The Minimum Modulus of Blaschke Products

C. L. Belna*
Syracuse Research Corporation, Syracuse, New York 13210
AND
G. T. Cargo
Department of Mathematics, Syracuse University, Syracuse, New York 13210
Submitted by R. P. Boas

InTRODUCTION

Let D denote the open unit disk in the complex plane. A sequence A in D is called a Blaschke sequence provided $\sum_{A}(1-|a|)<\infty$. Corresponding to such a sequence is the Blaschke product B given by

$$
\begin{equation*}
B(z)=\prod_{A}(|a| / a)(a-z) /(1-\bar{a} z) \tag{1}
\end{equation*}
$$

where the term in the product corresponding to a is replaced with z when $a=0$. It is well known that B is an analytic function mapping D into D and having a radial limit of modulus 1 at almost every point of the boundary ∂D. (See [1, Chap. 2].)

For $0<r<1$ let $m(r ; B)$ denote the minimum modulus of the Blaschke product B on the circle $|z|=r$. If $m(r ; B)$ does not tend to 0 as r increases to 1 , then clearly

$$
\begin{equation*}
\limsup _{r \rightarrow 1}(1-r) \log m(r ; B)=0 . \tag{2}
\end{equation*}
$$

M. Heins ([3, Theorem 6.1]; also see [9]) has shown that (2) is valid for all Blaschke products; that is, corresponding to each Blaschke product B there exists a subset Δ of the interval $(0,1)$ such that 1 is an accumulation point of Δ and

$$
\begin{equation*}
(1-r) \log m(r ; B) \rightarrow 0 \quad \text { as } r \rightarrow 1 \text { through } \Delta . \tag{3}
\end{equation*}
$$

[^0]Here we shall show that there exists a set Δ that satisfies condition (3) and is very "thick" near 1 ; more specifically, we shall show that Δ exists so that the complement $C \Delta$ of Δ in $(0,1)$ is minimally thin at 1 , the definition of which is given in Section 1. (This implies that $C \Delta$ has finite logarithmic length, and hence left metric density 0, at 1 . See Remark 1.) As applications, we shall improve an identity theorem of A. L. Shaginyan and give a supplement to a result of A. A. Gol'dberg concerning the growth of a meromorphic function whose logarithmic derivative has bounded characteristic.

1. Growth of Blaschke Products

Let E be a subset of D, and let P_{ζ} be the Poisson kernel at $\zeta \in \partial D$ given by

$$
P_{\zeta}(z)=\left(1-|z|^{2}\right) /|\zeta-z|^{2} .
$$

If S^{+}denotes the class of all nonnegative superharmonic functions in D, then the reduced function of P_{5} relative to E (see [4, p. 134]) is given by

$$
R_{E}^{P_{s}}=\inf \left\{u \in S^{+}: u \geqslant P_{b} \text { on } E\right\} .
$$

The set E is said to be minimally thin at ζ if $R_{E}^{P_{\zeta}} \neq P_{\zeta}$ on D.
An extended real-valued function u in D is said to have fine limit α at a point $\zeta \in \partial D$ if there exists a subset E of D such that E is minimally thin at ζ and $u(z)$ tends to α as z tends to ζ through $D \backslash E$. (L. Naïm [7, p. 219] calls this a pseudo-limit.)

Theorem 1. If B is a Blaschke product, then $(1-|z|) \log |B(z)|$ has fine ltmit 0 at every $\zeta \in \partial D ;$ furthermore, there exists a subset Δ of $(0,1)$ such that $(0,1) \backslash \Delta$ is minimally thin at 1 and

$$
(1-r) \log m(r ; B) \rightarrow 0 \quad \text { as } r \rightarrow 1 \text { through } \Delta .
$$

Proof. Let $\zeta \in \partial D$ be arbitrary, and set

$$
u=(-\log |B|) / P_{\zeta} .
$$

Because $-\log |B|$ is a positive superharmonic function in D, it follows from a result of $\operatorname{Naïm~}\left([7, \mathrm{p} .227]\right.$ with $\left.K\left(x_{0}, x\right)=P_{x_{0}}(x)\right]$ that u has fine limit

$$
\alpha \equiv \inf _{z \in D} u(z)
$$

at ζ. Because

$$
u(r \zeta)=-[(1-r) \log |B(r \zeta)|] /(1+r) \quad(0<r<1)
$$

it follows from the result of Heins stated in the Introduction that $\alpha=0$, that is, that u has fine limit 0 at ζ. Then since

$$
P_{5}(z) \leqslant\left(1-|z|^{2}\right) /(1-|z|)^{2}<2 /(1-|z|),
$$

we have

$$
0<-(1-|z|) \log |B(z)| \leqslant 2 u(z)
$$

Consequently $(1-|z|) \log |B(z)|$ has fine limit 0 at ζ, and the first part of the theorem is established.

