Positive Einstein metrics with small $L^{n / 2}$-norm of the Weyl tensor

Michael A. Singer
Lincoln College, Oxford OX1 3DR, U.K.
Communicated by M. Eastwood
Received 21 November 1991

Singer M. A., Positive Einstein metrics with small $L^{n / 2}$ norm of the Weyl tensor, Diff. Geom. Appl. 2 (1992) 269-274.
Abstract: A gravitational analogue is given of Min-Oo's gap theorem for Yang-Mills fields.
Keywords: Riemannian manifold, Einstein metric, Weyl tensor, L^{P}-norm, Sobolev constant, Euler. characteristic.
MS classification: 53C.

Introduction

In this note we prove
Theorem 1. Let M be a compact oriented n-manifold $(n=2 m \geqslant 4)$ with nonvanishing Euler characteristic $\chi(M)$ and let g be a (Riemannian) positive Einstein metric on M with Weyl curvature W. Then there is a constant $\varepsilon>0$, depending only upon n and $\chi(M)$, such that if $\|W\|_{L^{n / 2}}<\varepsilon$, then $W=0$ (and so M is isometric to a quotient of S^{n} with the standard metric).

Remark. The hypothesis $\chi(M) \neq 0$ is unnecessary in dimension 4 since in that case it is implied by the Einstein condition (cf. [1, Section 6.31]).

Notation. Recall (cf. for example [1, Sections G-H]) that the Riemann tensor R may be decomposed algebraically as

$$
\begin{equation*}
R=W+\Phi \oslash g+(s / 2 n(n-1)) g \boxtimes g \tag{1}
\end{equation*}
$$

where W is the Weyl tensor (the totally trace-free part of R), $(n-2) \Phi$ is the tracefree part of the Ricci tensor r, s is the scalar curvature and $(\otimes$ is the KulkarniNomizu product of symmetric 2 -tensors (i.e. tensor product followed by the projection \{4-tensors $\} \rightarrow$ \{4-tensors with Riemann tensor symmetries $\}$).

The Einstein condition is $\Phi=0$; an Einstein metric is called 'positive' if $s>0$. (This makes sense because the Einstein condition and the Bianchi identity imply that s is constant.)

0926-2245/92/\$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

The notation for norms that is used in this paper is standard: all norms are those defined by the given Einstein metric g.

Outline of the Proof. The idea is to use the Bianchi identity and a Sobolev inequality as in Min-Oo's analogous result [7] for Yang-Mills fields. In our situation, however, the Sobolev 'constant' σ depends upon g and so it is necessary to obtain a universal lower bound under the hypothesis the g is a positive Einstein metric and $\|W\|_{L^{n / 2}}$ is small. One can refer to the work of Croke [4] and Li [5] for a lower bound on σ in terms of s and the volume V of M. Then an application of the Gauss-Bonnet theorem [3] shows that if $\|W\|_{L^{n / 2}}$ is sufficiently small, and $\chi(M) \neq 0$, then V and s cannot both be small. In this way, the desired lower bound on σ is obtained.

Remark. The $L^{n / 2}$-norm of the Weyl tensor is an invariant of the conformal class of g; in particular it is invariant under any homothety $g \mapsto c g$ (c a positive constant). Since the Einstein condition and the sign of s are also invariant under such homotheties, we may suppose that g is normalized so that

$$
V=1
$$

without affecting the value of ε in Theorem 1 .
Finally we warn the reader that A, B, C etc. will denote constants (i.e. functions only of the dimension n and the Euler characteristic $\chi(M)$). The values of such constants may vary from line to line.

The proof of Theorem 1

Estimation of the Sobolev constant in terms of V and s
Geometric estimates of the Sobolev constants begin with the isoperimetric constant

$$
\alpha=\inf \frac{\operatorname{Vol}(\partial \Omega)^{n}}{\operatorname{Vol}(\Omega)^{n-1}}
$$

where the inf runs over all open submanifolds $\Omega \subset M$ with sufficiently regular boundary $\partial \Omega$ and volume $\leqslant V / 2[2] . \mathrm{Li}\left[5\right.$, Lemma 2], for example, proves that for all $f \in L_{1}^{2}$,

$$
\begin{equation*}
\|\nabla f\|_{L^{2}}^{2} \geqslant A \alpha^{2 / n}\left(\|f\|_{L^{p}}^{2}-V^{-2 / n}\|f\|_{L^{2}}^{2}\right) \tag{2}
\end{equation*}
$$

($p=2 n /(n-2)$). On the other hand Croke [4, Theorem 13] has given a lower bound for α in terms of a lower bound $(n-1) k$ of the Ricci tensor and the volume and diameter of M,

$$
\begin{equation*}
\alpha \geqslant A(V / I)^{n+1} \tag{3}
\end{equation*}
$$

where

$$
I=\int_{0}^{d}\left(k^{-1 / 2} \sin \left(k^{1 / 2} t\right)\right)^{n \sim 1} d t
$$

