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INTRODUCTION 

Let D denote the open unit disk in the complex plane. A sequence A in D 
is called a Bluschke sequence provided JJA (1 - ]a]) < co. Corresponding to 
such a sequence is the Blaschke product B given by 

B(z) = n (la Ila)(a - Ml - 54 
A 

(1) 
where the term in the product corresponding to a is replaced with z when 
a = 0. It is well known that B is an analytic function mapping D into D and 
having a radial limit of modulus 1 at almost every point of the boundary 80. 
(See [ 1, Chap. 21.) 

For 0 < r < 1 let m(r; B) denote the minimum modulus of the Blaschke 
product B on the circle ] z 1 = r. If m(r; B) does not tend to 0 as r increases to 
1, then clearly 

lim sup (1 - r) log m(r; B) = 0. r+1 (2) 

M. Heins ([3, Theorem 6.11; also see [9]) has shown that (2) is valid for all 
Blaschke products; that is, corresponding to each Blaschke product B there 
exists a subset d of the interval (0, 1) such that 1 is an accumulation point of 
A and 

(1 - r) log m(r; B) + 0 as r -+ 1 through A. (3) 
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Here we shall show that there exists a set A that satisfies condition (3) and is 
very “thick” near 1; more specifically, we shall show that A exists so that the 
complement CA of A in (0, 1) is minimally thin at 1, the definition of which 
is given in Section 1. (This implies that CA has finite logarithmic length, and 
hence left metric density 0, at 1. See Remark 1.) As applications, we shall 
improve an identity theorem of A. L. Shaginyan and give a supplement to a 
result of A. A. Gol’dberg concerning the growth of a meromorphic function 
whose logarithmic derivative has bounded characteristic. 

1. GROWTH OF BLASCHKE PRODUCTS 

Let E be a subset of D, and let P, be the Poisson kernel at [E 8D given 
by 

If S+ denotes the class of all nonnegative superharmonic functions in D, 
then the reducedfunction of P, relative to E (see [4, p. 1341) is given by 

Rii= inf{u E S+: u > P, on E}. 

The set E is said to be minimally thin at < if Riif P, on D. 
An extended real-valued function u in D is said to have fine limit a at a 

point 6 E 80 if there exists a subset E of D such that E is minimally thin at [ 
and u(z) tends to a as z tends to 4 through D\E. (L. NaIm [ 7, p. 2191 calls 
this a pseudo-limit.) 

THEOREM 1. If B is a Blaschke product, then (1 - 1 z I) log I B(z)1 has fine 
limit 0 at every c E 80; furthermore, there exists a subset A of (0, 1) such 
that (0, l)\A is minimally thin at 1 and 

(1 - r) log m(r; B) --t 0 as r--t 1 through A. 

Prooj Let c E 30 be arbitrary, and set 

u = (-log ] B 1)/P,. 

Because -log ] B I is a positive superharmonic function in D, it follows from a 
result of Naiin ([7, p. 2271 with K(x,, , x) = P,,(x)] that u has fine limit 

a = in! u(z) 
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at [. Because 

44 = -[(I - 4 log IB(rC)lI/(l + r) (O<r< l), 

it follows from the result of Heins stated in the Introduction that a = 0, that 
is, that u has fine limit 0 at [. Then since 

4(z)< Cl- lz12Ml - 14’ < 2/u - I43 

we have 

0 < -(l - ]z]) log ]B(z)] < 2U(Z). 

Consequently (1 - I z I) log ]B(z)] has line limit 0 at [, and the first part of the 
theorem is established. 

Now consider the Blaschke product B, given by 

B,(z)=ncl~l-z>l<l-lalZ>. 
A 

It is readily shown that 

POW & mk BI (O<r< 1). (4) 

By the first part of the theorem, there exists a subset A of (0, 1) such that 
(0, l)\A is minimally thin at 1 and 

(1 - r> 1% P&I + 0 as r+ 1 through A. (5) 

Now (4) and (5) yield the second part of the theorem, and the theorem is 
proved. 

Remark 1. Because the set CA G (0, l)\d lies on the radius to 1 and is 
minimally thin at 1, it follows from a result of H. L. Jackson [6, Theorem 51 
that CA has finite logarithmic length at 1, that is, that 

I cA(l-r)-‘dr< co. 

(Jackson’s proof is for the right half-plane, but the conformal mapping 
T(z) = (1 - z)/( 1 + z) readily transfers the result to 0.) 

Remark 2. C. Tanaka [lo, Theorem l] has proved: Let a,, u2,... be the 
zeros of the Blaschke product B, and let rl, r2,... be a sequence of real 
numbers that decrease to 0 and satisfy the inequality 

5 (1 - la,l>lG < 00. 
?l=l 

409/ 1041 I-20 

(6) 



296 BELNAAND CARGO 

If Q is the set of those points in D that lie outside each of the pseudo- 
hyperbolic disks 

~(z,a,)~lz-a,l/ll--a,zI<r, (n = 1, 2,...), 

then (1 - 1 z I) log IB(z)I --t 0 as I z I -+ 1 through Q. To see that Tanaka’s result 
does not imply Theorem 1, we consider an example. 

