Positive Einstein metrics with small $L^{n/2}$-norm of the Weyl tensor

Michael A. Singer
Lincoln College, Oxford OX1 3DR, U.K.

Communicated by M. Eastwood
Received 21 November 1991

Abstract: A gravitational analogue is given of Min-Oo's gap theorem for Yang-Mills fields.

Keywords: Riemannian manifold, Einstein metric, Weyl tensor, L^p-norm, Sobolev constant, Euler, characteristic.

MS classification: 53C.

Introduction

In this note we prove

Theorem 1. Let M be a compact oriented n-manifold ($n = 2m \geq 4$) with non-vanishing Euler characteristic $\chi(M)$ and let g be a (Riemannian) positive Einstein metric on M with Weyl curvature W. Then there is a constant $\varepsilon > 0$, depending only upon n and $\chi(M)$, such that if $\|W\|_{L^{n/2}} < \varepsilon$, then $W = 0$ (and so M is isometric to a quotient of S^n with the standard metric).

Remark. The hypothesis $\chi(M) \neq 0$ is unnecessary in dimension 4 since in that case it is implied by the Einstein condition (cf. [1, Section 6.31]).

Notation. Recall (cf. for example [1, Sections G–H]) that the Riemann tensor R may be decomposed algebraically as

$$R = W + \Phi \otimes g + (s/2m(n-1))g \otimes g$$

(1)

where W is the Weyl tensor (the totally trace-free part of R), $(n-2)\Phi$ is the trace-free part of the Ricci tensor r, s is the scalar curvature and \otimes is the Kulkarni-Nomizu product of symmetric 2-tensors (i.e. tensor product followed by the projection $\{4$-tensors$\} \rightarrow \{4$-tensors with Riemann tensor symmetries$\}$).

The Einstein condition is $\Phi = 0$; an Einstein metric is called 'positive' if $s > 0$. (This makes sense because the Einstein condition and the Bianchi identity imply that s is constant.)
The notation for norms that is used in this paper is standard: all norms are those defined by the given Einstein metric g.

Outline of the Proof. The idea is to use the Bianchi identity and a Sobolev inequality as in Min-Oo’s analogous result [7] for Yang-Mills fields. In our situation, however, the Sobolev ‘constant’ σ depends upon g and so it is necessary to obtain a universal lower bound under the hypothesis the g is a positive Einstein metric and $\|W\|_{L^{n/2}}$ is small. One can refer to the work of Croke [4] and Li [5] for a lower bound on σ in terms of s and the volume V of M. Then an application of the Gauss-Bonnet theorem [3] shows that if $\|W\|_{L^{n/2}}$ is sufficiently small, and $\chi(M) \neq 0$, then V and s cannot both be small. In this way, the desired lower bound on σ is obtained.

Remark. The $L^{n/2}$-norm of the Weyl tensor is an invariant of the conformal class of g; in particular it is invariant under any homothety $g \mapsto cg$ (c a positive constant). Since the Einstein condition and the sign of s are also invariant under such homotheties, we may suppose that g is normalized so that

$$V = 1$$

without affecting the value of ε in Theorem 1.

Finally we warn the reader that A, B, C etc. will denote constants (i.e. functions only of the dimension n and the Euler characteristic $\chi(M)$). The values of such constants may vary from line to line.

The proof of Theorem 1

Estimation of the Sobolev constant in terms of V and s

Geometric estimates of the Sobolev constants begin with the isoperimetric constant

$$\alpha = \inf \frac{\text{Vol}(\partial \Omega)^n}{\text{Vol}(\Omega)^{n-1}}$$

where the inf runs over all open submanifolds $\Omega \subset M$ with sufficiently regular boundary $\partial \Omega$ and volume $\leq V/2$ [2]. Li [5, Lemma 2], for example, proves that for all $f \in L^2_{1}$,

$$\|\nabla f\|_{L^2}^2 \geq A \alpha^{2/n} \left(\|f\|_{L^p}^2 - V^{-2/n} \|f\|_{L^2}^2 \right)$$

(2)

($p = 2n/(n-2)$). On the other hand Croke [4, Theorem 13] has given a lower bound for α in terms of a lower bound $(n - 1)k$ of the Ricci tensor and the volume and diameter of M,

$$\alpha \geq A (V/I)^{n+1},$$

(3)

where

$$I = \int_0^d (k^{-1/2} \sin(k^{1/2}t))^{n-1} dt.$$
Positive Einstein metrics 271

(The integrand has a standard interpretation if \(k \leq 0 \), but we shall not need it.)

