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Introduction 

In this note we prove 

Theorem 1. Let M be a compact oriented &manifold (n = 2m 2 4) with non- 

vanishing Euler characteristic x(M) and let g be a (Riemannian) positive Einstein 

metric on M with Weyl curvature W. Then there is a constant E > 0, depending only 

upon n and x(M), such that if llWj(L,,/2 < E, then W = 0 (and so M is isometric to 

a quotient of S” with the standard metric). 

Remark. The hypothesis x(M) # 0 is unnecessary in dimension 4 since in that case 

it is implied by the Einstein condition (cf. [l, Section 6.311). 

Notation. Recall (cf. for example [l, Sections G-H]) that the Riemann tensor R may 

be decomposed algebraically as 

R = W + 9 @ g + (s/Zn(n - 1))s @I g (1) 

where W is the Weyl tensor (the totally trace-free part of R), (n - 2)@ is the trace- 

free part of the Ricci tensor r, s is the scalar curvature and @ is the Kulkarni- 

Nomizu product of symmetric 2-tensors (i.e. tensor product followed by the projection 
{4-tensors} + {4-t ensors with Riemann tensor symmetries}). 

The Einstein condition is 9 = 0; an Einstein metric is called ‘positive’ if s > 0. 

(This makes sense because the Einstein condition and the Bianchi identity imply that 

s is constant.) 
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The notation for norms that is used in this paper 

defined by the given Einstein metric g. 

Outline of the Proof. The idea is to use the Bianchi 

is standard: all norms are those 

identity and a Sobolev inequality 

as in Min-00’s analogous result [7] for Yang-Mills fields. In our situation, however, the 
Sobolev ‘constant’ cr depends upon g and so it is necessary to obtain a universal lower 

bound under the hypothesis the g is a positive Einstein metric and ]]W]]Ln,2 is small. 

One can refer to the work of Croke [4] and Li [5] for a lower bound on (T in terms of s 
and the volume V of M. Then an application of the Gauss-Bonnet theorem [3] shows 

that if ]]W])Ln,2 is sufficiently small, and x(M) # 0, then V and s cannot both be 

small. In this way, the desired lower bound on 0 is obtained. 

Remark. The Lni2-norm of the Weyl tensor is an invariant of the conformal class of g; 

in particular it is invariant under any homothety g H cg (c a positive constant). Since 
the Einstein condition and the sign of s are also invariant under such homotheties, we 

may suppose that g is normalized so that 

V=l 

without affecting the value of E in Theorem 1. 

Finally we warn the reader that A, B, C etc. will denote constants (i.e. functions only 

of the dimension n and the Euler characteristic x(M)). The values of such constants 

may vary from line to line. 

The proof of Theorem 1 

Estimation of the Sobolev constant in terms of V and s 

Geometric estimates of the Sobolev constants begin with the isoperimetric constant 

a = inf 
Vol( aQ)n 

Vol( fl),-l 

where the inf runs over all open submanifolds R c A4 with sufficiently regular boundary 

dR and volume < V/2 [a]. Li [5, L emma 21, for example, proves that for all f E Ly , 

llVf11;z 2 Aa2’” (Ilf /;p - V-2’“llfll;z) (2) 
(p = 2n/(n-2)). On the other hand Croke [4, Th eorem 131 has given a lower bound for 

a: in terms of a lower bound (n - l)k of the Ricci tensor and the volume and diameter 
of M, 

o 2 A(V/l)n+l, (3) 

where 

1 = ed (L-rj2 sin(k1/2t))n-‘dt. 
J 
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(The integrand has a standard interpretation if k < 0, but we shall not need it.) 

In our situation (r = (s/n)g > 0), we obtain a simple lower bound for cy as follows. 

Taking k > 0, d < .rrk-‘i2 by Myers’ theorem [8] and so 

I 
,&-‘12 

I< #-“)/2& = wk-“/2a 
0 

Combining with (2) and (3), we obtain 

Proposition 2. Let M be a compact Riemannian manifold with unit volume and 

suppose r 2 (n - 1)k > 0. Then the Sobolev inequality may be written 

(5) 

In particular, if A4 is Einstein, (5) holds for all k such that 

0 < k < s/n(n - 1). (6) 

Remark. The inequality (5) h Id o s with the same constant if f is replaced by any 

tensor T. This follows from Kato’s inequality 

IWII < WI 

which holds at all points where ITI # 0. 

