 ¼ ? ¼ bk�1 ¼ 0;

1 otherwise:

�

Then, by Lemma 6, f ðy1; y2;y; ykÞ is an ð
Pk

i¼1 ni; 1; tÞ-CI function, where

t ¼
minfs; tkg if b ¼ bk ¼ 0;

bs þ bktk þ wHðb; bkÞ � 1 otherwise:

�

If b ¼ bk ¼ 0; it is obvious that

t ¼ minft1; t2;y; tkg:
If b ¼ 0 and bk ¼ 1; then

t ¼ tk

¼
Xk

i¼1

biti þ wHðb1; b2;y; bkÞ � 1:
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If b ¼ 1 and bk ¼ 0; then

t ¼ s

¼
Xk�1

i¼0

biti þ wHðb1; b2;y; bk�1Þ � 1

¼
Xk

i¼0

biti þ wHðb1; b2;y; bkÞ � 1:

If b ¼ 1 and bk ¼ 1; then

t ¼ s þ tk þ 1

¼
Xk�1

i¼0

biti þ wHðb1; b2;y; bk�1Þ � 1þ tk þ 1

¼
Xk

i¼0

biti þ wHðb1; b2;y; bkÞ � 1:

By the above discussion, we know that (1) is true. This completes the proof. &

For convenience, let

cððb1; b2;y; brÞ; ðt1; t2;y; trÞÞ

¼
minft1; t2;y; trg if b1 ¼ b2 ¼ ? ¼ br ¼ 0;Pr

i¼1 biti þ wHðb1; b2;y; brÞ � 1 if ðb1; b2;y; brÞað0; 0;y; 0Þ;

�

where rX1; bi ¼ 0 or 1; ti is a nonnegative integer, i ¼ 1; 2;y; r:
Below we study the matrix-product construction of vector-output correlation-

immune functions.

Theorem 3. Let F j ¼ ðf j1; f j2;y; f jmÞ be an ðn j;m; t jÞ-CI function, j ¼ 1; 2;y; r: Let

w be the number of unbiased functions in F1;F2;y;Fr: Let A ¼ ðaijÞr
s be an r 
 s

matrix over GFð2Þ such that rXs and RankðAÞ ¼ s: Let d be the minimum weight of

the linear code generated by AT ; where AT denotes the transpose of matrix A: Let

Fðy1; y2;y; yrÞ ¼ ðF1ðy1Þ;F2ðy2Þ;y;FrðyrÞÞA;

where y jAVn j
; j ¼ 1; 2;y; r: If wpr � d; then F is an ð

Pr
j¼1 n j; sm; tÞ-CI function,

where

t ¼ minft1; t2;y; trg:

If w4r � d; then F is an ð
Pr

j¼1 n j; sm; tÞ-resilient function, where

t ¼ ti1 þ ti2 þ?þ tiw�rþd
þ w � r þ d � 1;

and fi1; i2;y; iwgDf1; 2;y; rg such that Fi1 ;Fi2 ;y;Fiw are unbiased and

ti1pti2p?ptiw :
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Proof. For each k with 1pkps;

ðF1ðy1Þ;F2ðy2Þ;y;FrðyrÞÞ

a1k

a2k

^

ark

0
BBB@

1
CCCA

¼ a1kF1ðy1Þ"a2kF2ðy2Þ"?"arkFrðyrÞ

¼
Mr

j¼1

a jkf j1ðy jÞ;
Mr

j¼1

a jkf j2ðy jÞ;y;
Mr

j¼1

a jkf jmðy jÞ
 !

:

Consider an arbitrary nonzero linear combination of the component functions of
F ;

f ðy1; y2;y; yrÞ ¼
Ms

k¼1

Mm
i¼1

cki

Mr

j¼1

a jkf jiðy jÞ

¼
Mr

j¼1

Ms

k¼1

a jk

Mm
i¼1

ckif jiðy jÞ:

Let

C ¼

c11 c12 y c1m

c21 c22 y c2m

y y y y

cs1 cs2 y csm

0
BBB@

1
CCCA

s
m

; bi ¼

c1i

c2i

^

csi

0
BBB@

1
CCCA; i ¼ 1; 2;y;m;

a j ¼ ða j1; a j2;y; a jsÞ; j ¼ 1; 2;y; r:

