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Abstract

For every positive integer and every finite se§ of prime numbers, we construgt,-extensions of
Q unramified at all primes it§ U {co}; moreover, these extensions are obtained as splitting fields of
totally real monic polynomials iZ[ X] of degreex whose discriminant is not divisible by any prime
numberp in S. As a corollary, we obtain that there exist infinitely many linearly disjoint tamely
ramified A, -extensions of).
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

With regard to the Inverse Galois Problem with prescribed ramification behaviour,
B. Birch posed the following question [1]:

Problem. Given a finite groupG, is there a tamely ramified normal extensiBpQ with
Gal(F/Q) = G?

In this paper we consider the above questiondoe A,, the alternating group. We
obtain an affirmative answer in this case, as a consequence of our main result:
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Theorem 1.1. For every positive integet and every finite sef of prime numbers, there
exist infinitely many linearly disjoint extensions@f each one obtained as the splitting
field overQ of a totally real monic polynomiaf (X) € Z[ X] of degree: such that

(1) The discriminant off (X) is not divisible by any prime number 8f
(2) f(X) has Galois groupd,, overQ.

It is well known that, given a monic polynomigf(X) in Z[X] of degreen and a
prime numberp not dividing its discriminant, the decomposition type 6fX) (mod p)
coincides with the permutation type of any Frobenius elementpuethe Galois group of
a splitting field of f (X) overQ, Galp(f (X)) € S,. One can ensure that Gdlf (X)) = S,
just by requiring the reductions g¢f(X) modulo some prime humbers to have some well-
chosen decomposition types. Moreover, by Tchebotarev’s Density Theorem, this finite set
of primes can be assumed to be disjoint with any finiteSsgiven in advance. It follows
that there exiss,-extensions of) unramified at all primes in a fixed arbitrary finite set.

In the case of the alternating group, the local conditionsf@i) (at S) must be
compatible with a global one that guaranteesg&#l X)) < A,: the discriminant off (X)
must be a square if). This can be achieved by requiring thAtX) arises by suitable
specialization of a certain well-chosen polynomial@47)[X] with Galois group over
Q(T) isomorphic toA,,.

We first construct a polynomia? (X) of degreen with well-chosen local behaviour;
we force P(X) to satisfy some extra conditions which enables us to apply a result of
J.F. Mestre [2] in order to obtain a regulay-extension ofQ(7T') defined by a polynomial
of type P(X) — T Q(X). Applying Hilbert’s Irreducibility Theorem taP? (X) — T Q(X) we
obtain the desired ,-extensions of) by suitable specialization df.

We can argue as above only for oddAs noticed in [2], from a regulad,, -extension
of Q(T) of type P(X) — T Q(X) we can always obtain a reguldy,_1-extension of some
Q(U). We can then deduce the main result for exdrom the oddn case provided (X)
is chosen carefully enough.

2. Previousresults
We first recall Mestre’s result [2, Proposition 2].

Proposition 2.1. Let P(X) be a monic polynomial iZ[ X] of odd degree > 3 such that

(i) P(X) has square integer discriminant,
(i) P(X)=X"— X (mod/) for some primé& not dividingn(n — 1)(n — 2).

There exists a polynomi@ (X) € Z[X] of degree at most — 1 such thatP(X) — T Q(X)
defines a regulan,,-extension of)(T).

Note that, using Mestre’s terminology, assumption (ii) ensute¥) being H-general
(cf. [2, Proposition 4]).
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Let S be a finite set of prime numbers.

Our purpose is to apply Proposition 2.1 to a polynomial of tyi&) = Xg(X)h(X);
we first prove the existence a{X) andg(X) with suitable local properties, in particular
at all primes inS U {oo}, and such that the polynomial(X)g(X) has square integer
discriminant.

D(f (X)) will denote the discriminant of a polynomigl(X); the resultant off1(X)
and f>(X) will be denoted byR(f1, f2).

Lemma 2.2. Letn > 7 be an odd integer. Given a prime numbe¢ S such thatl =
1 (modn — 1), there exist monic polynomialg X) in Z[X] of degreen — 3 satisfying the
following conditions

(i) h(X) dividesX" 1 —1inTF;[X],
(i) h(X) isirreducible inF,[X] for everyp € S, p # 2,
(i) h(X) does not have irreducible factors of degree less BBanFo[ X] and D (h(X)) =
5(mod 8,
(iv) all roots of h(X) are real.

Proof. By the Chinese Remainder Theorem, the existencé(af) satisfying condi-
tions (i), (ii), (iii) together is equivalent to the existence of three polynomials satisfying
them separately. Sinc&—1 — 1 hasn — 1 distinct roots inf;, condition (i) is clear. Con-
dition (ii) can certainly be satisfied. We check condition (iii) by giving explicit polynomials
satisfying it.