In our situation \((r = (s/n)g > 0) \), we obtain a simple lower bound for \(\alpha \) as follows. Taking \(k > 0, d \leq \pi k^{-1/2} \) by Myers’ theorem [8] and so

\[
I \leq \int_0^{\pi k^{-1/2}} k^{(1-n)/2} \, dt = \pi k^{-n/2}.
\]

Combining with (2) and (3), we obtain

Proposition 2. Let \(M \) be a compact Riemannian manifold with unit volume and suppose \(r \geq (n - 1)k > 0 \). Then the Sobolev inequality may be written

\[
\|\nabla f\|_{L^2}^2 \geq A k^{n+1} \left(\|f\|_{L^p}^2 - \|f\|_{L^2}^2 \right).
\]

In particular, if \(M \) is Einstein, (5) holds for all \(k \) such that

\[
0 < k \leq s/n(n - 1).
\]

Remark. The inequality (5) holds with the same constant if \(f \) is replaced by any tensor \(T \). This follows from Kato’s inequality

\[
|\nabla |T| | \leq |\nabla T|
\]

which holds at all points where \(|T| \neq 0 \).

A lower bound on s from the Gauss-Bonnet formula

On an oriented \(n \)-manifold \(M \), the Gauss-Bonnet formula ([3], [6, p. 311]) states

\[
\chi(M) = \int_M \text{Pf}(R/2\pi).
\]

Here ‘Pf’ denotes the Pfaffian of a skew endomorphism: all we shall need to know about it is that it is a homogeneous polynomial of degree \(m = n/2 \).

On substituting (1), with \(\Phi = 0 \), into (7), we obtain, since \(s \) is constant,

\[
\chi(M) = \sum_{r=0}^{\infty} P_r(W) s^{n-r}
\]

where \(P_r(W) \) is the integral over \(M \) of a universal polynomial of degree \(r \) in \(W \). The constant \(P_0 \) can be discovered by applying (8) to the standard metric on \(S^n \), for which \(W = 0 \) and \(s = n(n - 1) \):

\[
2 = P_0 \cdot \text{Vol}(S^n)[n(n - 1)]^{n/2}.
\]

In particular, \(P_0 \) is a positive constant. To estimate the other terms in (8), suppose as before that \(V = 1 \). Then

\[
|P_r(W)| \leq B\|W\|_{L^r}^r \leq B\|W\|_{L^m}^r
\]
where the last step uses Hölder’s inequality. Substituting into (8),

$$|\chi(M)| \leq P_0|s|^m + B \sum_{r=1}^{m} \| W \|^r_{L^m} s^{m-r}.$$ \hfill (9)

It is now straightforward to prove the following.

Proposition 3. Let M satisfy the hypotheses of Theorem 1 and suppose also that $V = 1$. Then there are constants $\varepsilon_1 > 0$ and $B_1 > 0$, depending only upon n and $\chi(M)$, such that if $\| W \|_{L^{n/2}} < \varepsilon_1$ then $s > B_1$.

Proof. With P_0 and B as in (9), choose $\varepsilon_1 > 0$ so that for each $r = 1, \ldots, m$, $B \| W \|^r_{L^m} < \frac{1}{4} |\chi(M)|$. Then if $s \leq \frac{1}{2}$, (9) gives

$$|\chi(M)| \leq P_0|s|^m + \frac{1}{4} |\chi(M)| \sum_{r=1}^{m} 2^{r-m} \leq P_0|s|^m + \frac{1}{2} |\chi(M)|.$$

Hence the result with $B_1 = \min \left(\frac{1}{2}, \left(\frac{|\chi(M)|}{2P_0} \right)^{1/m} \right)$. \hfill \Box

Remark. As in the remark following the statement of Theorem 1, we point out the hypothesis $\chi(M) \neq 0$ is implied by the Einstein condition if $n = 4$ and is therefore redundant in the statement of Proposition 3 in that case.