Now consider the Blaschke product B_{0} given by

$$
B_{0}(z)=\prod_{A}(|a|-z) /(1-|a| z)
$$

It is readily shown that

$$
\begin{equation*}
\left|B_{0}(r)\right| \leqslant m(r ; B) \quad(0<r<1) \tag{4}
\end{equation*}
$$

By the first part of the theorem, there exists a subset Δ of $(0,1)$ such that $(0,1) \backslash \boldsymbol{\Delta}$ is minimally thin at 1 and

$$
\begin{equation*}
(1-r) \log \left|B_{0}(r)\right| \rightarrow 0 \quad \text { as } r \rightarrow 1 \text { through } \Delta \tag{5}
\end{equation*}
$$

Now (4) and (5) yield the second part of the theorem, and the theorem is proved.

Remark 1. Because the set $C \Delta \equiv(0,1) \backslash \Delta$ lies on the radius to 1 and is minimally thin at 1 , it follows from a result of H. L. Jackson [6, Theorem 5] that $C \Delta$ has finite logarithmic length at 1 , that is, that

$$
\int_{C \Delta}(1-r)^{-1} d r<\infty
$$

(Jackson's proof is for the right half-plane, but the conformal mapping $T(z)=(1-z) /(1+z)$ readily transfers the result to D.)

Remark 2. C. Tanaka [10, Theorem 1] has proved: Let a_{1}, a_{2}, \ldots be the zeros of the Blaschke product B, and let r_{1}, r_{2}, \ldots be a sequence of real numbers that decrease to 0 and satisfy the inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right) / r_{n}^{2}<\infty \tag{6}
\end{equation*}
$$

If Q is the set of those points in D that lie outside each of the pseudohyperbolic disks

$$
\lambda\left(z, a_{n}\right) \equiv\left|z-a_{n}\right| /\left|1-\bar{a}_{n} z\right|<r_{n} \quad(n=1,2, \ldots)
$$

then $(1-|z|) \log |B(z)| \rightarrow 0$ as $|z| \rightarrow 1$ through Q. To see that Tanaka's result does not imply Theorem 1 , we consider an example.

If $a_{n}=1-1 / n^{2}$, then $\lambda\left(a_{n}, a_{n+1}\right)<1 / n$ for each n. Also, to satisfy condition (6) we must have $r_{n}>1 / n$ for all sufficiently large n. That is, Q necessarily omits a terminal segment of the radius to 1 ; but this implies that the complement of Q is not minimally thin at 1 .

2. Theorems of Heins and Shaginyan

If f is a meromorphic function in D, the Nevanlinna proximity function for f is given by

$$
m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i t}\right)\right| d t \quad(0<r<1)
$$

and we set

$$
m(1, f)=\lim _{r \rightarrow 1} m(r, f)
$$

if the limit exists, which it will if f is of bounded characteristic.
Shaginyan [8] considered a proper subclass C of the class of all analytic functions of bounded characteristic in D, and for that subclass he has proved: If Γ is a Jordan arc in D except for one endpoint at 1 and iff is in C with

$$
(1-|z|) \log |f(z)| \rightarrow-\infty \quad \text { as } z \rightarrow 1 \text { through } \Gamma
$$

then $f \equiv 0$. A stronger statement can be made in the case when f is bounded. Heins [3, Theorems 7.1 and 7.2] proved: If f is a bounded analytic function in D with

$$
(1-r) \log m(r ; f) \rightarrow-\infty \quad \text { as } \quad r \rightarrow 1
$$

then $f \equiv 0$. (See [5] for an alternate proof.) We give the following extension.
THEOREM 2. If f is a meromorphic function ($\not \equiv 0$) of bounded characteristic in D, then there exists a subset Δ of $(0,1)$ such that $(0,1) \backslash \Delta$ is minimally thin at 1 and

$$
\begin{equation*}
\liminf _{r \rightarrow 1 ; r \in \Delta}(1-r) \log m(r ; f) \geqslant-2 m(1,1 / f) \tag{7}
\end{equation*}
$$

Proof. As is well known, we may write $f=\left(B_{1} / B_{2}\right) g$ where B_{1} and B_{2} are Blaschke products (or $\equiv 1$) and g is a zero-free analytic function of bounded characteristic in D. We note that

$$
\begin{equation*}
\log |f| \geqslant \log \left|B_{1}\right|+\log |g| \quad \text { in } D . \tag{8}
\end{equation*}
$$