If a,, = 1 - l/n*, then I(a,, a “+ i) < l/n for each n. Also, to satisfy 
condition (6) we must have rn > l/n for all sufficiently large n. That is, Q 
necessarily omits a terminal segment of the radius to 1; but this implies that 
the complement of Q is not minimally thin at 1. 

2. THEOREMS OF HEINS AND SHAGINYAN 

Iffis a meromorphic function in D, the Nevanlinna proximity function for 
f is given by 

m(r,f)=$-j:nlogi If(reiL)Idt (O<r< l), 

and we set 

if the limit exists, which it will if f is of bounded characteristic. 
Shaginyan [8] considered a proper subclass C of the class of all analytic 

functions of bounded characteristic in D, and for that subclass he has 
proved: If r is a Jordan arc in D except for one endpoint at 1 and iff is in C 
with 

(1 -Izl)log If(z)Ia as z + 1 through r, 

then f z 0. A stronger statement can be made in the case when f is bounded. 
Heins [3, Theorems 7.1 and 7.21 proved: Zf f is a bounded analytic function 
in D with 

(1 -r) log m(r; f)-+ -03 as r+ 1, 

then f E 0. (See [5] for an alternate proof.) We give the following extension. 

THEOREM 2. If f is a meromorphic function (&O) of bounded charac- 
teristic in D, then there exists a subset A of (0, 1) such that (0, l)\A is 
minimally thin at 1 and 

hrir:t,“,f (1 -r)logm(r;f)>--2m(l, l/f). (7) 
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Proof As is well known, we may write f = @i/B&g where B, and B, 
are Blaschke products (or ~1) and g is a zero-free analytic function of 
bounded characteristic in D. We note that 

lois VI 2 log IB, I + log I gl in D. (8) 

Let z, be a point on the circle Iz I = r with If( = m(r;f), and let A, be 
the subset of (0, 1) guaranteed by Theorem 1 for B, . (If B, EZ 1, take 
A, = (0, 1)) Then because IB,(z,.)l > m(r; B,) we have 

(1 - 4 log I B,(z,)l-, 0 as r + 1 through A,. 

This and inequality (8) yield 

lim inf (1 - r) log If( > !!m,‘,“,f (1 - r) log I g(z,)l. 
r-l:rsA, 

(9) 
: I 

Because l/g is analytic and zero free in D, log I gl-’ is harmonic in D; 
hence for IzI <R < 1, 

2~ log I g(z)1 - ’ = /2n P(z; Re”) log ) g(Re”)l - ’ dt 
0 

where P(z; Re”) = (R * - I z I ‘)/I Re” - z 12. Because 

and log x & log+ x for x > 0, we have 

n log I g(z)l-’ < (R - IzI)-’ j2Z log’ I g(Re”)l-’ dt. 
0 

Letting R tend to 1, we obtain 

(1 - I4 1% I &I 2 -2413 l/g) (z E D). (10) 

Since ~(1, l/g) = m(1, I/‘), the desired inequality follows from (9) and 
(IO), and the proof is complete. 

3. A RESULT OF GOL'DBERG 

Let F be a meromorphic function in D, and let < be a point in D. If 
0 < p < 1 - ItI and A, denotes the sequence of poles of F in the disk 
1 z - rl < p, then the characteristic function of F relative to < is given by 
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T&~~F)=&~*~log+ lW+w”)ldt+log (n @/IP-Cl)) 
0 A0 

with the usual modification if F(i) = a. Also we let 

T&l - ]<I, F) = lim 
P-l-Ill 

T&J, F). 

The first result of this section represents a slight improvement of a result 
of Gol’dberg [2, Theorem 31 concerning the growth of the maximum 
modulus M(r;f) of a meromorphic function J: To obtain the statement of 
Gol’dberg’s result, simply replace “is minimally thin” with “has finite 
logarithmic length” in the statement of Theorem 3 below. 

THEOREM 3. If f is a meromorphic function (&O) in D with 
T,(l,f’/‘) < to, then there exists a subset A of (0, 1) such that (0, l)\A is 
minimally thin at 1 and 

lim sup (1 - r) log ] log M(r; f )I < a3 ; 
Wl;rGA 

(11) 

iff is analytic in D, then (11) is valid with “r E A” deleted. 

Proof: Since f/f’ is also of bounded characteristic in D, it follows from 
Theorem 2 that there exist a positive constant K and a subset A of (0, 1) 
such that (0, l)\p is minimally thin at 1 and 

(1 - r) log m(r; flf’) > -K (r E A). 

Thus 

If ‘Wf(z)I < ev (Izl=rEA). 

