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1. INTR~DLJcTI~N 

Let E be a real Banach space with norm I( - 11. Consider the initial value 
problem 

u’ =f(& u), 40) = uo, (1.1) 

where u,fE E. Generally speaking, the methods of proving existence of 
solutions of (1.1) consist of three steps, namely, 

for (1.7; 
constructing a sequence of approximate solutions of some kind 

; 
(ii) showing the convergence of the constructed sequence; 

(iii) proving that the limit function is a solution. 

Iffis continuous, steps (i) and (iii) are standard and straightforward. It is 
step (ii) that deserves attention. This in turn leads to three possibilities, 
namely, to show that the sequence of approximate solutions is (a) a Cauchy 
sequence, (b) relatively compact so that one can appeal to Ascoli’s theorem, 
and (c) a monotone sequence in a cone. The first two possibilities are well 
known and are discussed in [2, 31. This paper is devoted to the investigation 
of (c) which leads to the development of a monotone iterative technique in 
an arbitrary cone. 

II. PRELIMINARIES 

Let E be a real Banach space with norm )I - (1 and let E* denote the set of 
continuous linear functionals on E. A proper subset K of E is said to be a 
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cone if XcK for n>O, KfKcK, K=Z? and Kn(-K)= (0). Here Z? 
denotes the closure of K. The cone K induces a partial ordering on E defined 
by u < u iff u - u E K. Given a cone K, we let K* = (4 E E*. 4(u) > 0 for 
all u E K }. A cone K is said to be normal if there exists a real number N > 0 
such that 0 < u < u implies I(. ]] < N ]] u I(, where N is independent of u and I’. 
We shall assume in this paper that K is a normal cone. 

Let a denote the Kuratowski’s measure of noncompactness the properties 
of which may be found in [2,3 1. 

For any u,, w,, E C[Z, E] such that no(t) < w,(t) on I where Z = (0, T], we 
define the conical segment [uO, wo] = {u E E: r,(t)< u < M'&). f E I}. 

Let us consider the IVP 

u’ =f(h u>, u(0) = UfJ, (2.1) 

where f E C[Z x E, E]. Let us list the following assumptions for convenience. 

(Al) For any bounded set B in E 

a-(~ x B)) <La(B), for some L > 0; 

(AZ) L’~, rt10 E C’[Z, E] with co(t) < w,,(t) on I such that 

c; <f(t, u()). 

w;, >f(r, wo) on I: 

(A3) f(r, U) -f(t, v) > -M(u - v) whenever u > ~1 and U, t! E [co, w,, 1 

for some M > 0. 
A function f is said to be quasimonotone nondecreasing relative to K if 

zl< u and 4(~’ - U) = 0. d E K* implies 

W@. c)) < w-0, f4 1). 

Clearly when (A3) holds, f is quasimonotone. 

III. MONOTONE ITERATIVE TECHNIQUE 

In order to develop the monotone iterative technique, we need to consider 
the linear IVP 

u’ = F(t, u), u(0) = ug 1 (3.1) 

where F(t, U) =f(r, q(t)) - M(u - q(t)) and r~ E C[Z, E] such that 
u,(t) < q(t) Q w,(t) on 1. The following lemma shows that problem (3.1) has 
a unique solution on I. 
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LEMMA 3.1. Let assumption (Al) hold. Then the IVP (3.1) possesses a 
unique solution on I. 

ProoJ For any bounded set B in E, we have, by (Al), 

a(F(I X B)) < (L + M) a(N)) + Ma(B) = Ma(B), 

since a continuous function maps a compact set into a compact set. Hence 
for any u0 such that u,(O) < u,, < KJ,,(O) problem (3.1) has a solution on an 
interval [0, a), a < T. See [2, 31. Furthermore, 

where C = max, IIf(t, q(t)/1 + M max, I/ q(t)/1 . 
Setting g(t, r) = Mr + C. we see that g(t, r) is monotone nondecreasing in 

r for each t, and the solutions of the scalar differential equation r’ =g(t, r), 
r(0) - r,, > 0 are bounded on I. Hence the solutions of IVP (3.1) exist on I. 
See [3, Theorem 4.1.11. Since the uniqueness of solutions of (3.1) follows 
trivially from the linearity of F, proof of lemma is complete. 