Then

f ðy1; y2;y; yrÞ ¼
Mm
i¼1

a1bif1iðy1Þ"
Mm
i¼1

a2bif2iðy2Þ"?"
Mm
i¼1

arbifriðyrÞ:

Let Ar
sCs
m ¼ Br
m: Then each column vector of B is a linear combination of the
column vectors of A: Thus when the jth column vector of C is not a zero vector, the
number of ones in the jth column of B is at least d where d is the minimum weight of

the linear code generated by AT : Therefore, there are at least d rows of B which are
not zero vectors. In fact, as C is an arbitrary nonzero ð0; 1Þ-matrix, there is at least
one column of B in which there are at least d ones. Suppose for contradiction that
there are only m rows in B which are not zero vectors and mod: Then the number of
ones in each column of B is less than or equal to mðodÞ; which leads to
contradiction.
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Since

AC ¼ B ¼

a1b1 a1b2 y a1bm

a2b1 a2b2 y a2bm

y y y y

arb1 arb2 y arbm

0
BBB@

1
CCCA;

there are at least d vectors in ða jb1; a jb2;y; a jbmÞ; j ¼ 1; 2;y; r; which are not zero

vectors. Therefore, there are at least d functions in

Mm
i¼1

a1bif1iðy1Þ;
Mm
i¼1

a2bif2iðy2Þ; y;
Mm
i¼1

arbifriðyrÞ

which are not zero.
Since F jðy jÞ ¼ ðf j1ðy jÞ; f j2ðy jÞ;y; f jmðy jÞÞ is an ðn j;m; t jÞ-CI function, by

Theorem 1, when ða jb1; a jb2;y; a jbmÞ is not a zero vector, "m
i¼1 a jbif jiðy jÞ is an

ðn j; 1; t jÞ-CI function, j ¼ 1; 2;y; r:

By Theorem 2 and Lemma 1, f ðy1; y2;y; yrÞ is an ð
Pr

j¼1n j; 1; tÞ-CI function,

where

t ¼ min
1pj1oj2o?ojdpr

cððb j1 ; b j2 ;y; b jd Þ; ðt j1 ; t j2 ;y; t jd ÞÞ; ð2Þ

b j ¼
1 if F j is unbiased;

0 if F j is not unbiased;

�
j ¼ 1; 2;y; r:

Again by Theorem 1, Fðy1; y2;y; yrÞ is an ð
Pr

j¼1n j; sm; tÞ-CI function.
If w4r � d; that is, at least r � d þ 1 of F1;F2;y;Fr are unbiased, then by

Lemma 2 and the above discussion, there is at least one of

Mm
i¼1

a1bif1iðy1Þ;
Mm
i¼1

a2bif2iðy2Þ; y;
Mm
i¼1

arbifriðyrÞ

which is balanced. Therefore, by Lemma 3, f ðy1; y2;y; yrÞ is balanced. Again by

Lemma 2, Fðy1; y2;y; yrÞ is an unbiased function from Vn to Vsm; where n ¼Pr
j¼1 n j: So it follows from Definition 3 that Fðy1; y2;y; yrÞ is an ð

Pr
j¼1 n j; sm; tÞ-

resilient function.
Now we calculate the t given in (2).
If wpr � d; then there are at least d of F1;F2;y;Fr which are not unbiased. Let

Fi1 ;Fi2 ;y;Fiw be unbiased and Fiwþ1
;Fiwþ2

;y;Fir be not unbiased, where
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fi1; i2;y; irg is a permutation of f1; 2;y; rg: Then

¼

min
1pj1oj2o?ojdpr

b j1 ¼ b j2 ¼ ? ¼ b jd ¼ 0

cððb j1 ; b j2 ;y; b jd Þ; ðt j1 ; t j2 ;y; t jd ÞÞ

min
1pj1oj2o?ojdpr

b j1 ¼ b j2 ¼ ? ¼ b jd ¼ 0

minft j1 ; t j2 ;y; t jdg

¼minftiwþ1
; tiwþ2

;y; tirg;