Because f ‘/f is of bounded characteristic in D, there exists a real number 
a such that f has no zero or pole on the open radial segment to eia and f ‘/f 
has a finite radial limit at eia; hence there exists an a E (0, 1) such that 

1 f ‘(rei”)lf(reia)l < exp 
( 1 
6 (a<r< 1). 

Because of (12), f has no zero or pole on the circle ] z ] = r for each r E A. 
Now choose any r E d\(O, a) and any point z in D that satisfies ] z / = r. Let 
y be the path traversed when a point is moved radially from aeia to reic’ and 
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then along the circle [<I = r to z. A single-valued branch of log f may be 
defined in a neighborhood of y, and we have 

log f(z) - log f(ae’l) = 
I (f’/f>. 
Y 

Considering real parts and using (12) and (13), we deduce that 

Ilog(lf(z)lllf(~e’“)l)l < (2~ + 1) w & . ( ) 

This implies (11). 
Now suppose f is analytic in D. Also suppose M(r; f) is unbounded; 

otherwise there is nothing to prove. Because (0, l)\d has finite logarithmic 
length at 1 (see Remark 1 of Section I), there exists a positive constant C 
such that for each r E (0, 1) there exists an r’ E A for which r’ > r and 
(1 - r) < C(l - r’). Consequently 

(1 - r) log I log M(r; f)l < C( 1 - r’) log I log M(r’; f)l 

when M(r;f) > e, and this completes the proof. 
We now prove a supplement to Theorem 3. 

THEOREM 4. Suppose f is a meromorphic function in D, and suppose 
there exist a finite constant T and a number R E (0, 1) such that 

T&l -R,f’,!f) < T whenever lrl= R. 

If the poles off ‘/f f orm a Blaschke sequence, then there exists a subset A of 
(0, 1) such that (0, l)\A is minimally thin at 1 and 

lim sup (1 - r) log ) log M(r; f )I < 00 ; 
r+l:reA 

(14) 

iff is analytic, then (14) is valid with “r E A” deleted. 

Proof Set F = f ‘1’ Suppose I c/ = R and 0 < p ( 1 - R with F finite at < 
and on the circle C, : Iz - cl = p. Let D, be the disk Iz - 41 < p. For each 
p E D, let G, be a conformal mapping of D, onto D with G,(p) = 0. Define 
the function 

where A, and B, are the sequences of poles and zeros of F in D,. 



300 BELNA AND CARGO 

Let z = r + aeie with 0 < u < p and F(z) # cc. Because IHI = IFI on C, , 
the Poisson-Jensen formula for H is 

271 log ( H(z)1 = /:n P(ueie; pe”) log lF(‘(T + pe”)( dt 

where again P(oe”; pe”) = @’ - a*)/lpe” - aeie I*. Because 

0 < P(ueie; pe”) < (p + a)/@ - a) < 2/@ - a) 

and log x < log’ x for x > 0, we have 

xlogIH(z)l<@-u)-1~2Elogt (F(<+pe”)ldt. 
0 

Then since 

I 2n log’ IW + pe”)l dt < 2nT&p, F) < 27tT, 
0 

we have 

log /H(z)/ < 2T@ -a)-‘. (15) 

Also, it is evident that 

lois IWzI 2 log IW)I + log 
I I 
n G,(z) . (16) 
A, 

Now let B denote the Blaschke product that corresponds to the sequence 
consisting of all the poles of F in D. (Recall that the poles of F are simple 
and occur at the zeros and poles off.) Because 

I~,~~~l=~~I~-~l/l~-pWl forpED, and wEC,, 

the maximum modulus principle gives 

IG,(w)l~I~-wlll~-~4 for p, w E D, ; 

thus we have 

log n G (z) > log n (P - z)/(l - Bz) > log IP(z 
iA0 ’ iH jll 1 

(17) 

Conditions (15) to (17) imply that 

log IF(z)1 < 2T(p -u)-’ -log IB(z)l. 
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Letting p tend to 1 -R we obtain 

log [P(z)1 < 2T[ 1 - (R + o)] -’ - log IB(z)l. 

In particular, if c = Re’@ and z = rei’ with R < r < 1, then u = r-R and 

log IF(reiti)l < 2T(1 - r)-’ - log IB(re’“)l (R <r< 1). (18) 

(Note that by continuity (18) is valid for all real w.) 
Using (18) and applying Theorem 1, we obtain a subset A of (0, 1) such 

that (0, l)\A is minimally thin at 1 and 

(1 - r) log IF(re’@)l < 2T+ 1 (r E A). (19) 

Also, if B has a radial limit of modulus 1 at the point e”l, then by (18) there 
exists an a E (R, 1) such that 

(1 - r) log IF(re’“)l < 2T+ 1 (a<r< 1). (20) 

Now consider the portion of the proof of Theorem 3 that follows display 
(13). The remainder of the proof of Theorem 4 can be obtained from it by 
replacing K with 2T+ 1, (12) with (19), and (13) with (20). 
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