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Introduction

In this note we prove

Theorem 1. Let M be a compact oriented n-manifold (n = 2m > 4) with non-
vanishing Fuler characteristic x(M) and let g be a (Riemannian) positive Einstein
metric on M with Weyl curvature W. Then there is a constant € > 0, depending only
upon n and x(M), such that if ||W||pn2 < &, then W = 0 (and so M is isometric to
a quotient of S™ with the standard metric).

Remark. The hypothesis x(M) # 0 is unnecessary in dimension 4 since in that case
it is implied by the Einstein condition (cf. [1, Section 6.31]).

Notation. Recall (cf. for example [1, Sections G-H]) that the Riemann tensor R may
be decomposed algebraically as

R=W+ePg+(s/2n(n-1))gB g (1)

where W is the Weyl tensor (the totally trace-free part of R), (n — 2)® is the trace-
free part of the Ricci tensor r, s is the scalar curvature and @ is the Kulkarni-
Nomizu product of symmetric 2-tensors (i.e. tensor product followed by the projection
{4-tensors} — {4-tensors with Riemann tensor symmetries}).

The Einstein condition is & = 0; an Einstein metric is called ‘positive’ if s > 0.
(This makes sense because the Einstein condition and the Bianchi identity imply that
s is constant.)
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The notation for norms that is used in this paper is standard: all norms are those
defined by the given Einstein metric g.

Outline of the Proof. The idea is to use the Bianchi identity and a Sobolev inequality
as in Min-Oo’s analogous result [7] for Yang-Mills fields. In our situation, however, the
Sobolev ‘constant’ o depends upon ¢ and so it is necessary to obtain a universal lower
bound under the hypothesis the g is a positive Einstein metric and ||W||;n/2 is small.
One can refer to the work of Croke [4] and Li [5] for a lower bound on o in terms of s
and the volume V of M. Then an application of the Gauss-Bonnet theorem [3] shows
that if ||W|| n/2 is sufficiently small, and x(M) # 0, then V and s cannot both be
small. In this way, the desired lower bound on ¢ is obtained.

Remark. The L™ ?-norm of the Weyl tensor is an invariant of the conformal class of g;
in particular it is invariant under any homothety g — cg (¢ a positive constant). Since
the Einstein condition and the sign of s are also invariant under such homotheties, we
may suppose that g is normalized so that

V=1

without affecting the value of ¢ in Theorem 1.

Finally we warn the reader that A, B, C etc. will denote constants (i.e. functions only
of the dimension n and the Euler characteristic x(M)). The values of such constants
may vary from line to line.

The proof of Theorem 1
Estimation of the Sobolev constant in terms of V and s

Geometric estimates of the Sobolev constants begin with the isoperimetric constant

.. Vol(o9)"
A

where the inf runs over all open submanifolds & C M with sufficiently regular boundary
09 and volume < V/2 [2]. Li [5, Lemma 2], for example, proves that for all f € L?,

1V £1%: > ae® (717, = V=2 17)2:) (2)

(p = 2n/(n—2)). On the other hand Croke {4, Theorem 13] has given a lower bound for
a in terms of a lower bound (n — 1)k of the Ricci tensor and the volume and diameter

of M,
a > AV/IH, (3)

where

d
I:/ (k'lﬂsin(klﬂt))n”ldt.
0
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(The integrand has a standard interpretation if £ < 0, but we shall not need it.)
In our situation (r = (s/n)g > 0), we obtain a simple lower bound for a as follows.
Taking k > 0, d < 7k~1/2 by Myers’ theorem [8] and so

k112
I / E=m2qs = g2, (4)
0
Combining with (2) and (3), we obtain

Proposition 2. Let M be a compact Riemannian manifold with unit volume and
suppose r > (n — 1)k > 0. Then the Sobolev inequality may be written

V517 > Ak (1912 - 17113 - (5)
In particular, if M is Einstein, (5) holds for all k such that
0<k<s/n(n—1). (6)

Remark. The inequality (5) holds with the same constant if f is replaced by any
tensor 7. This follows from Kato’s inequality

|VIT|| < |VT|
which holds at all points where |T| # 0.