Note thatD(X" + X* + 1) = (—1)"/2(1 — km) (mod 8 for evenm > 4 and oddk < m
such thatn # 2k. SinceX™ + X* + 1 has no roots iff2, X2 + X + 1 is its only possible
irreducible factor inF,[ X] of degree less than 3. Let=n — 3.

(1) Form=2,4 (mod 8, takeh(X) = X" + X3+ 1.

(2) Form =6 (mod 8, the polynomialst” + X + 1 andX” + X° + 1 have no common
factors inF2[ X ]; at least one of them satisfies (iii).

(3) Form =0 (mod 8 andm — 6 > 9, the polynomialshi(X) = X" 6 + X + 1,
ha(X) = X" %4+ X5+ 1 andha(X) = X" %+ X2+ 1 are pairwise coprime B[ X];
at least one of the polynomial&® + X + 1)h; (X), i € {1, 2, 3}, satisfies (iii).
Form =8, takeh(X) = X8+ X* + X3+ X + 1.

At this point, we have proved the existence of a polynontig{X) satisfying
conditions (i), (i) and (iii).

Let iy (X) = hoo(X) + %(ho(X) — heo (X)), Whereho(X) is any separable monic
polynomial inZ[X] of degreen — 3 without nonreal roots; for/IM small enough all roots
of h s (X) must be real (cf., for example, [4, Lemma 2.1]). Takiig= 1 (mod 8 ]_[pes p)
large enough, the polynomialX) = M"*3hM(%) satisfies all desired conditions since
all its roots are reali(X) = ho(X) (mod 8 and h(X) = ho(X) (mod p) for every
peSU{l}. O
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Lemma 2.3. Letn > 7 be an odd integer and Idt¢ S be a prime number such that
[ =1 (modn —1). Givenh(X) as in Lemma2.2, there exist monic polynomiajg(X)
in Z[ X] of degree2 satisfying the following conditions

() gX)h(X)=X""1—1(modl),
(i) g(X) isirreducible inF,[X] for everyp € SU {2},
(i) g(X)h(X) has square integer discriminant.

Proof. Sinceh(X) dividesX”~1—1inF;[X] there existgo(X) = X2 +aoX + bo € Z[X]
satisfying conditions (i) and (ii).

The coefficientsag, bp being odd integers, we have(go(X)) =5 (mod 8; from
condition (iii) of Lemma 2.2 we obtai® (go(X)) = D(h(X)) (mod 8.

In addition, conditions (i), (ii) orgo(X) and conditions (i), (ii) of Lemma 2.2 ol(X)
guarantee that, for every odde S U {I} we have

<D(go(X))> _ (D(h(X))) 20,
P P

ThusD(go(X)) = qu(h(X)) (mod 8 HpeS p) for some prime number ¢ SU {2, 1};
henceg2D(h(X)) = ag? — 4b for some integeb = bg (mod 2 [,es P)-

The polynomialg(X) = X2 + apX + b in Z[X] satisfies conditions (i), (i) and (iii)
since D(g(X)h(X)) = (gD(h(X))R(g, h))? andg(X) = go(X) (mod p) for everyp e
Su{2,l}. o

3. Proof of Theorem 1.1

Let S be a finite set of prime numbers.
We will prove the existence of a polynomiélT, X) in Q(T)[X] such that:

(i) f(T,X) is a monic polynomial of degreein the variableX,
(ii) the splitting field of f (T, X) is a regularA,, -extension ofQ(7T'),
(iii) forsomery € Q, f (19, X) is a well-defined polynomial iZ[ X ] without nonreal roots
and discriminant not divisible by any e S.

Theorem 1.1 can be obtained from this in the following way.
Hilbert's Irreducibility Theorem applied to a polynomigl(T, X) satisfying condi-
tion (ii) guarantees that the set

Hy = {r € Q such thatf (, X) € Q[X] and Gah(f (1, X)) = A,}

is non-empty; it contains a Hilbert subset@f Moreover,H; is dense inR x [],.sQp
(cf., for example, [3]). Condition (iii) ensures that, takinge H1 near enough tagp
in R x HpeS Q,, all roots of the polynomialf (11, X) € Q[X] are real andf (r1, X) =
f(to, X) (modp) for everyp € S. Fix such a1 and letK; be the splitting field off (11, X)
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over Q; it is an A,-extension ofQ unramified at all primes ir§ U {oo}. For a suitable
integerM, M" f (11, %) is a totally real monic polynomial iZ[ X] with discriminant not
divisible by anyp € S.