A lower bound on s from the Gauss-Bonnet formula 

On an oriented n-manifold M, the Gauss-Bonnet formula ([3], [6, p. 3111) states 

x(M) = /MPf(R/24. (7) 

Here ‘Pf’ denotes the Pfaffian of a skew endomorphism: all we shall need to know 

about it is that it is a homogeneous polynomial of degree m = n/2. 

On substituting (l), with 9 = 0, into (7), we obtain, since s is constant, 

X(M) = &(W)F (8) 
7=0 

where PT(W) is the integral over M of a universal polynomial of degree T in W. The 

constant PO can be discovered by applying (8) to the standard metric on S”, for which 
W = 0 and s = n(n - 1): 

2 = PO . Vol(F)[n(n - l)]““. 

In particular, 8~ is a positive constant. To estimate the other terms in (8), suppose as 
before that V = 1. Then 
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where the last step uses Holder’s inequality. Substituting into (8), 

It is now straightforward to prove the following. 

Proposition 3. Let M satisfy the hypotheses of Theorem 1 and suppose also that 

V = 1. Then there are constants ~1 > 0 and B1 > 0, depending only upon n and 

x(M), such that if IJWIILn,2 < ~1 then s > BI. 

Proof. With PO and B as in (9), choose ~1 > 0 so that for each T = 1,. . . , m, 

BIIwI~- < $lx(M)I. Then ifs < 3, (9) gives 

Ix(M)1 < Polsl” t $x(M)1 g2’-m < Polsl” t $x(M)I. 
r=l 

Hence the result with B 1 = min (l/2, (Ix(M)~/~Po)‘/~). Cl 

Remark. As in the remark following the statement of Theorem 1, we point out the 

hypothesis x(M) # 0 is implied by the Einstein condition if n = 4 and is therefore 
redundant in the statement of Proposition 3 in that case. 

Completion of proof 

On an Einstein manifold, the Bianchi identities reduce to 

Vawbcde + vbwcade t Vcwabde = 0, (10) 

VaWabcd = 0, (11) 

v,s = 0. (12) 

Of course (11) f o 11 ows from (10) by contraction and use of the symmetries of W, but 

we will find it convenient to regard (10) and (11) as separate equations, bundle-valued 

versions of the equations 

dw = 0, d*w = 0 (13) 

for a 2-form w. Recall that information about the solution space of (13) can sometimes 

be obtained by reducing to the single equation 

Aw = (dd* + d*d)w = 0 

and using the Weitzenbijck formula 

dd* + d’d = V*V + curvature terms. 

Our strategy is to analyze (10) and (11) in exactly the same way. 
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In this way, we obtain 

-VaVaWbcde + [va, vb] Wacde - [va, vc] Wabde = 0. 

The first commutator term may be written in terms of curvature as follows: 

(14) 

[““, vb] Wacde = RabaPWpcde + RabcPWapde 

+ RabdPWacpe •I RabePWacdp* 

(15) 

The first term on the RHS is just (S/n)W&& by the Einstein conditions; and using (1) 

in the remaining terms on the RHS we get terms quadratic in W, which we shall lump 

together and denote by {W, W}, and three other terms in s and W: 

,(ns_ 1j (Wcbde t Wdcbe t Wecdb). 

This expression is identically zero, however, because of the symmetries 

W ecdb - - Wbdce and Wcbde i- Wdcbe -f Wbdce = 0. 

The second curvature term in (14) is obtained from the first by interchanging the 

indices b and c, so (14) re d uces to an equation of the form 

v*vw + (2s/n)W = {W, W}. (16) 

The proof of Theorem 1 is now completed as follows. The inner product of (16) with 

W yields 

II”WIIL2 -I- (z~l4llWll;2 G cllw3 6 w%,2llwP~ (17) 

where the second step uses Holder’s inequality and, as before, p = 2n/(n - 2). Com- 

bining with the Sobolev inequality of Proposition 2, we find 

CIIWIIpI2 IIWIIZP 3 AP+l IIwII;p + wn - Akn+1)llWIl;2 (18) 

for every k which satisfies (6): 

0 < k < s/n(n - 1). 

To complete the proof it suffices to choose k > 0 so that both (6) and the inequality 

2s/n - Ak”+’ > 0 (19) 
are satisfied. The existence of such a k is guaranteed by Proposition 3. For if JJWI(Ln,2 < 

~1, then s > Br > 0 and choosing k so that 

0 < k < min (Br/n(n - l), (2Br/nA)11(n+‘)) 

makes (18) and (19) hold. Then (18) yields 

cllwll Ln12 Z Ak”+’ 

if W is not identically zero. This yields Theorem 1 with 

E = min(Ak”+r/C, El). 
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