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Abstract 

Technology of satellite has many advantages over long instruments used nowadays and gives unparalleled precision 
compared to other systems. Nonetheless, it is full of problems related to the spread in the atmosphere, barriers in the 
receiving medium, the instability of the clocks used or the receiver’s electronic noise of the errors that these 
phenomena cause may lead to inaccuracies of over to tens of meters. This paper describes methods for estimating 
the pseudo-range errors based on different statistical filtering. The Rao-Blackwellized filter has given interesting 
results comparing to the extended kalman filter, but the particle filter with kalamn filter proposal is much better than 
many other particle filtering algorithms. 
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1. Introduction 

The accuracy of GNSS (Global Navigation Satellite Systems) positioning is a function of the geometry of the 
satellite’s distribution in the data collection and the accuracy of measurements, this latter depends on the type of 
observations and the resolution of the measurements made by the receiver. Moreover, errors inherent in GNSS 
system also influence the positioning quality1. GNSS performance depends greatly on the signal propagation 
environment. The propagation characteristics in the atmosphere are fairly well known. By cons, it is more difficult 
to predict and analyze the impact of the environment close to the antenna 2.This paper deals with the modelling of 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the International Conference on Advanced Wireless, Information, 
and Communication Technologies (AWICT 2015)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82015201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.12.027&domain=pdf


259 Meriem Jgouta and Benayad Nsiri  /  Procedia Computer Science   73  ( 2015 )  258 – 265 

positioning errors to improve location accuracy. For the continuation of this work different statistical methods 
envisaged for a GNSS positioning. 

Many complex fusion methods are used to improve the precision of the pseudo-range estimation. These methods 
include continuously the available measurements in some optimal sense. Statistical adjustment by LS (Least Square) 
does not take account of any information on the measures and noise to correct its estimate position3. Algorithms 
modified on the basis of LS have been proposed -such as the ILS (Iterative Least Square) algorithm-4 to avoid 
searching the approximate initial position and achieve higher accuracy than that of LS algorithm. However, the 
accuracy is much lower than that of the EKF (Extended Kalman Filter) algorithm 5, 6. The KF is the most popular, it 
uses the a priori information and the kinematics equations to compute an optimal position which minimizes the 
MSE, but in our case, the classical KF(Kalman Filter) cannot be used because the expression of the pseudo-range is 
weakly nonlinear. Then, we must use the non-linear version of this filter. For this filter, the state noise and 
measurement noise are independent, white and Gaussian. The performance of this filter is, however, strongly 
degraded when assumptions about the noises are not respected or if the non-linearity of the models is strong during 
dynamic changes or disturbance measurements. 

Unlike previous filters, the PF (Particular Filter) is not the assumption of white Gaussian noise and linear systems. 
It allows solving problems of multi-modal noise7. The principle of this method is to generate a large number of 
samples from a probability distribution. For each sample, a weight is associated, which provides a better estimation 
of the state. As EKF, the PF is also part of the family of suboptimal filters. This type of filter makes an estimation of 
the unknown state based on SMC (Sequential Monte Carlo), itself based on a representation by mass point’s 
probability densities8. More complete descriptions of this method have been made in 8 and 9. One of the big 
disadvantages of this filter is the large computational cost. In this paper, we introduce the main statistical filtering 
concepts necessary to understand the work presented. We presented the modeling state and the main estimators that 
can be used for GNSS positioning. 

This paper is organized as follows. First, we briefly review how to determine the position of a GPS Global 
Positioning System) receiver. Then, we explain the different statistical method. Next, how to evaluate the quality of 
the observations and techniques of weighting them according to their quality are discussed. Finally, the simulation 
results and comparison with other methods are presented.  