¼

min
1pj1oj2o?ojdpr

b j1 ; b j2 ;y; b jd are not all zeroes

cððb j1 ; b j2 ;y; b jd Þ; ðt j1 ; t j2 ;y; t jd ÞÞ

min
1pj1oj2o?ojdpr

b j1 ; b j2 ;y; b jd are not all zeroes

b j1t j1 þ b j2 t j2 þ?þ b jd t jd þ wHðb j1 ; b j2 ;y; b jd Þ � 1

¼minfti1 ; ti2 ;y; tiwg;

t ¼ min
1pj1oj2o?ojdpr

cððb j1 ; b j2 ;y; b jd Þ; ðt j1 ; t j2 ;y; t jd ÞÞ

¼minfminfti1 ; ti2 ;y; tiwg;minftiwþ1
; tiwþ2

;y; tirgg

¼minft1; t2;y; trg:

If w4r � d; then it is easy to show that

t ¼ min
1pj1oj2o?ojdpr

cððb j1 ; b j2 ;y; b jd Þ; ðt j1 ; t j2 ;y; t jd ÞÞ

¼ min
1pj1oj2o?ojdpr

b j1t j1 þ b j2 t j2 þ?þ b jd t jd þ wHðb j1 ; b j2 ;y; b jd Þ � 1

¼ ti1 þ ti2 þ?þ tiw�rþd
þ w � r þ d � 1;

where fi1; i2;y; iwgDf1; 2;y; rg such that Fi1 ;Fi2 ;y;Fiw are unbiased and

ti1pti2p?ptiw : &

5. Nonlinearity of matrix-product vector-output Boolean functions

Chen and Fu [3] presented a lower bound for the nonlinearity of matrix-product
vector-output Boolean functions.

Lemma 7. Let F j ¼ ðf j1; f j2;y; f jmÞ be a function from Vnj
to Vm; j ¼ 1; 2;y; r: Let

A ¼ ðaijÞr
s be an r 
 s matrix over GFð2Þ such that rXs and RankðAÞ ¼ s: Let d be

the minimum weight of the linear code generated by AT ; where AT denotes the

transpose of matrix A: Let
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Fðy1; y2;y; yrÞ ¼ ðF1ðy1Þ;F2ðy2Þ;y;FrðyrÞÞA;

where y jAVn j
; j ¼ 1; 2;y; r: Assume

NF j1
pNF j2

p?pNF jr
;

where fj1; j2;y; jrg is a permutation of f1; 2;y; rg: Then

NFX2n�1 � 2
ð
Pr

k¼dþ1

n jk
Þ�1 Yd

k¼1

ð2n jk � 2NF jk
Þ; ð3Þ

where n ¼
Pr

j¼1 n j :

In this section, we further study the nonlinearity of matrix-product vector-output
Boolean functions. For some cases we give the exact formulas for the nonlinearity of
matrix-product vector-output Boolean functions.

The following lemma slightly generalizes a result of Sarkar and Maitra [8]. For
completeness, we present a new proof here by using the technique of sequences of
Boolean functions.

Lemma 8. Let fiðyiÞ be a function on Vni
; where yiAVni

; 1pipr: Let

f ðy1; y2;y; yrÞ ¼ f1ðy1Þ"f2ðy2Þ"?"frðyrÞ:

Then the nonlinearity of f is given by

N f ¼ 2n�1 � 1

2

Yr

i¼1

ð2ni � 2Nfi
Þ; ð4Þ

where n ¼
Pr

i¼1 ni:

Proof. Let x f be the sequence of f and xfi
be the sequence of fi; i ¼ 1; 2;y; r: Then

x f ¼ xf1
#xf2

#?#xfr
:

Let yiðyiÞ be an arbitrary affine function on Vni
and its sequence be xyi

; i ¼ 1; 2;y; r:

Let

yðy1; y2;y; yrÞ ¼ y1ðy1Þ"y2ðy2Þ"?"yrðyrÞ:

Then y is an arbitrary affine function on Vn: Let xy be the sequence of y: Then

xy ¼ xy1#xy2#?#xyr
:

