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Abstract
For the simulation of wave propagation problems, it is necessary to truncate the computational
domain. Perfectly Matched Layers are often employed for that purpose, especially in high
contrast layered materials where absorbing boundary conditions are difficult to design. In here,
we define a Perfectly Matched Layer that automatically adjusts its parameters without any user
interaction. The user only has to indicate the desired decay in the surrounding layer. With this
Perfectly Matched Layer, we show that even in the most complex scenarios where the material
contrast properties are as high as sixteen orders of magnitude, we do not introduce numerical
reflections when truncating the domain, thus, obtaining accurate solutions.

Keywords:

1 Introduction

When applying hp-adaptivity for the Finite Element Method (FEM) [6] in open region problems
the computational domain has to be truncated. In particular, it is crucial for wave equations
problems, which typically exhibit oscillating solutions with slow decay. If we attempt to trun-
cate the computational domain by reducing the domain size via a change of coordinates from
an infinite domain to a finite one, the solution oscillates more and more when approaching
the boundary, and these oscillations are hardly reproduced by numerical methods. If we just
truncate the domain without using carefully designed boundary conditions, then we observe
non-physical reflections coming from the boundary.

In 1994, in a seminal paper of Berenger [2], Perfectly Matched Layers (PML) were proposed
in an electromagnetic context as an artificial layer intended to reduce reflections from the
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boundary of a truncated computational domain. A new interpretation of PMLs was introduced
by Teixera and Chew [5, 16], where also in the context of electromagnetic phenomena, they
interpreted a PML as a change of coordinates into the complex plane.

PMLs transform propagating and evanescent waves into exponentially fast decaying evanes-
cent waves. Because of the high attenuation of the waves into the PML region, we can impose
some boundary conditions (BC) (typically homogeneous Dirichlet BC) on the outer part of the
PML without introducing appreciable reflections. For a further understanding and for a recent
review of the state of the art of this truncation technique, we refer to [3] and [9].

When implementing PMLs, one has to select the decay profile of the wave into the PML
region. Selecting a profile that produces arbitrarily small reflections implies that the solution
also decays arbitrarily fast, which produces a “boundary layer” and strong gradients in the
region. Thus, while a low decay produces incoming waves reflected from the boundary, an
excessive decay requires a very fine grid. To find an equilibrium between a fast and a slow
decay, it is necessary to properly adjust the PML parameters, which is usually tricky since they
depend on the problem itself. Moreover, when we have a layered material with high contrasts
on the material properties, this selection of the parameters is even more challenging.

The main contribution of this work is to provide a method to automatically adjust the PML
parameters, even in the most complex scenarios where the material contrast properties among
neighbouring materials are as high as sixteen orders of magnitude. These type of scenarios often
appear in geophysical electromagnetic (EM) applications that involve both, air and ground.
We show using a two dimensional (2D) magnetotelluric (MT) [4, 17, 14] application that the
proposed PML produces an appropriate decay of the solution in the air and in the subsurface
without introducing spurious reflections, and thus, it provides accurate solutions.

The present work is organized as follows. In Section 2 we define the mathematical problem
to be solved. Section 3 describes the formulation of the PML and how the parameters to be
tuned in the PML are automatically adjusted. Numerical results based on the MT problem are
illustrated in Section 4 and Section 5 is devoted to the conclusions.

2 Model Problem

In this work, we study this automatically adapted PML in context of MTs.

2.1 MT Method

The MT is a passive EM exploration technique intended to estimate the resistivity distribution,
and therefore provide an image of the subsurface on scales varying from few meters to hundreds
of kilometers [18]. MT measurements can be described by Maxwell’s equations, with the source
located at the ionosphere. In particular, when the electrical field depends only upon two
spatial variables (x, z), we can derive two uncoupled modes from Maxwell’s equations, namely,
Transverse Electric (TE), which involves (Ey, Hx, Hz) electric and magnetic field components,
and Transverse Magnetic (TM), which involves (Hy, Ex, Ez).

We focus on the E-Formulation, where the equation for the y component can be expressed
as

− μ−1ΔEy − k2Ey = −jωJ imp
y , (1)

where k2 = ω2ε − jωσ, Ey is the y-component of the electric field driven by an impressed
prescribed density current J imp

y , ω is the angular frequency and σ (a diagonal second rank
tensor) stands for the conductivity of the media. For the range of frequencies involving the MT
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problem, the electrical permittivity ε and the magnetic permeability μ can be assumed to be
that of the vacuum (ε0 and μ0 respectively).