2. Problem formulation  

     Measuring pseudo range is an estimate of the receiver-satellite distance derived from the measurement of the 
propagation time of the signal between the satellite and the receiver.  This time is measured by the cross-correlation 
between the replica of the PRN(Pseudo-random Noise) code, C/A(Clear /Acquisition code) or P(Precision code), 
generated by the receiver and the PRN code transmitted by the satellites10. In actual propagation conditions, a 
number of phenomena lead to errors in the pseudo range. Then, according to the literature and in Cartesian 
coordinates, the pseudo range measured on the signal from satellite  is as follows:  

²  (1)  

 The coordinates of the satellite s and  the coordinates of the receiver respectively at the time 
of transmission and reception of the signal,  : the celerity,  ,  : the receiver and satellite clock bias respectively, 

: The pseudo-range error for satellite .  

 (2)  

 And  are the ionospheric and tropospheric errors,  is the error caused by signal reflections (multipath errors), 
and  is the noise receiver.We set  and considering  the nonlinear term of equation (1): 
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² (3)  

To linearize f, we will use the limited development in Taylor series, this development cannot be done only 
in the vicinity of a known position (origin or previous position). We need to redefine the position estimate based on 
the known position as follows: 

 (4)  

With ( , , ) is the initial position and ( , , ) is the update of the position relative to the initial 
position at time . Using Taylor’s series and limiting to the first order the equation (2) and (3) can be elaborated as 
below: 

 (5)  

Developing the partial derivative of the equation (4) and posing  as the approximation of the satellite-receiver 
distance:  

² (6)  

The expression of the pseudo range becomes: 

 (7)  

To estimate a position, a single pseudo-range measurement is not sufficient. At least four different 
measurements to calculate a position in 3D. In practice, the receiver takes into account all the pseudo-measures 
available in order to compensate for any disruption of signals or any bad configuration. Therefore, it is necessary to 
reformulate the equation (7) in matrix form by taking into account all available pseudo-ranges. This reformulation is 
given as follows: 

 (8)  

To simplify the notation we put , the matrix representation of (8) is identified as: 

 (9)  

The equation (9) is the matrix form of the observation equation; we will need to express the evolution equation in 
this form. For this, firstly, it is necessary to express the evolution of the antenna’s position. 
For the model of state, we have to describe the dynamics of a system in motion. The equation of motion along the 
uniformly accelerated rectilinear axis x is given by: 

 (10)  

 Where  is the sampling step, is the acceleration and  the speed. Many cases are possible for a 
rectilinear movement.I 
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 (11)  

 (12)  

2.1. Position estimation using ILS 

In this part, we describe the navigation equation solution based on the ILS method. Let  be the number of 
the iterations,  The increments ( , , ) update the receiver coordinates as follows: 

 (13)  

Taking into account the errors of pseudo range, we put: 

 (14)  

And the equation (7) becomes: 

 (15)  

 (16)  

Then we obtain the ILS problem: 

=  (17)  

To solve the equation, we need to find i which minimizes the length of the error  as follows: 

 (18)  

2.2. The EKF approach 

The EKF uses the non-linear system for computing the predicted state estimate  and the non-linear 
measurement model for the predicted measurement  8. Then the state model takes on the KF can be 
generally expressed as follows: 
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 (19)  

Where F is a known matrix with proper dimensions, and  are uncorrelated, zero-mean, white random 
processes,  is a covariance matrices and , such that: 

 (20)  

 (21)  

, ,  (22)  

 (23)  

The algorithm of the EKF is given as follows: 
Predicted and filtered estimations: 

 (24)  

 (25)  

Kalman Gain : 

 (26)  

Predicted  and filtered error covariance matrices: 

 (27)  

 (28)  

Initial state: 

,  (29)  

2.3. The Rao-blackwellization filter 

Particle filtering methods construct a point mass representation of a distribution from a set of random samples 
(called particles) that explore the state-space 11. 