Since

/x f ; xyS ¼/xf1
#xf2

#?#xfr
; xy1#xy2#?#xyr

S

¼/xf1
; xy1S/xf2

; xy2S?/xfr
; xyr

S

¼
Yr

i¼1

ð2ni � 2dðfi; yiÞÞ;
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we have

N f ¼ min
yAAFn

dðf ; yÞ

¼ min
yAAFn

ð2n�1 � 1

2
/x f ; xySÞ

¼ 2n�1 � 1

2
max
yAAFn

/x f ; xyS

¼ 2n�1 � 1

2

Yr

i¼1

max
yiAAFni

ð2ni � 2dðfi; yiÞÞ

¼ 2n�1 � 1

2

Yr

i¼1

ð2ni � 2Nfi
Þ: &

Let r ¼ 2 and f2ðy2Þ ¼ 0 in Lemma 8, one can obtain

Lemma 9. Let h be a function on Vn1 : Set f ðy1; y2Þ ¼ hðy1Þ; where y1AVn1 ; y2AVn2 :

Then f is a function on Vn1þn2 whose nonlinearity is given by N f ¼ 2n2Nh:

By Lemmas 8 and 9, it immediately follows

Lemma 10. Let fi be a function on Vni
; i ¼ 1; 2;y; r: Let a ¼ ða1; a2;y; arÞAVr: Let

f ðy1; y2;y; yrÞ ¼ a1f1ðy1Þ"a2f2ðy2Þ"?"arfrðyrÞ;

where yiAVni
; i ¼ 1; 2;y; r: Then

N f ¼ 2n1þn2þ?þnr�1 � 1

2

Yr

i¼1

ð2ni � 2aiNfi
Þ:

Theorem 4. Let f j be a function on Vn j
; j ¼ 1; 2;y; r: Let A ¼ ðaijÞr
s be an r 
 s

matrix over GFð2Þ such that rXs and RankðAÞ ¼ s: Let L be the linear code generated

by AT and its minimum weight be d: Let

Fðy1; y2;y; yrÞ ¼ ðf1ðy1Þ; f2ðy2Þ;y; frðyrÞÞA;

where y jAVn j
; j ¼ 1; 2;y; r: Then

NF ¼ 2n1þn2þ?þnr�1 � 1

2
max
aAL�

Yr

j¼1

ð2n j � 2a jNf j
Þ

 !
; ð5Þ

where L� is the set of nonzero codewords of L and a ¼ ða1; a2;y; arÞAL�: Particularly,
if n1 ¼ n2 ¼ ? ¼ nr ¼ n and Nf1 ¼ Nf2 ¼ ? ¼ Nfr ¼ N; then

NF ¼ 2rn�1 � 2ðr�dÞn�1ð2n � 2NÞd :
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Proof. For any nonzero vector cAVs;

f ðy1; y2;y; yrÞ ¼Fðy1; y2;y; yrÞcT

¼ðf1ðy1Þ; f2ðy2Þ;y; frðyrÞÞAcT

is a nonzero linear combination of the component functions of F : Note that

cATAL�: Therefore, an arbitrary nonzero linear combination f ðy1; y2;y; yrÞ of the
component functions of F can be expressed as

f ðy1; y2;y; yrÞ ¼ ðf1ðy1Þ; f2ðy2Þ;y; frðyrÞÞaT

¼ a1f1ðy1Þ"a2f2ðy2Þ"?"arfrðyrÞ;

where a ¼ ða1; a2;y; arÞAL�: By the definition of nonlinearity, we have

NF ¼ min
aAL�

N f :

Therefore, Eq. (5) follows immediately from Lemma 10.
If n1 ¼ n2 ¼ ? ¼ nr ¼ n and Nf1 ¼ Nf2 ¼ ? ¼ Nfr ¼ N; then by (5), we have

NF ¼ 2rn�1 � 1

2
max
aAL�

Yr

j¼1

ð2n � 2a jNÞ
 !

¼ 2rn�1 � 1

2
max
aAL�

wHðaÞ ¼ d

Yr

j¼1

ð2n � 2a jNÞ
 !

