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Abstract

Multi-directional impact forging (MDIF) was applied to a Mg-7Al-2Sn (wt.%) Mg alloy to investigate its effect on the microstructural
evolution. MDIF process exhibited high grain refinement efficiency. After MDIF 200 passes, the grain size drastically decreased to 20 um from
the initial coarse grains of ~500 um due to dynamic recrystallization (DRX). Meanwhile, original grain boundaries remained during MDIF and
large numbers of fine spherical B-Mg;;Al;, particles dynamically precipitated along the original grain boundaries with high Al concentration,
acting as effective pinning obstacles for the suppression of DRXed grain growth. Besides, micro-cracks nucleated during MDIF and propagated

along the interface between the remained globular or cubic Al-Mn particles and Mg matrix.
© 2015 Production and hosting by Elsevier B.V. on behalf of Chongqing University.
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1. Introduction

Magnesium (Mg) alloys are becoming increasingly attrac-
tive for potential application in the automobiles and aerospace
industries because of low density and high specific strength.
However, due to the hexagonal close-packed (HCP) structures,
Mg alloys usually exhibit undesirable ductility and strength at
ambient conditions, which limits their widespread application.

Grain refinement has proven to be an effective approach to
overcome the current drawbacks of Mg alloys. Therefore, various
methods have been applied to Mg alloys to improve the mechanical
properties by grain refinement, such as equal channel angular
extrusion (ECAE) [1,2], cyclic extrusion and compression (CEC)
[3,4], friction stir processing (FSP) [5,6] and multi-directional
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forging (MDF) [7,8]. Feng et al. [5] reported that FSP resulted in
remarkable grain refinement (from coarse as-cast grains to
~15 um) in an as-cast AZ91 Mg alloy, thereby improving signifi-
cantly the mechanical properties. Miura et al. [7] applied MDF to
an AZ61 Mg alloy and obtained ultrafine grains of ~0.6 um, and
consequently, an excellent balance of strength and ductility (yield
stress of 480 MPa and elongation 5%). However, these methods
still stay at laboratory-scale research at the present due to small
size of processed sample, complicated processing procedure and
expensive equipment, which directly leads to low production effi-
ciency and high production costs. In our previous study [9], multi-
directional impact forging (MDIF) was newly proposed and
successfully applied to an AZ61 Mg alloy. MDIF exhibited high
grain refinement efficiency, and has proven to be a simple and
highly efficient method to synchronously enhance strength and
ductility.

On the other hand, Mg-Al-Sn (AT) Mg alloy [10] was newly
designed by General Motors for automotive structural applica-
tions and exhibited more balanced mechanical properties and
higher thermal stability compared to AZ91 alloy. In this study,
therefore, this Mg-7Al-2Sn (wt.%) alloy was subjected to
MDIF and the microstructural evolution during MDIF process
was investigated in detail.

2213-9567/© 2015 Production and hosting by Elsevier B.V. on behalf of Chongqing University.
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Fig. 1. Macroscopic morphology of cubic AT72 alloy samples after MDIF (a) 20, (b) 50, (c) 100 and (d) 200 passes.

2. Experimental procedures

The material used in this study was AT72 Mg alloy (6.88
wt.% Al 1.94 wt.% Sn, 0.33 wt.% Mn, and -balance Mg).
Cubic block samples with a dimension of 65 mm X
65 mm X 65 mm were machined from as-cast AT72 Mg ingot
and solution treated at 420 °C for 24 h. Prior to MDIF process,
these samples were heated to the processing temperature of
300 °C in an electric resistant furnace and kept for 30 min.
MDIF process was carried out using an industrial air pneumatic
hammer machine according to the procedures described in our
previous study [9]. In brief, the forging direction was changed
by 90° from pass to pass (i.e. X to Y to Z to X to...). The cubic
samples were MDIFed to different forging passes and finally
cooled down in air. All the MDIFed samples were free from any
surface defects as shown in Fig. 1.

Microstructure was observed on the central part of the cubic
samples parallel to the last forging direction (LFD), as shown in
Fig. 2, using optical microscopy (OM) and scanning electron
microscopy (SEM, Philips XL30 ESEM-FEG/EDAX)
equipped with an attached energy-dispersive X-ray (EDX). The
specimens for the microstructural observation were etched with
acetic picral (2 g of picric acid, 5 ml of acetic acid, 5 ml of
water and 25 ml of ethanol).