Let z_{r} be a point on the circle $|z|=r$ with $\left|f\left(z_{r}\right)\right|=m(r ; f)$, and let A_{1} be the subset of $(0,1)$ guaranteed by Theorem 1 for B_{1}. (If $B_{1} \equiv 1$, take $\Delta_{1}=(0,1)$.) Then because $\left|B_{1}\left(z_{r}\right)\right| \geqslant m\left(r ; B_{1}\right)$ we have

$$
(1-r) \log \left|B_{1}\left(z_{r}\right)\right| \rightarrow 0 \quad \text { as } r \rightarrow 1 \text { through } \Delta_{1}
$$

This and inequality (8) yield

$$
\begin{equation*}
\liminf _{r \rightarrow 1 ; r \in \Delta_{1}}(1-r) \log \left|f\left(z_{r}\right)\right| \geqslant \liminf _{r \rightarrow 1 ; r \in \Delta_{1}}(1-r) \log \left|g\left(z_{r}\right)\right| . \tag{9}
\end{equation*}
$$

Because $1 / g$ is analytic and zero free in $D, \log |g|^{-1}$ is harmonic in D; hence for $|z|<R<1$,

$$
2 \pi \log |g(z)|^{-1}=\int_{0}^{2 \pi} P\left(z ; \mathrm{Re}^{i t}\right) \log \left|g\left(R e^{i t}\right)\right|^{-1} d t
$$

where $P\left(z ; R e^{i t}\right)=\left(R^{2}-|z|^{2}\right) /\left|R e^{i t}-z\right|^{2}$. Because

$$
0<P\left(z ; R e^{i t}\right) \leqslant(R+|z|) /(R-|z|)<2 /(R-|z|)
$$

and $\log x \leqslant \log ^{+} x$ for $x>0$, we have

$$
\pi \log |g(z)|^{-1}<(R-|z|)^{-1} \int_{0}^{2 \pi} \log ^{+}\left|g\left(R e^{i t}\right)\right|^{-1} d t
$$

Letting R tend to 1 , we obtain

$$
\begin{equation*}
(1-|z|) \log |g(z)| \geqslant-2 m(1,1 / g) \quad(z \in D) \tag{10}
\end{equation*}
$$

Since $m(1,1 / g)=m(1,1 / f)$, the desired inequality follows from (9) and (10), and the proof is complete.

3. A Result of Gol'dberg

Let F be a meromorphic function in D, and let ξ be a point in D. If $0<\rho<1-|\xi|$ and A_{ρ} denotes the sequence of poles of F in the disk $|z-\xi|<\rho$, then the characteristic function of F relative to ξ is given by

$$
T_{\xi}(\rho, F)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|F\left(\xi+\rho e^{i t}\right)\right| d t+\log \left(\prod_{A_{\rho}}(\rho /|p-\xi|)\right)
$$

with the usual modification if $F(\xi)=\infty$. Also we let

$$
T_{\xi}(1-|\xi|, F)=\lim _{\rho \rightarrow 1-|\xi|} T_{\xi}(\rho, F)
$$

The first result of this section represents a slight improvement of a result of Gol'dberg [2, Theorem 3] concerning the growth of the maximum modulus $M(r ; f)$ of a meromorphic function f. To obtain the statement of Gol'dberg's result, simply replace "is minimally thin" with "has finite logarithmic length" in the statement of Theorem 3 below.

Theorem 3. If f is a meromorphic function ($\not \equiv 0$) in D with $T_{0}\left(1, f^{\prime} / f\right)<\infty$, then there exists a subset Δ of $(0,1)$ such that $(0,1) \backslash \Delta$ is minimally thin at 1 and

$$
\begin{equation*}
\lim _{r \rightarrow 1 ; r \in \Delta}(1-r) \log |\log M(r ; f)|<\infty ; \tag{11}
\end{equation*}
$$

if f is analytic in D, then (11) is valid with " $r \in \Delta$ " deleted.
Proof. Since f / f^{\prime} is also of bounded characteristic in D, it follows from Theorem 2 that there exist a positive constant K and a subset Δ of $(0,1)$ such that $(0,1) \backslash \Delta$ is minimally thin at 1 and

$$
(1-r) \log m\left(r ; f / f^{\prime}\right)>-K \quad(r \in \Delta) .
$$

Thus

$$
\begin{equation*}
\left|f^{\prime}(z) / f(z)\right|<\exp \left(\frac{K}{1-r}\right) \quad(|z|=r \in \Delta) \tag{12}
\end{equation*}
$$

