

WWW.MATHEMATICSWEB.ORG

Journal of Algebra 266 (2003) 27-33

www.elsevier.com/locate/jalgebra

Tame A_n -extensions of $\mathbb{Q}^{\,\, \Leftrightarrow \,}$

Bernat Plans ^a and Núria Vila^{b,*}

 ^a Dept. de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
^b Dept. d'Àlgebra i Geometria, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585,

08007 Barcelona, Spain

Received 10 July 2001

Communicated by Michel Broué

Abstract

For every positive integer *n* and every finite set *S* of prime numbers, we construct A_n -extensions of \mathbb{Q} unramified at all primes in $S \cup \{\infty\}$; moreover, these extensions are obtained as splitting fields of totally real monic polynomials in $\mathbb{Z}[X]$ of degree *n* whose discriminant is not divisible by any prime number *p* in *S*. As a corollary, we obtain that there exist infinitely many linearly disjoint tamely ramified A_n -extensions of \mathbb{Q} .

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

With regard to the Inverse Galois Problem with prescribed ramification behaviour, B. Birch posed the following question [1]:

Problem. Given a finite group *G*, is there a tamely ramified normal extension F/\mathbb{Q} with $\operatorname{Gal}(F/\mathbb{Q}) \cong G$?

In this paper we consider the above question for $G = A_n$, the alternating group. We obtain an affirmative answer in this case, as a consequence of our main result:

⁶ Corresponding author.

^{*} Research partially supported by MCYT grant BFM2000-0794-C02-01.

E-mail addresses: bernat.plans@upc.es (B. Plans), vila@mat.ub.es (N. Vila).

^{0021-8693/03/\$ –} see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0021-8693(03)00380-6

Theorem 1.1. For every positive integer n and every finite set S of prime numbers, there exist infinitely many linearly disjoint extensions of \mathbb{Q} , each one obtained as the splitting field over \mathbb{Q} of a totally real monic polynomial $f(X) \in \mathbb{Z}[X]$ of degree n such that:

- (1) The discriminant of f(X) is not divisible by any prime number of S.
- (2) f(X) has Galois group A_n over \mathbb{Q} .

It is well known that, given a monic polynomial f(X) in $\mathbb{Z}[X]$ of degree n and a prime number p not dividing its discriminant, the decomposition type of $f(X) \pmod{p}$ coincides with the permutation type of any Frobenius element over p in the Galois group of a splitting field of f(X) over \mathbb{Q} , $\operatorname{Gal}_{\mathbb{Q}}(f(X)) \subseteq S_n$. One can ensure that $\operatorname{Gal}_{\mathbb{Q}}(f(X)) \cong S_n$ just by requiring the reductions of f(X) modulo some prime numbers to have some well-chosen decomposition types. Moreover, by Tchebotarev's Density Theorem, this finite set of primes can be assumed to be disjoint with any finite set S given in advance. It follows that there exist S_n -extensions of \mathbb{Q} unramified at all primes in a fixed arbitrary finite set.

In the case of the alternating group, the local conditions on f(X) (at S) must be compatible with a global one that guarantees $\operatorname{Gal}_{\mathbb{Q}}(f(X)) \subseteq A_n$: the discriminant of f(X)must be a square in \mathbb{Q} . This can be achieved by requiring that f(X) arises by suitable specialization of a certain well-chosen polynomial in $\mathbb{Q}(T)[X]$ with Galois group over $\mathbb{Q}(T)$ isomorphic to A_n .

We first construct a polynomial P(X) of degree *n* with well-chosen local behaviour; we force P(X) to satisfy some extra conditions which enables us to apply a result of J.F. Mestre [2] in order to obtain a regular A_n -extension of $\mathbb{Q}(T)$ defined by a polynomial of type P(X) - TQ(X). Applying Hilbert's Irreducibility Theorem to P(X) - TQ(X) we obtain the desired A_n -extensions of \mathbb{Q} by suitable specialization of T.