¼ 2rn�1 � 2ðr�dÞn�1ð2n � 2NÞd : &

Example 1. Let A ¼ ðaijÞr
ðr�1Þ be an r 
 ðr � 1Þ matrix over GFð2Þ; where

aij ¼
1 if i ¼ j or i ¼ r;

0 otherwise;

�
1pipr; 1pjpr � 1:

It is obvious that the minimum weight of the linear code generated by AT is 2: It is
also easy to observe that every vector of Vr with even weight is a codeword of the

linear code generated by AT : Let f j be a function on Vn; j ¼ 1; 2;y; r: Let

Fðy1; y2;y; yrÞ ¼ ðf1ðy1Þ; f2ðy2Þ;y; frðyrÞÞA

¼ðf1ðy1Þ"frðyrÞ; f2ðy2Þ"frðyrÞ;y; fr�1ðyr�1Þ"frðyrÞÞ;

where y jAVn; j ¼ 1; 2;y; r: Then, by Theorem 4, we have

NF ¼ 2rn�1 � 2ðr�2Þn�1ð2n � 2Nf j1
Þð2n � 2Nf j2

Þ;

where fj1; j2;y; jrg is a permutation of f1; 2;y; rg such that Nf j1
pNf j2

p?pNf jr
:

The following lemma is a generalization of Lemma 9 from single-output Boolean
functions to vector-output Boolean functions.
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Lemma 11. Let H be a function from Vn1 to Vm: Set Fðy1; y2Þ ¼ Hðy1Þ; where

y1AVn1 ; y2AVn2 : Then F is a function from Vn1þn2 to Vm whose nonlinearity is given by

NF ¼ 2n2NH :

Proof. Let F ¼ ðf1; f2;y; fmÞ; H ¼ ðh1; h2;y; hmÞ: For any c1; c2;y; cmAGFð2Þ and
not all zeroes, let

f ðy1; y2Þ ¼ c1f1ðy1; y2Þ"c2f2ðy1; y2Þ"?"cmfmðy1; y2Þ;

hðy1Þ ¼ c1h1ðy1Þ"c2h2ðy1Þ"?"cmhmðy1Þ:

Since Fðy1; y2Þ ¼ Hðy1Þ; we have f ðy1; y2Þ ¼ hðy1Þ: Therefore, by Lemma 9, N f ¼
2n2Nh: By the definition of nonlinearity, it follows that

NF ¼ min
c1;y; cmAGFð2Þ
and not all zeroes

N f ¼ 2n2 min
c1;y; cmAGFð2Þ
and not all zeroes

Nh ¼ 2n2NH : &

For the special case of all functions are equal, the following lemma is a
generalization of Lemma 8 from single-output Boolean functions to vector-output
Boolean functions.

Lemma 12. Let F ¼ ðf1; f2;y; fmÞ be a function from Vn to Vm: Let

Gðy1; y2;y; yrÞ ¼ Fðy1Þ"Fðy2Þ"?"FðyrÞ;

where y jAVn; j ¼ 1; 2;y; r: Then

NG ¼ 2rn�1 � 1

2
ð2n � 2NF Þr:

Proof. For any c1; c2;y; cmAGFð2Þ and not all zeroes, let

f ðxÞ ¼ c1f1ðxÞ"c2f2ðxÞ"?"cmfmðxÞ;

where xAVn: Then

gðy1; y2;y; yrÞ ¼ c1
Mr

j¼1

f1ðy jÞ"c2
Mr

j¼1

f2ðy jÞ"?"cm

Mr

j¼1

fmðy jÞ

¼
Mm
i¼1

cifiðy1Þ"
Mm
i¼1

cifiðy2Þ"?"
Mm
i¼1

cifiðyrÞ

¼ f ðy1Þ"f ðy2Þ"?"f ðyrÞ

is an arbitrary nonzero linear combination of the component functions of G:
Therefore, by Lemma 8,

Ng ¼ 2rn�1 � 1

2
ð2n � 2N f Þr:
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By the definition of nonlinearity, it follows that

NG ¼ min
c1;y; cmAGFð2Þ
and not all zeroes

Ng

¼ 2rn�1 � 1

2
2n � 2 min

c1;y; cmAGFð2Þ
and not all zeroes

N f

0
BBBB@

1
CCCCA

r

¼ 2rn�1 � 1

2
ð2n � 2NF Þr: &

By Lemmas 11 and 12, we generalize Lemma 10 from single-output Boolean
functions to vector-output Boolean functions for the case of all functions are equal.