Using an hp-Finite Element Method [6], we compute the electric field Ey. Our aim is
to obtain the impedance and/or the apparent resistivity, two suitable physical magnitudes to
perform the inversion. To do so, the magnetic field is obtained from Maxwell’s equations,
namely:

Hx =
1

jωμ

∂Ey

∂z
. (2)

The impedance Zyx and the apparent resistivity ρa are then computed using the following
formulas:

Zyx =
Ey

Hy
ρa =

|Zyx|
ωμ

. (3)

2.2 Variational Formulation

For the sake of simplicity in the notation, we omit the y subscript from Ey and J imp
y . Thus,

to obtain the corresponding variational formulation we multiply equation (1) by the complex
conjugate of a test function F ∈ V (Ω), where V (Ω) = H1

ΓD
(Ω) = {F ∈ L2(Ω) : F |ΓD

= 0,∇F ∈
L2(Ω)} is the space of admissible test functions. Then, we integrate by parts and incorporate
the homogeneous Dirichlet BC (the ones considered in the present work) over ΓD = ∂Ω, and
we obtain that⎧⎪⎨⎪⎩

Find E ∈ ED + V (Ω), such that:∫
Ω

(∇F )Tμ−1∇E −
∫
Ω

Fk2E = −jω
∫
Ω

FJ imp ∀F ∈ V (Ω),
(4)

where ED is a lift (typically ED = 0) of the essential boundary condition data denoted with
the same symbol. With the state scalar-valued solution function E, we compute Li(E), a linear
and continuous functional [12, 11] in E associated to the i-th receiver and defined as:

Li(E) =
1

|ΩRi |
∫
ΩRi

EdΩ, (5)

where ΩRi is the domain occupied by the i-th receiver.

3 PML Formulation

Chew andWeedom [5] showed that a PML can be understood as a complex-coordinate stretching
of Maxwell’s equations. With this interpretation, the PML is simply an analytic continuation
of the governing equations into the complex plane (see also [15]).

3.1 Variational Formulation in an Arbitrary System of Coordinates

Let the Cartesian coordinate system x = (x, z) = (x1, x2) be the reference system of coordi-
nates. Given an arbitrary system of coordinates ζ = (ζ1, ζ2), we define our change of coordinates
by x = ψ(ζ) and we denote the Jacobian matrix and its determinant by J and det(J ), re-
spectively. The change of coordinates is assumed to be an injective differentiable function with
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continuous partial derivatives and nonzero determinant at any point. The corresponding vari-
ational formulation for the TE mode, in the new system of coordinates, can be obtained as
follows.

Let E = E(x) and F = F (x) be an arbitrary scalar-valued functions. Since they are

analytical functions, we extend them to the complex plane. We denote Ẽ := E ◦ ψ = Ẽ(ζ)

and F̃ := F ◦ ψ = F̃ (ζ). Additionally, we define μ̃ := μ ◦ ψ, k̃ := k ◦ ψ, J̃ imp := J imp ◦ ψ,

Ω̃ := Ω ◦ψ, and Γ̃D := ΓD ◦ψ.
Multiplying equation (1) by the complex conjugate of a test function F̃ , integrating by parts,

and incorporating the homogeneous Dirichlet BC over Γ̃D = ∂Ω̃, we obtain that:∫
˜Ω

(∇ζF̃ )T μ̃−1∇ζẼ dΩ̃ =

∫
Ω

(
(J−1)T∇F

)T

μ−1(J−1)T∇E det(J ) dΩ =

=

∫
Ω

(∇F )TJ−1μ−1(J−1)T∇E det(J ) dΩ,∫
˜Ω

F̃ k̃
2
Ẽ dΩ̃ =

∫
Ω

Fk2E det(J ) dΩ,∫
˜Ω

F̃ J̃ imp dΩ̃ =

∫
Ω

FJ imp det(J ) dΩ,

(6)

where we use the chain rule,

∇ζẼ =

2∑
i,n

∂Ẽ

∂xi

∂xi

∂ζn
= (J−1)T∇E. (7)

Following the ideas of [19] concerning the inclusion of metric-dependent variables within mate-
rial coefficients, we define the following functions:

μ−1
NEW = J−1μ−1(J−1)T det(J ),

k2
NEW = k2 det(J ),

J imp
NEW = J imp det(J ).

(8)

The new source and material tensors incorporate the information about the change of coordi-
nates. Thus, the variational formulation can be expressed in terms of an arbitrary system of
coordinates by simply considering the new source and materials. The new variational formula-
tion, in the new system of coordinates is:⎧⎪⎨⎪⎩

Find E ∈ ED + Ṽ (Ω), such that:∫
Ω

(∇F )Tμ−1
NEW∇E dΩ−

∫
Ω

Fk2
NEWE dΩ =

∫
Ω

FJ imp
NEW dΩ, ∀F ∈ Ṽ (Ω),

(9)

where Ṽ (Ω) = H̃1
ΓD

(Ω) = {E ∈ L2(Ω) : E|ΓD
= 0, (J−1)T∇E ∈ L2(Ω)}.