Because f^{\prime} / f is of bounded characteristic in D, there exists a real number α such that f has no zero or pole on the open radial segment to $e^{i \alpha}$ and f^{\prime} / f has a finite radial limit at $e^{i \alpha}$; hence there exists an $a \in(0,1)$ such that

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \alpha}\right) / f\left(r e^{i \alpha}\right)\right|<\exp \left(\frac{K}{1-r}\right) \quad(a \leqslant r<1) . \tag{13}
\end{equation*}
$$

Because of (12), f has no zero or pole on the circle $|z|=r$ for each $r \in \Delta$. Now choose any $r \in \Delta \backslash(0, a)$ and any point z in D that satisfies $|z|=r$. Let γ be the path traversed when a point is moved radially from $a e^{i \alpha}$ to $r e^{i \alpha}$ and
then along the circle $|\xi|=r$ to z. A single-valued branch of $\log f$ may be defined in a neighborhood of γ, and we have

$$
\log f(z)-\log f\left(a e^{i \alpha}\right)=\int_{\gamma}\left(f^{\prime} / f\right)
$$

Considering real parts and using (12) and (13), we deduce that

$$
\left\lvert\, \log \left(|f(z)|| | f\left(a e^{i \alpha}\right)| | \left\lvert\,<(2 \pi+1) \exp \left(\frac{K}{1-r}\right) .\right.\right.\right.
$$

This implies (11).
Now suppose f is analytic in D. Also suppose $M(r ; f)$ is unbounded; otherwise there is nothing to prove. Because $(0,1) \backslash \Delta$ has finite logarithmic length at 1 (see Remark 1 of Section 1), there exists a positive constant C such that for each $r \in(0,1)$ there exists an $r^{\prime} \in \Delta$ for which $r^{\prime}>r$ and $(1-r)<C\left(1-r^{\prime}\right)$. Consequently

$$
(1-r) \log |\log M(r ; f)|<C\left(1-r^{\prime}\right) \log \left|\log M\left(r^{\prime} ; f\right)\right|
$$

when $M(r ; f)>e$, and this completes the proof.
We now prove a supplement to Theorem 3.
Theorem 4. Suppose f is a meromorphic function in D, and suppose there exist a finite constant T and a number $R \in(0,1)$ such that

$$
T_{\xi}\left(1-R, f^{\prime} / f\right)<T \quad \text { whenever }|\xi|=R
$$

If the poles of f^{\prime} / f form a Blaschke sequence, then there exists a subset Δ of $(0,1)$ such that $(0,1) \backslash \Delta$ is minimally thin at 1 and

$$
\begin{equation*}
\lim _{r \rightarrow 1 ; r \in \Delta} \sup (1-r) \log |\log M(r ; f)|<\infty ; \tag{14}
\end{equation*}
$$

if f is analytic, then (14) is valid with " $r \in \Delta$ " deleted.
Proof. Set $F=f^{\prime} / f$. Suppose $|\xi|=R$ and $0<\rho<1-R$ with F finite at ξ and on the circle $C_{\rho}:|z-\xi|=\rho$. Let D_{ρ} be the disk $|z-\xi|<\rho$. For each $p \in D_{\rho}$ let G_{p} be a conformal mapping of D_{ρ} onto D with $G_{p}(p)=0$. Define the function

$$
H=F\left(\prod_{A_{D}} G_{p}\right) /\left(\prod_{B_{D}} G_{p}\right)
$$

where A_{ρ} and B_{ρ} are the sequences of poles and zeros of F in D_{ρ}.

Let $z=\xi+\sigma e^{i \theta}$ with $0<\sigma<\rho$ and $F(z) \neq \infty$. Because $|H|=|F|$ on C_{ρ}, the Poisson-Jensen formula for H is

$$
2 \pi \log |H(z)|=\int_{0}^{2 \pi} P\left(\sigma e^{i \theta} ; \rho e^{i t}\right) \log \left|F\left(\xi+\rho e^{i t}\right)\right| d t
$$

where again $P\left(\sigma e^{i \theta} ; \rho e^{i t}\right)=\left(\rho^{2}-\sigma^{2}\right) /\left|\rho e^{i t}-\sigma e^{i \theta}\right|^{2}$. Because

$$
0<P\left(\sigma e^{i \theta} ; \rho e^{i t}\right) \leqslant(\rho+\sigma) /(\rho-\sigma)<2 /(\rho-\sigma)
$$

and $\log x \leqslant \log ^{+} x$ for $x>0$, we have

$$
\pi \log |H(z)| \leqslant(\rho-\sigma)^{-1} \int_{0}^{2 \pi} \log ^{+}\left|F\left(\xi+\rho e^{i t}\right)\right| d t
$$