We can argue as above only for odd *n*. As noticed in [2], from a regular A_n -extension of $\mathbb{Q}(T)$ of type P(X) - TQ(X) we can always obtain a regular A_{n-1} -extension of some $\mathbb{Q}(U)$. We can then deduce the main result for even *n* from the odd *n* case provided P(X) is chosen carefully enough.

2. Previous results

We first recall Mestre's result [2, Proposition 2].

Proposition 2.1. Let P(X) be a monic polynomial in $\mathbb{Z}[X]$ of odd degree $n \ge 3$ such that

- (i) P(X) has square integer discriminant,
- (ii) $P(X) \equiv X^n X \pmod{l}$ for some prime l not dividing n(n-1)(n-2).

There exists a polynomial $Q(X) \in \mathbb{Z}[X]$ of degree at most n - 1 such that P(X) - TQ(X) defines a regular A_n -extension of $\mathbb{Q}(T)$.

Note that, using Mestre's terminology, assumption (ii) ensures P(X) being H-general (cf. [2, Proposition 4]).

Let *S* be a finite set of prime numbers.

Our purpose is to apply Proposition 2.1 to a polynomial of type P(X) = Xg(X)h(X); we first prove the existence of h(X) and g(X) with suitable local properties, in particular at all primes in $S \cup \{\infty\}$, and such that the polynomial h(X)g(X) has square integer discriminant.

D(f(X)) will denote the discriminant of a polynomial f(X); the resultant of $f_1(X)$ and $f_2(X)$ will be denoted by $R(f_1, f_2)$.

Lemma 2.2. Let $n \ge 7$ be an odd integer. Given a prime number $l \notin S$ such that $l \equiv 1 \pmod{n-1}$, there exist monic polynomials h(X) in $\mathbb{Z}[X]$ of degree n-3 satisfying the following conditions:

- (i) h(X) divides $X^{n-1} 1$ in $\mathbb{F}_l[X]$,
- (ii) h(X) is irreducible in $\mathbb{F}_p[X]$ for every $p \in S$, $p \neq 2$,
- (iii) h(X) does not have irreducible factors of degree less than 3 in $\mathbb{F}_2[X]$ and $D(h(X)) \equiv 5 \pmod{8}$,
- (iv) all roots of h(X) are real.

Proof. By the Chinese Remainder Theorem, the existence of h(X) satisfying conditions (i), (ii), (iii) together is equivalent to the existence of three polynomials satisfying them separately. Since $X^{n-1} - 1$ has n - 1 distinct roots in \mathbb{F}_l , condition (i) is clear. Condition (ii) can certainly be satisfied. We check condition (iii) by giving explicit polynomials satisfying it.

Note that $D(X^m + X^k + 1) \equiv (-1)^{m/2}(1 - km) \pmod{8}$ for even $m \ge 4$ and odd k < m such that $m \ne 2k$. Since $X^m + X^k + 1$ has no roots in \mathbb{F}_2 , $X^2 + X + 1$ is its only possible irreducible factor in $\mathbb{F}_2[X]$ of degree less than 3. Let m = n - 3.

- (1) For $m \equiv 2, 4 \pmod{8}$, take $h(X) = X^m + X^3 + 1$.
- (2) For $m \equiv 6 \pmod{8}$, the polynomials $X^m + X + 1$ and $X^m + X^5 + 1$ have no common factors in $\mathbb{F}_2[X]$; at least one of them satisfies (iii).
- (3) For $m \equiv 0 \pmod{8}$ and m 6 > 9, the polynomials $h_1(X) = X^{m-6} + X + 1$, $h_2(X) = X^{m-6} + X^5 + 1$ and $h_3(X) = X^{m-6} + X^9 + 1$ are pairwise coprime in $\mathbb{F}_2[X]$; at least one of the polynomials $(X^6 + X + 1)h_i(X)$, $i \in \{1, 2, 3\}$, satisfies (iii). For m = 8, take $h(X) = X^8 + X^4 + X^3 + X + 1$.