3.2 Definition of the PML

We define a general one dimensional change of variables, in the positive direction of the i-th
coordinate, of the type

ζi(xi) =

∫ xi

0

h(η)dη, for i = 1, 2. (10)
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The case corresponding to the negative direction is defined analogously. The Jacobian and its
determinant are given by

J =

⎛⎜⎜⎜⎝
∂ζ1
∂x1

∂ζ1
∂x2

∂ζ2
∂x1

∂ζ2
∂x2

⎞⎟⎟⎟⎠ =

⎛⎜⎝h(x1) 0

0 h(x2)

⎞⎟⎠ and det(J ) = h(x1)h(x2). (11)

Thus, μ−1
NEW is given by:

μ−1
NEW =

⎛⎜⎜⎜⎝
μ−1
0

h(x2)

h(x1)
0

0 μ−1
0

h(x1)

h(x2)

⎞⎟⎟⎟⎠ .
(12)

3.3 Automatic Adjustment of PML Parameters

Given the general change of coordinates (10), we select

h(xi) =

{
1 , xi < xa

i

φi ∈ C , xi ∈ [xa
i , x

b
i ),

(13)

where [xa
i , x

b
i ) define the position of the PML in the positive direction of the i-th coordinate.

If the space far from the region of interest is linear, homogeneous, and the problem is time-
harmonic, the radiating solution for some wave equation is a sum of plane waves, and may be

decomposed into functions of the form of e−jκxi (see [8]), where κ =
√
ω2με− jωμσ is the wave

number and xi is the direction of propagation of the wave.
We consider the worse scenario, that is, a plane wave traveling perpendicularly to the PML

towards the positive direction of the xi variable (an analogous analysis can be done for the
negative direction). Then, the solution in the PML region for the new variable is given by

E(ζ(xi)) = e−jκζ(xi) = e−jκφixi . (14)

Our aim is to make the solution to vanish in the PML region without introducing reflections.
Therefore, we define the decay factor α, which measures the decay of the solution from xa

i to
xb
i , as

α :=
E(xb

i )

E(xa
i )

= e−jκφi(x
b
i−xa

i ). (15)

Then,
log(α) = −jκφi(x

b
i − xa

i ) (16)

and finally, we select

φi = j
log(α)

κ(xb
i − xa

i )
. (17)

Remark. Notice that with this formula we obtain an automatic adjustment of the PML param-
eters. The user does not have to take care about the formation material within each area, even
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if they change abruptly. On the other hand, different size for the PML can be considered in
each side of each variable. The only user interaction is to define the desired decay into the PML
region, i.e., α. Then, φi is automatically computed guaranteeing a decay in the outer part of
the PML according to the selected α.

4 Numerical Results

This automatically adjusted PML is suitable for a variety of problems where the material
contrast properties among neighbouring materials are large. In particular, we will study its
impact into our MT model problem.

4.1 Model Problem

We assume a horizontally layered earth model where some 2D inhomogeneities may appear.
The TE mode is driven by the impressed electric density current Jimp = ωŷ. We model the
source as an infinitely long (in x and y directions) volumetric rectangular surface located at the
ionosphere. This allows us to treat the electromagnetic fields as plane waves that propagate in
the vertical direction towards the Earth’s surface [17].

The physical problem is illustrated in Figure 1. The computational domain in consideration,
of 2500× 130 km. consist of air and a layered media (eventually with a scatter) for modelling
the subsurface formation. The horizontal dimension corresponds to the x spatial variable (with
zero at the center), and the vertical to the z (with zero on the surface). The physical domain is
surrounded by a PML. The relative permittivity and permeability are the same in all materials,
and equal to one. The receivers are located at the Earth’s surface and are represented with red
crosses, while the source, located at the ionosphere is represented with the dark blue rectangle.
When the media is only 1D dependent (invariant in x), the solution along the surface is constant
(x and y independent), and therefore, it is sufficient to consider only one receiver. However,
when 2D inhomogeneities are considered, we are interested in having the solution at different
positions. We consider four different formation of the subsurface described in Table 1. The

Figure 1: Model problem.

exact solution for a 1D layered media is known (see for example [13, 7]). For numerical results,
we calculate the electric field solving (1). In a layered media problem we use a multigoal-oriented
hp-FEM [10, 1], which ensures accurate solutions at all receivers.
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ρ1 ρ2 ρ3
Model 1 1 1 1
Model 2 1 10 3
Model 3 1 10 10
Model 4 1 100 3

Table 1: Different models for the formation of the subsurface. Resistivities are given in Ohm-m.