For each q E C[I. E] such that ~(,(t) < v(t) < I’, on I, we define the 
mapping A by Av = u, where u is the unique solution of (3.1) corresponding 
to v. The following result concerning mapping A holds. 

LEMMA 3.2. Suppose that assumptions (Al), (AZ) and (A3) hold; then 

6) v,, ,< Au0 and bvO > Awl,; 

(ii) A is monotone on [v,, wO], that is, ifq,, t12 E [cu. wO] Gth q, < qz 
then Aq, < Ar,lz. 

Proof. (i) Suppose that AU, = L’,. Set p(r) =g[c,(t) - c,,(t)] so that 
p(0) > 0, where 4 E K*. Then 

P’ > #[f(t, ug) - M(u, - c’cl) -f(t9 %)I = - MP 

in view of (A2). As a result, we have p(t) >p(O) e-“” > 0 on I. Since d E K” 
is arbitrary, this implies v, > L’,, on I proving u0 ,< Auo. Similarly we can 
show that w, > A IV,, . 

To prove (ii), let q,, qz E C[Z, E] such that q, < q1 on I and suppose that 
Aq, = u,, Aqz = u2. We set p(t) = #[u,(t) - u,(t)] so that p(0) > 0, where, as 
before, Q E K*. It then follows by using (A3) that 

P’ = W-(6 v*) - Wu, - a*) -f(tv rll) + Wu, - v,)] 

a ‘a-qrl* - v,) - wu, - rlz) + M(u, - q,)] = -Mp. 

Consequently p(t)>p(O)e-“‘2 0 on I and this proves Aql <Aq2. The 
proof of the lemma is complete. 
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In view of Lemma 3.2, we can define the sequences (r,}. (K’,,} as follows: 

u, = AC,_, and II’, = A w, _ ! . 

It is easy to see tat (v,}, ()v~} are monotone sequences such that ~1, < it’, and 
L’, 3 H:, E [co. IV,,]. We shall now show that there exist subsequences of { 1‘,, I. 
(K’,,} which converge uniformly on I. 

LEMMA 3.3. Under the assumptions of Lemma 3.2, the sequences (L’,,), 
(N’,,} are uniformly bounded, equicontinuous and relatir~e!,~ compact on I. 

Proof: Since the cone K is assumed to be normal, it follows from 
L’, . IV,, E IV,,, IC~I that (I,‘“}, ( LV,} are uniformly bounded. This implies the 
equicontinuity of the sequences by using standard estimates and the fact that 
.fmaps bounded sets into bounded sets which is a consequence of (Al ). Now 
we set B(t) = (~,(f)},“=~ so that B’(t) = (c;(t)}~-=o and m(f) = a(B(t)). Using 
the standard arguments as in [ 2, 3). we get 

D-m(t) <a yWn(f-4 (” 
h \,=” 

< a(conv(lLl~(t)t,:-,)). 

Thus we have 

D-m(f)< ,‘;T+ a (i!B’(x)). whereJ,= It-h.t)cI. 

EvidentI) 

a (UB’(s))<a (U Lf(t,L~,-,(I))J?.,) +Ma (LJ it.,,(~)li-,,) Jh Jh 

<CL + 2Wa (LJB(s)). 

The equicontinuity of r,(t) now yields 

D-m(t) < (L + 2M) m(t), t E I. 

Since m(0) = a( (v,(O)},“=,) = a(u,, t’,,(O)) = 0, it is immediate that m(f) = 0 
on 1. which implies the relative compactness of the sequence (c,(t)} for each 
t E I. Similarly (up,(l)) is relatively compact for each t E I. The proof of the 
lemma is complete. 