At this point, we have proved the existence of a polynomial $h_0(X)$ satisfying conditions (i), (ii) and (iii).

Let $h_M(X) = h_\infty(X) + \frac{1}{M}(h_0(X) - h_\infty(X))$, where $h_\infty(X)$ is any separable monic polynomial in $\mathbb{Z}[X]$ of degree n - 3 without nonreal roots; for 1/M small enough all roots of $h_M(X)$ must be real (cf., for example, [4, Lemma 2.1]). Taking $M \equiv 1 \pmod{8l \prod_{p \in S} p}$ large enough, the polynomial $h(X) = M^{n-3}h_M(\frac{X}{M})$ satisfies all desired conditions since all its roots are real, $h(X) \equiv h_0(X) \pmod{8}$ and $h(X) \equiv h_0(X) \pmod{p}$ for every $p \in S \cup \{l\}$. \Box **Lemma 2.3.** Let $n \ge 7$ be an odd integer and let $l \notin S$ be a prime number such that $l \equiv 1 \pmod{n-1}$. Given h(X) as in Lemma 2.2, there exist monic polynomials g(X) in $\mathbb{Z}[X]$ of degree 2 satisfying the following conditions:

- (i) $g(X)h(X) \equiv X^{n-1} 1 \pmod{l}$,
- (ii) g(X) is irreducible in $\mathbb{F}_p[X]$ for every $p \in S \cup \{2\}$,
- (iii) g(X)h(X) has square integer discriminant.

Proof. Since h(X) divides $X^{n-1} - 1$ in $\mathbb{F}_{l}[X]$ there exists $g_{0}(X) = X^{2} + a_{0}X + b_{0} \in \mathbb{Z}[X]$ satisfying conditions (i) and (ii).

The coefficients a_0 , b_0 being odd integers, we have $D(g_0(X)) \equiv 5 \pmod{8}$; from condition (iii) of Lemma 2.2 we obtain $D(g_0(X)) \equiv D(h(X)) \pmod{8}$.

In addition, conditions (i), (ii) on $g_0(X)$ and conditions (i), (ii) of Lemma 2.2 on h(X) guarantee that, for every odd $p \in S \cup \{l\}$ we have

$$\left(\frac{D(g_0(X))}{p}\right) = \left(\frac{D(h(X))}{p}\right) \neq 0.$$

Thus $D(g_0(X)) \equiv q^2 D(h(X)) \pmod{8l \prod_{p \in S} p}$ for some prime number $q \notin S \cup \{2, l\}$; hence $q^2 D(h(X)) = a_0^2 - 4b$ for some integer $b \equiv b_0 \pmod{2l \prod_{p \in S} p}$.

The polynomial $g(X) = X^2 + a_0 X + b$ in $\mathbb{Z}[X]$ satisfies conditions (i), (ii) and (iii) since $D(g(X)h(X)) = (q D(h(X))R(g,h))^2$ and $g(X) \equiv g_0(X) \pmod{p}$ for every $p \in S \cup \{2, l\}$. \Box

3. Proof of Theorem 1.1

Let *S* be a finite set of prime numbers.

We will prove the existence of a polynomial f(T, X) in $\mathbb{Q}(T)[X]$ such that:

- (i) f(T, X) is a monic polynomial of degree *n* in the variable *X*,
- (ii) the splitting field of f(T, X) is a regular A_n -extension of $\mathbb{Q}(T)$,
- (iii) for some $t_0 \in \mathbb{Q}$, $f(t_0, X)$ is a well-defined polynomial in $\mathbb{Z}[X]$ without nonreal roots and discriminant not divisible by any $p \in S$.

Theorem 1.1 can be obtained from this in the following way.

