EDITORIAL COMMENT

Who Needs a Defibrillator?

The Beat Goes On*

John D. Fisher, MD, FACC
Bronx, New York

In this issue of the Journal, Elhendy et al. (1) and Singh et al. (2) wrestle with the problem of how to predict which patients who qualify for implantation of an automatic implantable cardioverter-defibrillator (ICD) will actually benefit from the device. These studies reflect a renewed interest in risk stratification to improve the specificity of the selection process, to improve the cost-effectiveness of ICD therapy, and to reduce the number needed to treat (NNT) to save one life.

See pages 1712 and 1721

Over the last decade, there has been a dramatic rise in the number of ICDs in use. This has been driven by a combination of results from a successive series of randomized clinical trials and by easier implantation techniques. In addition, a great expansion has occurred in the indications for primary prevention (prophylactic) ICD use. At the same time, many restrictions have been discarded, including failure to respond to antiarrhythmic drugs, presence of non-sustained ventricular tachycardia (VT), and (usually) VT inducibility at electrophysiologic studies (EPS). Thus, ever larger numbers of patients at risk of an arrhythmic event can be offered the protection that is provided by an ICD. At the same time, however, the percentage of patients who qualify for implantation of an automatic implantable cardioverter-defibrillator (ICD) will actually benefit from the device. These studies reflect a renewed interest in risk stratification to improve the specificity of the selection process, to improve the cost-effectiveness of ICD therapy, and to reduce the number needed to treat (NNT) to save one life.

Over the last decade, there has been a dramatic rise in the number of ICDs in use. This has been driven by a combination of results from a successive series of randomized clinical trials and by easier implantation techniques. In addition, a great expansion has occurred in the indications for primary prevention (prophylactic) ICD use. At the same time, many restrictions have been discarded, including failure to respond to antiarrhythmic drugs, presence of non-sustained ventricular tachycardia (VT), and (usually) VT inducibility at electrophysiologic studies (EPS). Thus, ever larger numbers of patients at risk of an arrhythmic event can be offered the protection that is provided by an ICD. At the same time, however, the percentage of patients who qualify for implantation of an automatic implantable cardioverter-defibrillator (ICD) will actually benefit from the device. These studies reflect a renewed interest in risk stratification to improve the specificity of the selection process, to improve the cost-effectiveness of ICD therapy, and to reduce the number needed to treat (NNT) to save one life.

Over the last decade, there has been a dramatic rise in the number of ICDs in use. This has been driven by a combination of results from a successive series of randomized clinical trials and by easier implantation techniques. In addition, a great expansion has occurred in the indications for primary prevention (prophylactic) ICD use. At the same time, many restrictions have been discarded, including failure to respond to antiarrhythmic drugs, presence of non-sustained ventricular tachycardia (VT), and (usually) VT inducibility at electrophysiologic studies (EPS). Thus, ever larger numbers of patients at risk of an arrhythmic event can be offered the protection that is provided by an ICD. At the same time, however, the percentage of patients who qualify for implantation of an automatic implantable cardioverter-defibrillator (ICD) will actually benefit from the device. These studies reflect a renewed interest in risk stratification to improve the specificity of the selection process, to improve the cost-effectiveness of ICD therapy, and to reduce the number needed to treat (NNT) to save one life.

Over the last decade, there has been a dramatic rise in the number of ICDs in use. This has been driven by a combination of results from a successive series of randomized clinical trials and by easier implantation techniques. In addition, a great expansion has occurred in the indications for primary prevention (prophylactic) ICD use. At the same time, many restrictions have been discarded, including failure to respond to antiarrhythmic drugs, presence of non-sustained ventricular tachycardia (VT), and (usually) VT inducibility at electrophysiologic studies (EPS). Thus, ever larger numbers of patients at risk of an arrhythmic event can be offered the protection that is provided by an ICD. At the same time, however, the percentage of patients who qualify for implantation of an automatic implantable cardioverter-defibrillator (ICD) will actually benefit from the device. These studies reflect a renewed interest in risk stratification to improve the specificity of the selection process, to improve the cost-effectiveness of ICD therapy, and to reduce the number needed to treat (NNT) to save one life.

*Editorials published in the Journal of the American College of Cardiology reflect the views of the authors and do not necessarily represent the views of JACC or the American College of Cardiology.

From the Department of Medicine, Division of Cardiology, Arrhythmia Service, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, New York. Dr. Fisher is a consultant for Medtronic and investigator or speaker for St. Jude Medical and Guidant, all of which manufacture ICDs.
Singh et al. (2) found that a hospital admission for heart failure during follow up was a strong predictor of reaching the end points of VT or ventricular fibrillation (VF), or the combined end point of VT, VF, or death. This is another reminder of the dynamic and progressive nature of heart disease in many patients. The findings are consistent with earlier reports that ICD patients who receive their implant for arrhythmia rather than heart failure indications tended to have more events including mortality during follow up if ejection fractions were lower (14,15). In contrast, patients implanted primarily for heart failure indications (e.g., SCD-HeFT) benefited less from the ICD if they were in New York Heart Association functional class III versus class II (5). This again marks worsening heart failure as a good predictor of a bad outcome. It has long been known that simply receiving an ICD shock has been associated with a poorer prognosis (16).

In summary, both papers by Elhendy et al. (1) and Singh et al. (2) in this issue of the Journal remind us that patients have disease that progresses at an unpredictable rate, and that some patients are lucky enough to have warning signs (spontaneous or through testing) that can help avert a cataclysmic event. For the physician the challenge is to learn to recognize and use these warning signs, and to develop better predictive tests. For insurers and for society, the challenge is how to pay for it all (17–20). For citizens at large, the challenge is to reach a consensus on just how to balance and to prioritize these competing forces. “All well and good, but not for my patient (or loved one)” is an attitude challenge we all must face.

Reprint requests and correspondence: Dr. John D. Fisher, Cardiology/Arrhythmia Offices, North 2, Montefiore Medical Center, 111 East 210th Street, Bronx, New York 10467. E-mail: jfisher@montefiore.org.

REFERENCES