(The integrand has a standard interpretation if $k \leqslant 0$, but we shall not need it.)
In our situation ($r=(s / n) g>0$), we obtain a simple lower bound for α as follows. Taking $k>0, d \leqslant \pi k^{-1 / 2}$ by Myers' theorem [8] and so

$$
\begin{equation*}
I \leqslant \int_{0}^{\pi k^{-1 / 2}} k^{(1-n) / 2} d t=\pi k^{-n / 2} \tag{4}
\end{equation*}
$$

Combining with (2) and (3), we obtain
Proposition 2. Let M be a compact Riemannian manifold with unit volume and suppose $r \geqslant(n-1) k>0$. Then the Sobolev inequality may be written

$$
\begin{equation*}
\|\nabla f\|_{L^{2}}^{2} \geqslant A k^{n+1}\left(\|f\|_{L^{p}}^{2}-\|f\|_{L^{2}}^{2}\right) \tag{5}
\end{equation*}
$$

In particular, if M is Einstein, (5) holds for all k such that

$$
\begin{equation*}
0<k \leqslant s / n(n-1) \tag{6}
\end{equation*}
$$

Remark. The inequality (5) holds with the same constant if f is replaced by any tensor T. This follows from Kato's inequality

$$
|\nabla| T||\leqslant|\nabla T|
$$

which holds at all points where $|T| \neq 0$.

A lower bound on s from the Gauss-Bonnet formula

On an oriented n-manifold M, the Gauss-Bonnet formula ([3], [6, p. 311]) states

$$
\begin{equation*}
\chi(M)=\int_{M} \operatorname{Pf}(R / 2 \pi) \tag{7}
\end{equation*}
$$

Here ' Pf ' denotes the Pfaffian of a skew endomorphism: all we shall need to know about it is that it is a homogeneous polynomial of degree $m=n / 2$.

On substituting (1), with $\Phi=0$, into (7), we obtain, since s is constant,

$$
\begin{equation*}
\chi(M)=\sum_{r=0}^{m} P_{r}(W) s^{m-r} \tag{8}
\end{equation*}
$$

where $P_{r}(W)$ is the integral over M of a universal polynomial of degree r in W. The constant P_{0} can be discovered by applying (8) to the standard metric on S^{n}, for which $W=0$ and $s=n(n-1):$

$$
2=P_{0} \cdot \operatorname{Vol}\left(S^{n}\right)[n(n-1)]^{n / 2}
$$

In particular, P_{0} is a positive constant. To estimate the other terms in (8), suppose as before that $V=1$. Then

$$
\left|P_{r}(W)\right| \leqslant B\|W\|_{L^{r}}^{r} \leqslant B\|W\|_{L^{m}}^{r}
$$

where the last step uses Hölder's inequality. Substituting into (8),

$$
\begin{equation*}
|\chi(M)| \leqslant P_{0}|s|^{m}+B \sum_{r=1}^{m}\|W\|_{L^{m}}^{r} s^{m-r} \tag{9}
\end{equation*}
$$

It is now straightforward to prove the following.
Proposition 3. Let M satisfy the hypotheses of Theorem 1 and suppose also that $V=1$. Then there are constants $\varepsilon_{1}>0$ and $B_{1}>0$, depending only upon n and $\chi(M)$, such that if $\|W\|_{L^{n / 2}}<\varepsilon_{1}$ then $s>B_{1}$.

Proof. With P_{0} and B as in (9), choose $\varepsilon_{1}>0$ so that for each $r=1, \ldots, m$, $B\|W\|_{L^{m}}^{r}<\frac{1}{4}|\chi(M)|$. Then if $s \leqslant \frac{1}{2},(9)$ gives

$$
|\chi(M)| \leqslant P_{0}|s|^{m}+\frac{1}{4}|\chi(M)| \sum_{r=1}^{m} 2^{r-m} \leqslant P_{0}|s|^{m}+\frac{1}{2}|\chi(M)| .
$$

Hence the result with $B_{1}=\min \left(1 / 2,\left(|\chi(M)| / 2 P_{0}\right)^{1 / m}\right)$.
Remark. As in the remark following the statement of Theorem 1, we point out the hypothesis $\chi(M) \neq 0$ is implied by the Einstein condition if $n=4$ and is therefore redundant in the statement of Proposition 3 in that case.

Completion of proof

On an Einstein manifold, the Bianchi identities reduce to

$$
\begin{align*}
& \nabla_{a} W_{b c d e}+\nabla_{b} W_{c a d e}+\nabla_{c} W_{a b d e}=0, \tag{10}\\
& \nabla^{a} W_{a b c d}=0, \tag{11}\\
& \nabla_{a} s=0 \tag{12}
\end{align*}
$$

Of course (11) follows from (10) by contraction and use of the symmetries of W, but we will find it convenient to regard (10) and (11) as separate equations, bundle-valued versions of the equations

$$
\begin{equation*}
d \omega=0, \quad d^{*} \omega=0 \tag{13}
\end{equation*}
$$

for a 2 -form ω. Recall that information about the solution space of (13) can sometimes be obtained by reducing to the single equation

$$
\Delta \omega=\left(d d^{*}+d^{*} d\right) \omega=0
$$

and using the Weitzenböck formula

$$
d d^{*}+d^{*} d=\nabla^{*} \nabla+\text { curvature terms. }
$$

Our strategy is to analyze (10) and (11) in exactly the same way.