Hilbert's Irreducibility Theorem applied to a polynomial f(T, X) satisfying condition (ii) guarantees that the set

$$H_1 = \{t \in \mathbb{Q} \text{ such that } f(t, X) \in \mathbb{Q}[X] \text{ and } \operatorname{Gal}_{\mathbb{Q}}(f(t, X)) \cong A_n\}$$

is non-empty; it contains a Hilbert subset of \mathbb{Q} . Moreover, H_1 is dense in $\mathbb{R} \times \prod_{p \in S} \mathbb{Q}_p$ (cf., for example, [3]). Condition (iii) ensures that, taking $t_1 \in H_1$ near enough to t_0 in $\mathbb{R} \times \prod_{p \in S} \mathbb{Q}_p$, all roots of the polynomial $f(t_1, X) \in \mathbb{Q}[X]$ are real and $f(t_1, X) \equiv$ $f(t_0, X) \pmod{p}$ for every $p \in S$. Fix such a t_1 and let K_1 be the splitting field of $f(t_1, X)$ over \mathbb{Q} ; it is an A_n -extension of \mathbb{Q} unramified at all primes in $S \cup \{\infty\}$. For a suitable integer M, $M^n f(t_1, \frac{X}{M})$ is a totally real monic polynomial in $\mathbb{Z}[X]$ with discriminant not divisible by any $p \in S$.

The regularity hypothesis (ii) on f(T, X) ensures that the set

 $H_2 = \{t \in H_1 \text{ such that } \operatorname{Gal}_{K_1}(f(t, X)) \cong A_n\}$

contains a Hilbert subset of \mathbb{Q} . Taking $t_2 \in H_2$ near enough to t_0 , the splitting field of $f(t_2, X)$ over \mathbb{Q} must be an A_n -extension of \mathbb{Q} unramified at all primes in $S \cup \{\infty\}$ and linearly disjoint from K_1 . As above, this extension is the splitting field of a totally real monic polynomial in $\mathbb{Z}[X]$ with discriminant not divisible by any $p \in S$. Repeating this argument successively we obtain Theorem 1.1.

It remains to prove the existence of a polynomial f(T, X) in $\mathbb{Q}(T)[X]$ satisfying conditions (i), (ii) and (iii). For each odd n, we choose a prime number $l \notin S$ such that $l \equiv 1 \pmod{n-1}$ and $l \neq n$.

Case odd $n \ge 7$

Take P(X) = Xg(X)h(X), where h(X) and g(X) are polynomials satisfying the conditions in Lemmas 2.2 and 2.3. We have:

- (1) P(X) satisfies the hypothesis of Proposition 2.1, because of (i), (iii) in Lemma 2.3,
- (2) D(P(X)) is not divisible by any $p \in S \cup \{2\}$, since the polynomials X, g(X) and h(X) are separable and pairwise coprime in $\mathbb{F}_p[X]$,
- (3) all roots of P(X) are real, because of (iv) in Lemma 2.2 and (iii) in Lemma 2.3.

It follows from Proposition 2.1 that F(T, X) = P(X) - TQ(X) defines a regular A_n extension of $\mathbb{Q}(T)$ for some polynomial Q(X) in $\mathbb{Z}[X]$ of degree at most n - 1. Hence, F(T, X) is a polynomial in $\mathbb{Q}(T)[X]$ satisfying conditions (i), (ii) and (iii) (with $t_0 = 0$).

For n = 3, 5 we cannot apply the results of Section 2; we perform a specific construction in order to obtain these cases.

Case n = 5

Recall that $D(X^3 + AX + AB) = A^2(-27B^2 - 4A)$. Choose a polynomial $g_0(X) = X^3 + a_0X + a_0b_0$ in $\mathbb{Z}[X]$ such that

$$g_0(X) \equiv \begin{cases} X^3 - X + 1 \pmod{6}, \\ X^3 - X \pmod{p} & \text{for all } p \in S \cup \{l\}, \ p \neq 2, 3. \end{cases}$$

Since $D(g_0(X)) \equiv 1 \pmod{8}$ and $\left(\frac{D(g_0(X))}{p}\right) = 1$ for every odd $p \in S \cup \{3, l\}$, we can find a prime number $q \notin S \cup \{2, 3, l\}$ such that $q^2 = -27b_0^2 - 4a$, for some integer $a \equiv a_0 \pmod{p}$ for every $p \in S \cup \{2, 3, l\}$.