We now apply Ascoli’s theorem to the sequences (L’, 1. ( LC,} to obtain 
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subsequences {u,J, (w,,) which converge uniformly on I. Since the 
sequences (u,}, {w,,} are monotone, this then shows that the full sequences 
converge uniformly and monotonically to continuous functions, that is, 
lim n+oo v,(t) = p(t) and lim,,, w,(r) = r(t) on I. It then follows easily from 
(3.1) that p(t) and r(Z) are solutions of IVP (2.1) on I. 

Finally we show that p(t), r(t) are minimal and maximal solutions of 
(2.1). To this end, let u(t) be any solution of (2.1) on Z such that 
u E [u,,, w,]. Assume that U, < u < w, on I. Set p(t) = @[u(r) - v,+,(t)], so 
that p(O) = 0, where, as before, 4 E K *. Then by (A3) and the assumption 
v, < u, we have 

P’ = ti [fk u> -f(tv v,> + M(u, + , - 0”) 1 
~~[--M(u-v”)+M(u,+,-vv,)]=-MP. 

This implies u n + , & u on I. Similarly, we can show u < w, + 1 on I. Since 
u E [uO, wO], we have, by induction, u, < u < w, on Z for all n. Thus we 
obtain, taking the limit as n + co, p(t) < u(t) < r(t) on I, proving p(t), r(t) 
are minimal and maximal solutions of (2.1) on I. We have therefore proved 
the following main result. 

THEOREM 3.1. Let the cone K be normal and assumptions (Al), (A2) 
and (A3) hold. Then there exist monotone sequences Iv,,}, (w,} which 
converge uniformly and monotonically to the minimal and maximal solutions 
p(t), r(t), respectively, of the ZVP (2.1) on [uO, wO]. That is, if u is any 
solution of (2.1) in [vO, w,,], then 

COROLLARY 3.1. Zf the solutions of ZVP (2.1) are unique, then the 
assumptions of Theorem 3.1 imply that p(t) = u(t) = r(t) on I. 

Remark 1. If f is quasimonotone relative to K where K is a solid cone, 
the existence of extremal solutions is given in [3]. On the other hand, when 
K is not assumed to be solid and function f maps Z x K into E, existence of 
extremal solutions is also known. See [ 11. 

Remark 2. Suppose that E = R” and K = I?:, the standard cone. Let 
f(t, L) be quasimonotone nondecreasing in u for each t E I, that is, u < u and 
Ui = Vi implies fi(t, V) <fi(t, u). Suppose further that for each i, i = 1, 2,..., n, 

fi(t, v, ,..., ui ,..., v,) -fi(t, v, ,..., vi ,..., vn) > -M(ui - vi), 

where voi(t) < LJ~ & ui < wloi(t). Then the conclusion of Theorem 3.1 is valid, 
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provided (A2) holds, in addition [4]. In this case. the forgoing two 
conditions on f imply 

f(f, u) -f(t, 0) > - M(u - L’) where co < I! < u < b1’o , 

which corresponds to (A3). Thus when we assume the last condition, the 
quasimonotonicity off is subsumed in it. Of course, one does not need (A 1) 
when E = IF”. In [4]. f is allowed to satisfy a mixed quasimonotone 
condition and the results obtained there are in that general set up. If qi = 0 

for each i. the results of [4] reduce to the case considered in this remark as 
was noted there. 

REFERENCES 

I. K. DEIMLING AND V. LAKSHMIKANTHAM, On existence of extrema) solutions of differential 

equations in Banach spaces, J. Nonlinenr Anal. 3 (1979). 563-568. 

2. K. DEIMLING. “Ordinary Differential Equations in Banach Space.” Lecture Notes in 

Mathematics No. 596. Springer-Verlag, Berlin/New York. 1977. 

3 _. V. LAKSHMIKANTHAM AND S. LEELA. “An Introduction to Nonlinear Differential Equations 

in Abstract Space.” Pergamon, Oxford, 1981. 

4. V. LAKSHMIKANTHAM. S. LEELA AND M. N. OGUZT~RELI, Quasi-solutions, vector 

Lyapunov functions and monotone method. IEEE Trans. Auroma. Confrol 26 ( 198 1). 

1149-I 13. 