The regularity hypothesis (ii) ori (T, X) ensures that the set

Hz={r € Hy suchthat Gat,(f(, X)) = A,}

contains a Hilbert subset @p. Taking > € H> near enough tap, the splitting field of
f(t2, X) overQ must be am4,,-extension ofQ unramified at all primes ir§ U {oo} and
linearly disjoint from K. As above, this extension is the splitting field of a totally real
monic polynomial inZ[ X] with discriminant not divisible by any € S. Repeating this
argument successively we obtain Theorem 1.1.

It remains to prove the existence of a polynomfalT, X) in Q(T)[X] satisfying
conditions (i), (ii) and (iii). For each odd, we choose a prime numbég S such that
[=1(modn — 1) and! # n.

Case oddi > 7

Take P(X) = Xg(X)h(X), where h(X) and g(X) are polynomials satisfying the
conditions in Lemmas 2.2 and 2.3. We have:

(1) P(X) satisfies the hypothesis of Proposition 2.1, because of (i), (iii) in Lemma 2.3,

(2) D(P(X)) is notdivisible by anyp € SU {2}, since the polynomialX, g(X) andi(X)
are separable and pairwise copriméris{ X1,

(3) all roots of P(X) are real, because of (iv) in Lemma 2.2 and (iii) in Lemma 2.3.

It follows from Proposition 2.1 that' (T, X) = P(X) — T Q(X) defines a regulas ;-
extension ofQ(T") for some polynomialD (X) in Z[X] of degree at most — 1. Hence,
F(T, X) is a polynomial inQ(7T)[X] satisfying conditions (i), (ii) and (iii) (withrg = 0).

Forn = 3, 5 we cannot apply the results of Section 2; we perform a specific construction
in order to obtain these cases.

Casen =5

Recall thatD(X3 + AX + AB) = A%(—27B% — 4A).
Choose a polynomialp(X) = X3 + agX + aobo in Z[X] such that

(X) = X3~ X +1(mod 6,
B =1 X3 x (modp) forall peSUl), p#£2,3.

Since D(go(X)) = 1 (mod 8 and (@) = 1 for every oddp € S U {3,1}, we can

find a prime numbey ¢ S U {2,3,1} such thatg? = —27ho? — 4a, for some integer
a = ag (mod p) foreveryp e SU {2, 3,1}.

The polynomialg(X) = X3 + aX + abp has square integer discriminabi(g(X)) =
(ga)? and all its roots are real.
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Sincel =1 (mod 4, —1 is a square moduloand there exist integetsd € Z such that

X(X+1) (mod9,
(X —o)(X —d)=1{ X2+ 1 (modl),
(X—2(X+2 (modp) forallpesS, p#£2,3.

TakeP(X) = (X — ¢)(X — d)g(X); it follows that:

(1) P(X) satisfies the hypothesis of Proposition 2.1,
(2) D(P(X)) is not divisible by anyp € SU {2, 3},
(3) all roots of P(X) are real.

From Proposition 2.1 we obtain a polynomi&(7, X) = P(X) — T Q(X) satisfying
conditions (i), (i) and (iii) (withzg = 0).

Casen =3
Argue as in case = 5 and takeP (X) = g(X).
Case even >4

From the odd cases applied to the odd integerl > 5 we obtain polynomial® (X),
Q(X) in Z[X] such thatF (T, X) = P(X) — T Q(X) defines a regulas,,;1-extension of
Q).

LetU € Q(T) be aroot ofF (T, X) € Q(T)[X] as a polynomial inX. SinceT = Q )
it follows thatQ(7, U) = Q(U); this is the fixed field by soma,, ¢ A,+1 in the splitti g

field of F(T, X) overQ(T). Hence

F(53.X)  P(X) - 5300
GU.X) = (o@-X) _ _ o)
X — X-U

defines a regulad ,,-extension ofQ(U).

The polynomialP (X) has a degree 1 factoX — up) in Q[X] (upo=0forn+1>7,
andug = ¢ for n + 1 =5). Since the polynomial® (X), Q(X) are coprime inQ[X], we
haveP (ug) = 0 andQ(uo) # 0; SOG (ug, X) = ”(’fj

As a consequence, the polynom@l(T, X) in Q(T) X] satisfies conditions (i), (ii)
and (iii) (with tp = uo).

This concludes the proof of Theorem 1.1.

Corollary 3.1. For every positive integer and every finite sef of prime numbers,
there exist infinitely many linearly disjoim, -extensions of) unramified at all primes
in S U {oc}. In particular, there exist infinitely many linearly disjoint tamely ramified
A, -extensions of).
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