The polynomial $g(X) = X^3 + aX + ab_0$ has square integer discriminant $D(g(X)) = (qa)^2$ and all its roots are real.

Since $l \equiv 1 \pmod{4}$, -1 is a square modulo l and there exist integers $c, d \in \mathbb{Z}$ such that

$$(X-c)(X-d) \equiv \begin{cases} X(X+1) \pmod{6}, \\ X^2+1 \pmod{l}, \\ (X-2)(X+2) \pmod{p} & \text{for all } p \in S, \ p \neq 2, 3. \end{cases}$$

Take P(X) = (X - c)(X - d)g(X); it follows that:

- (1) P(X) satisfies the hypothesis of Proposition 2.1,
- (2) D(P(X)) is not divisible by any $p \in S \cup \{2, 3\}$,
- (3) all roots of P(X) are real.

From Proposition 2.1 we obtain a polynomial F(T, X) = P(X) - TQ(X) satisfying conditions (i), (ii) and (iii) (with $t_0 = 0$).

Case n = 3

Argue as in case n = 5 and take P(X) = g(X).

Case even $n \ge 4$

From the odd cases applied to the odd integer $n + 1 \ge 5$ we obtain polynomials P(X), Q(X) in $\mathbb{Z}[X]$ such that F(T, X) = P(X) - TQ(X) defines a regular A_{n+1} -extension of $\mathbb{Q}(T)$.

Let $U \in \overline{\mathbb{Q}(T)}$ be a root of $F(T, X) \in \mathbb{Q}(T)[X]$ as a polynomial in X. Since $T = \frac{P(U)}{O(U)}$ it follows that $\mathbb{Q}(T, U) = \mathbb{Q}(U)$; this is the fixed field by some $A_n \subset A_{n+1}$ in the splitting field of F(T, X) over $\mathbb{Q}(T)$. Hence

$$G(U, X) = \frac{F\left(\frac{P(U)}{Q(U)}, X\right)}{X - U} = \frac{P(X) - \frac{P(U)}{Q(U)}Q(X)}{X - U}$$

defines a regular A_n -extension of $\mathbb{Q}(U)$.

The polynomial P(X) has a degree 1 factor $(X - u_0)$ in $\mathbb{Q}[X]$ $(u_0 = 0$ for $n + 1 \ge 7$, and $u_0 = c$ for n + 1 = 5). Since the polynomials P(X), Q(X) are coprime in $\mathbb{Q}[X]$, we have $P(u_0) = 0$ and $Q(u_0) \neq 0$; so $G(u_0, X) = \frac{P(X)}{X - u_0}$. As a consequence, the polynomial G(T, X) in $\mathbb{Q}(T)[X]$ satisfies conditions (i), (ii)

and (iii) (with $t_0 = u_0$).

This concludes the proof of Theorem 1.1.

Corollary 3.1. For every positive integer n and every finite set S of prime numbers, there exist infinitely many linearly disjoint A_n -extensions of \mathbb{Q} unramified at all primes in $S \cup \{\infty\}$. In particular, there exist infinitely many linearly disjoint tamely ramified A_n -extensions of \mathbb{Q} .

References

- B. Birch, Noncongruence subgroups, covers and drawings, in: L. Schneps (Ed.), The Grothendieck Theory of Dessins d'Enfants, Cambridge Univ. Press, Cambridge, 1994, pp. 25–46.
- [2] J.-F. Mestre, Extensions régulières de $\mathbb{Q}(T)$ de groupe de Galois \widetilde{A}_n , J. Algebra 131 (1990) 483–495.
- [3] Y. Morita, A Note on the Hilbert irreducibility theorem, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990) 101–104.
- [4] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd Edition, Springer, PWN—Polish Scientific Publishers, 1990.