Lemma 13. Let F be a function from Vn to Vm: Let c ¼ ðc1; c2;y; crÞAVr: Let

Gðy1; y2;y; yrÞ ¼ c1Fðy1Þ"c2Fðy2Þ"?"crFðyrÞ;
where y jAVn; j ¼ 1; 2;y; r: Then

NG ¼ 2rn�1 � 1

2

Yr

j¼1

ð2n � 2c jNF Þ:

Below we generalize Theorem 4 from single-output Boolean functions to vector-
output Boolean functions for the case of all functions are equal.

Theorem 5. Let F be a function from Vn to Vm: Let A ¼ ðaijÞr
s be an r 
 s matrix

over GFð2Þ such that rXs and RankðAÞ ¼ s: Let L be the linear code generated by AT

and its minimum weight be d: Let

Gðy1; y2;y; yrÞ ¼ ðFðy1Þ;Fðy2Þ;y;FðyrÞÞA;

where y jAVn; j ¼ 1; 2;y; r: Then

NG ¼ 2rn�1 � 2ðr�dÞn�1ð2n � 2NF Þd : ð6Þ

Proof. Let a j ¼ ða1j; a2j ;y; arjÞT ; j ¼ 1; 2;y; s: Let

Hðy1; y2;y; yrÞ ¼ ðFðy1Þ;Fðy2Þ;y;FðyrÞÞ:
Then

Gðy1; y2;y; yrÞ ¼ ðFðy1Þ;Fðy2Þ;y;FðyrÞÞA

¼ðHðy1; y2;y; yrÞa1;Hðy1; y2;y; yrÞa2;y;Hðy1; y2;y; yrÞasÞ;

where

Hðy1; y2;y; yrÞa j ¼ a1jFðy1Þ"a2jFðy2Þ"?"arjFðyrÞ; j ¼ 1; 2;y; s:
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For any l1; l2;y; lsAGFð2Þ and not all zeroes, let

Eðy1; y2;y; yrÞ ¼ l1Ha1"l2Ha2"?"lsHas

¼H½l1a1"l2a2"?"lsas�:
Note that

c ¼ ðc1; c2;?; crÞ ¼ ðl1a1"l2a2"?"lsasÞT

is a nonzero codeword of the linear code L generated by AT : Therefore, E can be
expressed as

Eðy1; y2;y; yrÞ ¼Hðy1; y2;y; yrÞcT

¼ c1Fðy1Þ þ c2Fðy2Þ þ?þ crFðyrÞ;
where cAL�: Note that E is a function from Vnr to Vm; and any nonzero linear
combination of the component functions of E is a nonzero linear combination of the
component functions of G: Hence, by the definition of nonlinearity, for any cAL�;

NHcTXNG:

Therefore,

NGpmin
cAL�

NHcT :

By Lemma 13, we have

NGp min
cAL�

2rn�1 � 1

2

Yr

j¼1

ð2n � 2c jNF Þ
 !

¼ 2rn�1 � 1

2
max
cAL�

Yr

j¼1

ð2n � 2c jNF Þ

¼ 2rn�1 � 2ðr�dÞn�1ð2n � 2NF Þd ; ð7Þ
where c ¼ ðc1; c2;y; crÞ: On the other hand, by Lemma 7, we have

NGX2rn�1 � 2ðr�dÞn�1ð2n � 2NF Þd : ð8Þ
Combining (7) with (8) yields (6). This completes the proof. &

6. Conclusion

In this paper, we study the constructions and nonlinearity of binary vector-output
correlation-immune functions. It is shown that a vector-output Boolean function F

is an ðn;m; tÞ vector-output correlation-immune function if and only if every nonzero
linear combination of the component functions of F is an ðn; 1; tÞ correlation-
immune function. The matrix-product construction of vector-output correlation-
immune functions is studied. A number of methods for constructing new vector-
output correlation-immune functions from old ones are discussed. Furthermore, we
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study the nonlinearity of matrix-product vector-output Boolean functions. For some
cases we give the exact formulas for the nonlinearity of matrix-product vector-output
Boolean functions.
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