Then since

$$
\int_{0}^{2 \pi} \log ^{+}\left|F\left(\xi+\rho e^{i t}\right)\right| d t \leqslant 2 \pi T_{\xi}(\rho, F)<2 \pi T
$$

we have

$$
\begin{equation*}
\log |H(z)| \leqslant 2 T(\rho-\sigma)^{-1} \tag{15}
\end{equation*}
$$

Also, it is evident that

$$
\begin{equation*}
\log |H(z)| \geqslant \log |F(z)|+\log \left|\prod_{A_{o}} G_{p}(z)\right| \tag{16}
\end{equation*}
$$

Now let B denote the Blaschke product that corresponds to the sequence consisting of all the poles of F in D. (Recall that the poles of F are simple and occur at the zeros and poles of f.) Because

$$
\left|G_{p}(w)\right|=1>|p-w| /|1-\bar{p} w| \quad \text { for } p \in D_{\rho} \text { and } w \in C_{\rho}
$$

the maximum modulus principle gives

$$
\left|G_{p}(w)\right| \geqslant|p-w| /|1-\bar{p} w| \quad \text { for } p, w \in D_{\rho}
$$

thus we have

$$
\begin{equation*}
\log \left|\prod_{A_{p}} G_{p}(z)\right| \geqslant \log \left|\prod_{A_{p}}(p-z) /(1-\bar{p} z)\right| \geqslant \log |B(z)| . \tag{17}
\end{equation*}
$$

Conditions (15) to (17) imply that

$$
\log |F(z)| \leqslant 2 T(\rho-\sigma)^{-1}-\log |B(z)| .
$$

Letting ρ tend to $1-R$ we obtain

$$
\log |F(z)| \leqslant 2 T[1-(R+\sigma)]^{-1}-\log |B(z)| .
$$

In particular, if $\xi=R e^{i \psi}$ and $z=r e^{i \omega}$ with $R<r<1$, then $\sigma=r-R$ and

$$
\begin{equation*}
\log \left|F\left(r e^{i \omega}\right)\right| \leqslant 2 T(1-r)^{-1}-\log \left|B\left(r e^{i \omega}\right)\right| \quad(R<r<1) . \tag{18}
\end{equation*}
$$

(Note that by continuity (18) is valid for all real ψ.)
Using (18) and applying Theorem 1 , we obtain a subset Δ of $(0,1)$ such that $(0,1) \backslash \Delta$ is minimally thin at 1 and

$$
\begin{equation*}
(1-r) \log \left|F\left(r e^{i \psi}\right)\right|<2 T+1 \quad(r \in \Delta) . \tag{19}
\end{equation*}
$$

Also, if B has a radial limit of modulus 1 at the point $e^{i \alpha}$, then by (18) there exists an $a \in(R, 1)$ such that

$$
\begin{equation*}
(1-r) \log \left|F\left(r e^{i \alpha}\right)\right|<2 T+1 \quad(a \leqslant r<1) . \tag{20}
\end{equation*}
$$

Now consider the portion of the proof of Theorem 3 that follows display (13). The remainder of the proof of Theorem 4 can be obtained from it by replacing K with $2 T+1$, (12) with (19), and (13) with (20).

References

1. E. F. Collingwood and A. J. Lohwater, "The Theory of Cluster Sets," Cambridge Univ. Press, Cambridge, 1966.
2. A. A. Gol'deerg, Growth of functions meromorphic in a disk with restrictions on the logarithmic derivative, Ukrainian Math. J. 32 (1980), 311-316.
3. M. Heins, The minimum modulus of a bounded analytic function, Duke Math. J. 14 (1947), 179-215.
4. L. L. Helms, "Introduction to Potential Theory," Krieger, Huntington, 1975.
5. J. S. Hwang, F. Schnitzer, and W. Seidel, Uniqueness theorems for hounded holomorphic functions, Math. Z. 122 (1971), 366-370.
6. H. L. Jackson, Some results on thin sets in a half plane, Ann. Inst. Fourier (Grenoble) 20 (1970), fasc. 2, 201-218 (1971).
7. L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281.
8. A. L. Shaginyan, On a basic inequality in the theory of functions and some of its applications (in Russian), Izv. Akad. Nauk Armyan. SSR 12 (1959), 3-25.
9. J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), 915-936.
10. C. Tanaka, On the rate of growth of Blaschke products in the unit circle, Proc. Japan Acad. 41 (1965), 507-510.

[^0]: * This author gratefully acknowledges support from the National Science Foundation.