In this way, we obtain

$$
\begin{equation*}
-\nabla^{a} \nabla_{a} W_{b c d e}+\left[\nabla^{a}, \nabla_{b}\right] W_{a c d e}-\left[\nabla^{a}, \nabla_{c}\right] W_{a b d e}=0 \tag{14}
\end{equation*}
$$

The first commutator term may be written in terms of curvature as follows:

$$
\begin{align*}
{\left[\nabla^{a}, \nabla_{b}\right] W_{a c d e} } & =R_{b a}^{a}{ }^{p} W_{p c d e}+R_{b c}^{a}{ }^{p} W_{a p d e} \tag{15}\\
& +R_{b d}^{a}{ }^{p} W_{a c p e}+R_{b e}^{a}{ }^{p} W_{a c d p} .
\end{align*}
$$

The first term on the RHS is just (s / n) $W_{b c d e}$ by the Einstein conditions; and using (1) in the remaining terms on the RHS we get terms quadratic in W, which we shall lump together and denote by $\{W, W\}$, and three other terms in s and W :

$$
\frac{s}{n(n-1)}\left(W_{c b d e}+W_{d c b e}+W_{e c d b}\right) .
$$

This expression is identically zero, however, because of the symmetries

$$
W_{e c d b}=W_{b d c e} \quad \text { and } \quad W_{c b d e}+W_{d c b e}+W_{b d c e}=0 .
$$

The second curvature term in (14) is obtained from the first by interchanging the indices b and c, so (14) reduces to an equation of the form

$$
\begin{equation*}
\nabla^{*} \nabla W+(2 s / n) W=\{W, W\} \tag{16}
\end{equation*}
$$

The proof of Theorem 1 is now completed as follows. The inner product of (16) with W yields

$$
\begin{equation*}
\|\nabla W\|_{L^{2}}^{2}+(2 s / n)\|W\|_{L^{2}}^{2} \leqslant C\|W\|_{L^{3}}^{3} \leqslant C\|W\|_{L^{n / 2}}\|W\|_{L^{p}}^{2} \tag{17}
\end{equation*}
$$

where the second step uses Hölder's inequality and, as before, $p=2 n /(n-2)$. Combining with the Sobolev inequality of Proposition 2, we find

$$
\begin{equation*}
C\|W\|_{L^{n / 2}}\|W\|_{L^{p}}^{2} \geqslant A k^{n+1}\|W\|_{L^{p}}^{2}+\left(2 s / n-A k^{n+1}\right)\|W\|_{L^{2}}^{2} \tag{18}
\end{equation*}
$$

for every k which satisfies (6):

$$
0<k \leqslant s / n(n-1) .
$$

To complete the proof it suffices to choose $k>0$ so that both (6) and the inequality

$$
\begin{equation*}
2 s / n-A k^{n+1} \geqslant 0 \tag{19}
\end{equation*}
$$

are satisfied. The existence of suclı a k is guaranteed by Proposition 3. For if $\|W\|_{L^{n / 2}}<$ ε_{1}, then $s>B_{1}>0$ and choosing k so that

$$
0<k<\min \left(B_{1} / n(n-1),\left(2 B_{1} / n A\right)^{1 /(n+1)}\right)
$$

makes (18) and (19) hold. Then (18) yiclds

$$
C\|W\|_{L^{n / 2}} \geqslant A k^{n+1}
$$

if W is not identically zero. This yields Theorem 1 with

$$
\varepsilon=\min \left(A k^{n+1} / C, \varepsilon_{1}\right) .
$$

Acknowledgment

I am grateful for the hospitality of the University of Washington at Seattle and the University of Adelaide where this work was completed. In particular I thank Robin Graham for useful discussions, Jack Lee for guiding me to references [4] and [5] and Mary Mattaliano for secretarial assistance.

References

[1] A.L. Besse, Einstein Manifolds (Springer, Berlin, 1987).
[2] E. Bombieri, Theory of minimal surfaces and a counter-example to the Bernstein conjecture in higher dimensions, Lecture notes, Courant Institute of Mathematics, 1970.
[3] S.S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. 45 (1944) 747-752.
[4] C.B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Scient. Éc. Norm. Sup. 13 (1980) 419-435.
[5] P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Scient. Éc. Norm. Sup. 13 (1980) 451-469.
[6] J.W. Milnor and J.D. Stasheff, Characteristic Classes (Princeton University Press, Princeton, 1974).
[7] M. Min-Oo, An L^{2}-isolation theorem for Yang-Mills fields, Composito Mathematica 47 (1982) 153-163.
[8] S. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941) 401-404.