LFD y
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Fig. 2. Schematic illustration of microstructural observation spot in the
MDIFed cubic samples. LFD refers to last forging direction.
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3. Results and discussion
3.1. Microstructures before MDIF process

Fig. 3 shows the microstructures of as-cast AT72 alloy and
corresponding EDX results of the second phase particles. The
as-cast alloy (Fig. 3a) exhibited a typical network eutectic
microstructure comprising of oi-Mg matrix and coarse eutectic
intermetallic phases distributing along the grain boundaries and
within the grain interiors. The BSE image (Fig. 3b) shows that
the coarse eutectic phases distributing at the grain boundaries
consisted of second phases A and B. The corresponding EDX
results of these second phases reveal that second phases A and
B were 3-Mg;;Al;; and Mg,Sn, respectively, which is consistent
with the results reported by Luo et al. [10]. According to the
binary phase diagram [11], the binary eutectic temperatures of
Mgi;Al, and Mg,Sn phases are 437 °C and 562 °C, respec-
tively. Higher thermal stability of Mg,Sn phase makes it more
difficult to be dissolved through solution treatment.

Fig. 4a shows the optical microstructure of AT72 alloy after
solution treatment at 420 °C for 24 h. The grains were dramati-
cally coarsened up to ~500 um and network eutectic phases

were remarkably dissolved into the Mg matrix, thereby result-
ing in a supersaturated solid solution. However, it can be seen
that some globular or cubic second phase particles still existed
within the grain interiors. According to the EDX result in
Fig. 4b, these remained particles within grain interiors were
determined to be Al-Mn second phase rather than Mg,Sn con-
sidering the negligible Sn concentration. Different from our
expectation, no Mg,Sn phase was detected by EDX analysis.
Thus, it can be deduced that Mg,Sn phase was dissolved into
the Mg matrix during solution treatment. In Mg-Al alloys,
Al-Mn particles are usually observed in the micrograph as
globular morphology, which could be AlsMn [12,13] or AlsMns
[14,15]. These globular or cubic Al-Mn phase particles
remained during solution treatment play an important role in
the MDIF process, which will be discussed later in detail.

3.2. Microstructures after MDIF process

Fig. 5 shows the microstructures of MDIFed AT72 alloy
with different forging passes. Obviously, the initial coarse
grains of ~500 um were significantly refined due to dynamic
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Fig. 3. (a) Optical, (b) BSE images of as-cast AT72 alloy and (c, d) corresponding EDX results of the second phase particles indicated in the image (b).
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Fig. 4. (a) Optical microstructure of solution treated AT72 alloy and (b) EDX result of the remained particles within grain interiors after solution treatment.

recrystallization (DRX), suggesting the high grain refinement
efficiency of MDIF process.

After 20 forging passes, as shown in Fig. 5a and b, grain
structure was inhomogeneous and consisted of relatively coarse
DRXed grains of ~60 um in the regions indicated by the blue
circles and fine DRXed grains of ~20 um in the regions indi-
cated by the white circles. Jin et al. [16] reported that the
uneven rate of DRX at different grains was responsible for the
inhomogeneous microstructures. Apparently, the regions con-
taining the coarse and fine grains were separately distributed in
different original grains, as indicated by blue and white circles
in Fig. 5a, which means that these different original grains
experienced uneven rate of DRX. Thus, the inhomogeneous
grain structure in this work was related to the uneven recrys-
tallization rate due to the different orientations of original
grains. Furthermore, our previous study [17] revealed the grain
refinement evolution during MDIF in an AZ61 Mg alloy and
proposed that the uneven rate of DRX in the early forging
passes was ascribed to the activation of different twin types in
different original grains. However, the microstructures during
initial MDIF process were not studied in this study.

With increasing forging passes to 50 passes, the relatively
coarse DRXed grains in some original grains shown in Fig. 5a
are consumed by further DRX process (Fig. 5¢ and d). After
forging 100 passes, homogenous grain structure in different
original grains was achieved and the average grain size of
DRXed grains was ~35 um (Fig. 5e and f). With continuous
forging up to 200 passes, homogenous equiaxial DRXed grains
of ~20 um were achieved (Fig. 5g and h), indicating that DRX in
different original grains had been nearly completed. This further
grain refinement by DRX can be ascribed to continuous change
of forging direction from pass to pass during MDIF. The orien-
tation relationship between basal planes of grains and loading
direction is always changing unlike rolling process [16], i.e., the
basal plane of some grains is perpendicular to the compression
stress, which is not favorable for basal slip due to the nearly zero
resolved shear stress. Thus, the dominant basal slip in the rela-

tively coarse grains always stays active during MDIF. Besides,
even non-basal slips are likely to operate due to grain refinement
and high temperature stimulation (~300 °C). Sitdikov et al. [18]
reported that the interaction between basal slip dislocations and
non-basal slip dislocations facilitates the formation of sub-grain
boundaries and such sub-grain boundaries gradually lead to the
development of high angle grain boundaries with increasing
strain, finally forming new DRXed grains. Meanwhile combined
with the results in our previous study [17], it can be determined
that discontinuous DRX mechanism is responsible for the further
grain refinement of the relatively coarse DRXed grains after 20
forging passes, finally resulting in a homogenous microstructure
with grains of ~20 um.