A lower bound on s from the Gauss- Bonnet formula

On an oriented n-manifold M, the Gauss-Bonnet formula ([3], [6, p. 311]) states

X(M) = /M Pi(R/2r). M

Here ‘Pf’ denotes the Pfaffian of a skew endomorphism: all we shall need to know
about it is that it is a homogeneous polynomial of degree m = n/2.
On substituting (1), with & = 0, into (7), we obtain, since s is constant,

X(M) =3 P(W)s™" (8)

r=0

where P.(W) is the integral over M of a universal polynomial of degree r in W. The
constant Py can be discovered by applying (8) to the standard metric on S™, for which
W =0and s =n(n—1):

2 = Py - Vol(§™)[n(n — 1)]™/2.

In particular, Fp is a positive constant. To estimate the other terms in (8), suppose as
before that V = 1. Then

|P.(W)| < B|W|

< B[Vl
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where the last step uses Holder’s inequality. Substituting into (8),

IX(M)| < Pols|™ + BY_ [|W||pms™ " (9)

r=1
It is now straightforward to prove the following.
Proposition 3. Let M satisfy the hypotheses of Theorem 1 and suppose also that

V = 1. Then there are constants e > 0 and By > 0, depending only upon n and
X(M), such that if ||W||;n/2 < €1 then s > Bj.

Proof. With Py and B as in (9), choose €1 > 0 so that for each r = 1,...,m,
B||W||1m < YIX(M)]. Then if s < §, (9) gives

IX(M)| < Pols|™ + 3Ix(M)| 2™ < Pols|™ + §x(M)].

r=1

Hence the result with B; = min (1/2, (|x(M)|/2P0)1/m). O

Remark. As in the remark following the statement of Theorem 1, we point out the
hypothesis x(M) # 0 is implied by the Einstein condition if » = 4 and is therefore
redundant in the statement of Proposition 3 in that case.

Completion of proof

On an Einstein manifold, the Bianchi identities reduce to

vaVVbcde + Vchade + V- Wapde = 07 (10)
VaWabcd = 0’ (11)
Ves = 0. (12)

Of course (11) follows from (10) by contraction and use of the symmetries of W, but
we will find it convenient to regard (10) and (11) as separate equations, bundle-valued
versions of the equations

dw =0, d'w=0 (13)

for a 2-form w. Recall that information about the solution space of (13) can sometimes
be obtained by reducing to the single equation

Aw = (dd* + d"d)w =0
and using the Weitzenbock formula

dd* + d*d = V*V + curvature terms.
Our strategy is to analyze (10) and (11) in exactly the same way.



Positive Einstein metrics 273

In this way, we obtain
VoV Wiede + [V, Vo] Wacde = [V*, V] Wabge = 0. (14)
The first commutator term may be written in terms of curvature as follows:
[V%, V3] Wacde = R*6a" Wiede + B*0PWapde
+ R%pd"Wacpe + Rbe" Wacdp.

The first term on the RHS is just (s/n)Wjcqe by the Einstein conditions; and using (1)
in the remaining terms on the RHS we get terms quadratic in W, which we shall lomp
together and denote by {W, W}, and three other terms in s and W:

(15)

S
;z(n——ﬁ (chde + Wdcbe + Wecdb)-

This expression is identically zero, however, because of the symmetries
Weeas = Weace and  Wepde + Wicke + Whdce = 0.

The second curvature term in (14) is obtained from the first by interchanging the
indices b and ¢, so (14) reduces to an equation of the form

VAW + (25/)W = {W,W}. (16)

The proof of Theorem 1 is now completed as follows. The inner product of (16) with
W yields

IVWIZ: + @s/mIW ]2 < CIIW L < CIW oIV (17)

where the second step uses Holder’s inequality and, as before, p = 2n/(n — 2). Com-
bining with the Sobolev inequality of Proposition 2, we find

W oW 130 > AR, + 2/ — AR [ W]L, (18)
for every k which satisfies (6):
0<k<s/n(n-1).
To complete the proof it suffices to choose k > 0 so that both (6) and the inequality
2s/n — AK™! > 0 (19)

are satisfied. The existence of such a & is guaranteed by Proposition 3. For if ||W || n/2 <
€1, then s > B; > 0 and choosing k so that

0 < k < min (By /n(n — 1),(2B; /nA)/ (1)
makes (18) and (19) hold. Then (18) yields
ClW || pnsa > AR™H!
if W is not identically zero. This yields Theorem 1 with
£ = min(Ak™*/C,e).
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