Completion of proof

On an Einstein manifold, the Bianchi identities reduce to

\begin{align*}
\nabla_a W_{bcde} + \nabla_b W_{cade} + \nabla_c W_{abde} &= 0, \\
\nabla^a W_{abcd} &= 0, \\
\nabla_a s &= 0.
\end{align*} \hfill (10, 11, 12)

Of course (11) follows from (10) by contraction and use of the symmetries of W, but we will find it convenient to regard (10) and (11) as separate equations, bundle-valued versions of the equations

$$d\omega = 0, \quad d^*\omega = 0$$ \hfill (13)

for a 2-form ω. Recall that information about the solution space of (13) can sometimes be obtained by reducing to the single equation

$$\Delta \omega = (dd^* + d^*d)\omega = 0$$

and using the Weitzenböck formula

$$dd^* + d^*d = \nabla^*\nabla + \text{curvature terms.}$$

Our strategy is to analyze (10) and (11) in exactly the same way.
In this way, we obtain
\[-\nabla^a \nabla_a W_{bcde} + [\nabla^a, \nabla_b] W_{acde} - [\nabla^a, \nabla_c] W_{abde} = 0. \tag{14}\]
The first commutator term may be written in terms of curvature as follows:
\[[\nabla^a, \nabla_b] W_{acde} = R^a_{\ b} p^p W_{pecde} + R^a_{\ bc} p^p W_{apde} \tag{15}\]
\[\quad + R^a_{\ bd} p^p W_{acpe} + R^a_{\ be} p^p W_{acdp}.\]
The first term on the RHS is just \((s/n)W_{bcde}\) by the Einstein conditions; and using (1) in the remaining terms on the RHS we get terms quadratic in \(W\), which we shall lump together and denote by \(\{W, W\}\), and three other terms in \(s\) and \(W\):
\[\frac{s}{n(n - 1)} (W_{cbde} + W_{dcbe} + W_{ecdb}).\]
This expression is identically zero, however, because of the symmetries
\[W_{ecdb} = W_{bdce} \quad \text{and} \quad W_{cbde} + W_{dcbe} + W_{bdce} = 0.\]
The second curvature term in (14) is obtained from the first by interchanging the indices \(b\) and \(c\), so (14) reduces to an equation of the form
\[\nabla^* \nabla W + (2s/n)W = \{W, W\}. \tag{16}\]
The proof of Theorem 1 is now completed as follows. The inner product of (16) with \(W\) yields
\[\|\nabla W\|_{L^2}^2 + (2s/n)\|W\|_{L^2}^2 \leq C\|W\|_{L^3}^3 \leq C\|W\|_{L^{n/2}}^2 \|W\|_{L^p}^2, \tag{17}\]
where the second step uses Hölder’s inequality and, as before, \(p = 2n/(n - 2)\). Combining with the Sobolev inequality of Proposition 2, we find
\[C\|W\|_{L^{n/2}}^2 \|W\|_{L^p}^2 \geq Ak^{n+1} \|W\|_{L^p}^2 + (2s/n - Ak^{n+1})\|W\|_{L^2}^2 \tag{18}\]
for every \(k\) which satisfies (6):
\[0 < k \leq s/n(n - 1).\]
To complete the proof it suffices to choose \(k > 0\) so that both (6) and the inequality
\[2s/n - Ak^{n+1} \geq 0 \tag{19}\]
are satisfied. The existence of such a \(k\) is guaranteed by Proposition 3. For if \(\|W\|_{L^{n/2}} < \varepsilon_1\), then \(s > B_1 > 0\) and choosing \(k\) so that
\[0 < k < \min \left(\frac{B_1}{n(n - 1)}, \frac{(2B_1/na)^{1/(n+1)}}{1/(n+1)}\right)\]
makes (18) and (19) hold. Then (18) yields
\[C\|W\|_{L^{n/2}} \geq Ak^{n+1}\]
if \(W\) is not identically zero. This yields Theorem 1 with
\[\varepsilon = \min(Ak^{n+1}/C, \varepsilon_1).\]
Acknowledgment

I am grateful for the hospitality of the University of Washington at Seattle and the University of Adelaide where this work was completed. In particular I thank Robin Graham for useful discussions, Jack Lee for guiding me to references [4] and [5] and Mary Mattaliano for secretarial assistance.

References