Besides the grain refinement, another two aspects, i.e., the
original grain boundaries and dynamic precipitation need to be
mentioned. Original grain boundaries indicated by white
arrows in Fig. 5 were easily observed and no tendency of
disappearance was detected during the whole MDIF process.
Dynamic precipitation in dark color was formed along original
grain boundaries as shown in Fig. 5. It can be clearly seen in the
magnified images in Fig. 6 that fine spherical second phase
particles less than 1 um dynamically precipitated near the origi-
nal grain boundaries. EDX result (Fig. 6d) reveals that these
globular second phase particles were B-Mgi,Al;, rather than
Mg,Sn. For Mg-Al alloys, it takes up to about 40 h to achieve
the complete dissolution of the eutectic -phase due to low
diffusion rate of Al in Mg [19]. In this case, solution treatment
at 420 °C for 24 h could not provide sufficient time for uniform
distribution of solute Al atoms into the Mg matrix, resulting in
the higher Al concentration near original grain boundaries than
within grain interiors. Thus, when samples were subjected to
MDIF, B-Mg;;Al;, phase particles were preferentially formed
along original grain boundaries with higher Al concentration
regions and spherical shaped particles dynamically precipitated
from the energy perspective. Much finer DRXed grains of less
than 3 um were observed in Fig. 6¢c, which indicates that
homogenously distributed 3-Mg;;Al,» precipitates near original
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Fig. 5. Optical microstructures of AT72 alloy samples after MDIF (a, b) 20, (c, d) 50, (e, f) 100 and (g, h) 200 passes. Blue and white circles in (a) indicate the region
of coarse and fine grains, respectively. White arrows indicate the original grain boundaries.

grain boundaries were effective pinning obstacles for suppress-
ing the DRXed grain growth.

Fig. 7 shows the SEM images of micro-cracks and EDX
results of the globular or cubic particles in AT72 alloy samples
forged to different passes. Apparently, micro-cracks propagated
along the globular or cubic particles irrespective of forging
passes. EDX results in Fig. 7 reveal that these particles were
Al-Mn phase, which could be AlsMn [12,13] or AlsMns [14,15].

The corresponding average Al/Mn weight ratio in these par-
ticles was around 1.61, which is close to the ratio of 1.96 for
ALMn. According to the Al-Mn equilibrium phase diagram
[11], the concentration of Mn (0.33 wt.%) in AT72 alloy is
sufficient to form Al-Mn particles. The melting point of Al-Mn
phase is as high as 658 °C, which is much higher than that
of B-MgsAli;, (437 °C) and Mg,Sn phase (562 °C). Thus,
these globular or cubic Al-Mn particles remained stable during
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Fig. 6. (a) Optical, (b, d) SEM images and (c) corresponding EDX result of dynamic precipitation in AT72 alloy sample after MDIF 200 passes.

solution treatment due to their higher thermal stability. It can be
clearly observed that micro-cracks propagated along the Al-Mn
particles aggregated area, which may be related to the progres-
sively accumulated stress during MDIF process. Micro-cracks
would be initiated at the interface between the globular or cubic
particles and the matrix. With further deformation, micro-
cracks propagated along these particles to release the accumu-
lated stress. The relationship between the micro-cracks and
second phase during deformation has been discussed in many
studies [5,14,20]. Chen et al. [14] reported that micro-cracks
nucleated at the interface between the B-Mg;,Al,, phase and the
matrix during tensile deformation, which is ascribed to incom-
patibility between the body-centered cubic structure of
-Mgi;Al;, phase and HCP structure of Mg matrix. In this
work, micro-cracks were possible due to incompatibility
between Al-Mn phase and the Mg matrix.

4. Conclusions

In this study, MDIF process was applied to AT72 Mg alloy
and the microstructural evolution was investigated. After

MDIF 20 passes, inhomogeneous grain structure formed due
to uneven rate of DRX in different original grains. With
continuous forging up to 200 passes, fully DRXed
microstructure was obtained with fine grains of 20 um,
suggesting the high grain refinement efficiency of MDIF
process. Meanwhile, large numbers of fine spherical shaped
B-Mgi;Al;, phase dynamically precipitated along the original
grain boundaries with high Al concentration during MDIF,
acting as effective pinning obstacles for the suppression of
DRXed grain growth. Besides, micro-cracks nucleated
during MDIF and propagated along the interface between
the remained globular or cubic Al-Mn particles and Mg
matrix.
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Fig. 7. SEM images of micro-cracks and EDX results of the globular or cubic particles in AT72 alloy samples after MDIF (a) 20, (b) 50, (c) 100 and (d) 200 passes.
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