The state vector with a part of   which is conditionally linear and Gaussian on . The 
main idea of RBPF (Rao-Blackwellization Particular Filter) is to exploit this decomposition of the state vector 12. In 
this case, the first part of the filter consists in providing a PF on then updating  using  . As 

follows conditionally a linear Gaussian model on ,  is Gaussian and KF can be used to 
update . According to the cases, KF may be replaced by an EKF or UKF(Unscented Kalman Filter). The 
advantage of this method is that it reduces the error variance. Since is associated with each particle , it is 
necessary to make a set of  steps of Kalman to update . The computational cost is more important for this 
method than the previous filter versions. The Algorithm is as follows:  
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Generating the first part of the state vector and considering the importance density  and  samples  

 (30)  

Generating the second part of the estimated state vector conditionally to the first by a Kalman step 

 (31)  

Calculating the weight assigned to the particle   

 (32)  

Calculating the sum of the weights      

 (33)  

Performing the resampling 

 (34)  

3. SIMULATION RESULTS  

3.1. EKF vs. ILS performance 

We used the EKF function with the application of GPS navigation. Results presented  in  the  paper  are  of  long-
term  static  data  from  several  stations around the world with different GPS receivers, as well as from kinematic 
experiments. The pseudo range and satellite position of a GPS receiver at fixed location for a period of 25 seconds is 
provided. Respecting the result of each algorithm, the position error of , y and z are respectively shown in Table 2 
and Table 3. 

Table.1. Position error of each axis for different algorithms (m). 

Axis Algorithm Mean Value Standard 
deviation 

 

x 

ILS -0.9041 7.568  

EKF -0.0069 1.555  

 

y 

ILS -1.5654 4.437  

EKF -0.00841 1.827  

 

z 

ILS 4.2109 5.394  

EKF -0.0013 2.388  

 
Combining the statistic data in Table 1 with the figure 1, the position error of ILS algorithm are within 12 m; the 

position error of EKF algorithm are within 3 m. Compared with ILS algorithm, the precision of position EKF 
algorithm are much higher. 

3.1. RBPF performance 

Following the simulation of positioning errors of an aircraft, the pseudo-ranges corresponding to the satellites 
visible from the aircraft are evaluated. Beforehand, the positions of the satellite in their orbits have been calculated 
all along the trajectory. Figure 2 shows different states of a particle filter which generates a result of estimation; we 
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can see that RBPF coincide better with the true state. Another advantage of RBPF classification algorithms is that 
they give entire probability estimates of class belonging as shown in Figure 3.  

 

 
Fig. 1. Comparison of tracking performances using EKF and ILS algorithms. 

 
Fig. 2. True vs. predicted state by PF and RBPF.    Fig3.Predective density 

 

3.2. RBPF vs. EKF performance 

According to the figure 5, the RBPF clearly outperforms the EKF. Specifically, the EKF suffers from an 
important track loss when an abrupt change occurs in the corresponding parameter. Table 2 shows the averaged 
MSE (Mean Square Error) values corresponding to the tracking shown in Fig. 1 averaged over 100 repeated Monte-
Carlo runs. It confirms the finding in Fig. 1 that the EKF diverges quickly while the RBPF does not.  

Table.2. the mean square error and variance after nonlinear filtering algorithm. 

Algorithm Mean square error 

Mean Variance 
EKF 0.36969 0.0161216 
PF 0.19089 0.041927 
RBPF 0.015654 0.0004159 
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Fig. 4. the simulation of state and observation.  Fig.5. The position error for EKF and RBPF 

4. Conclusion  

Currently, the GPS is the only operational satellite positioning system; the algorithms are mainly tested on 
simulated GPS data. An opening on future GNSS systems will however made by testing the algorithms with data 
Simulated GPS-Galileo. RBPF attain good results in solving the nonlinear and non-Gaussian problems. 
Experimental results reveal that the RBPF algorithm is much better than many other particle filtering algorithms. 
RBPF algorithm provides a new method for solving the problem in the nonlinear filtering field. In the next step, we 
will solve the problem with mixed Kalman particle filter (MKPF) target with comprehensive algorithms and 
parameters estimation problem of nonlinear systems. 
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