4.2 Validation of the Solution

We first ensure that our automatically adapted PML provides accurate solutions for a range
of frequencies. We consider a 5 km. PML in all directions. The mesh in each direction of the
PML region is depicted in Figure 2. The number of elements into the PML region represents
15.5% of the total amount of elements. We define a decay factor of α = 10−5, ensuring that

Figure 2: Horizontal layers of the FEM mesh in an arbitrary direction into the PML region.

the wave decays sufficiently fast when arriving to the boundary of the domain. In Figure 3,
we represent the apparent resistivity against the frequency for the exact (left) and numerical
(right) solutions. We observe a good agreement between both solutions. Figure 4 displays
the error for the whole range of frequencies. Our PML provides always relative errors below
1.5%, which is a superb accuracy for these type of simulations. Finally, we consider Model 4
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Figure 3: Apparent resistivity against frequency for the exact (left) and numerical (right) solutions.

problem for ω = 10−4 Hz. In Figure 5 we display the logarithm of the module of the impedance
i.e., log(|Zyx|), along all sides of the computational domain. We show that the PML behaves
properly everywhere, with a smooth decay for the solution and without introducing numerical
reflections even in the areas with high contrast between material properties. Panels (a) and (b)
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Figure 4: Relative error for different subsurface formations for a range of frequencies.

correspond to the intersection between air and ground. There, the contrast between resistivities
is about sixteen orders of magnitude and even in this scenario, the decay is appropriate.

(a) (b)

(c) (d)

Figure 5: log(|Zyx|) corresponding to Model 4, with a 5 km. PML and α = 10−5. Panel (a) corresponds

to the left side of the domain. (b), (c), and (d) correspond to the right, top and bottom parts of the

domain, respectively. The black line indicates the region where the PML starts.

4.3 Formation with a Target/Scatter

We consider a 2D inhomogeneity located at the center of the domain inside the layer corre-
sponding to ρ2. The horizontal length of this target is 10 km. and we denote its resistivity with
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ρ4. In Figure 6 (left) we consider the problem called Target in Table 2 and we represent the
apparent resistivity at different distances from the center of the domain for a range of frequen-
cies. Position 1 corresponds to the center of the domain, which coincides with the center of the
target. The effect of the target is more notorious there, and as expected, we measure higher
resistivities at this point than elsewhere.

Our capacity to detect the target lies on our capability to capture the inhomogeneities in the
solution. This fact depends on the considered frequency. For example, for ω = 10−1 we cannot
detect any inhomogeneity because all our measurements are almost the same everywhere. On
the other hand, if our aim is to detect the target, ω = 10−3 Hz. is the more appropriate
frequency to consider. For this frequency, we represent in Figure 6 (right) the solution along
the surface for the three different problems described in Table 2. In there, we appreciate how
our solution is sensitive to the presence of the target. In particular, we observe that the solution
is more affected when the receiver is closer to the target, as expected.
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Figure 6: Left: Apparent resistivity against frequency for different positions of the receivers.

Positions 1 to 4 correspond respectively to 0, 4, 8 and 20 km. of distance from the center.

Right: Apparent resistivity at different distances for three different subsurface formations.

ρ1 ρ2 ρ3 ρ4
Layered 1 1 2 3 -
Layered 2 1 10 3 -
Target 1 2 3 10

Table 2: Different models of the formation of the subsurface. The resistivity is given in Ohm-m.

5 Conclusions

To find an equilibrium between a fast and a slow decay on the PML region is usually tricky. It
depends on the problem itself and it is even more complicated when there exists high contrasts
on adjacent material properties. We have shown that in these complicated scenarios, the Auto-
matically Adapted PML provides an adequate decay, not so fast to require a too fine grid and
not so slow to introduce artificial reflections.
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We have shown that once the decay in the PML is defined, the PML parameters are auto-
matically tuned without any additional user interaction according to the layer widths, providing
accurate solutions for the MT problem.
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harmonic second order elliptic problems. Archives of Computational Methods in Engineering,
17(1):77–107, 2010.

[4] L. Cagniard. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics,
18(3):605–635, 1953.

[5] W.C. Chew and W. H. Weedon. A 3d perfectly matched medium from modified maxwell’s equa-
tions with stretched coordinates. Microwave and optical technology letters, 7(13):599–604, 1994.

[6] L. Demkowicz. Computing with hp-adaptive Finite Elements: Volume 1 One and Two Dimensional
Elliptic and Maxwell Problems, volume 1. Chapman and Hall/CRC, 2006.

[7] H. Grandis. An alternative algorithm for one-dimensional magnetotelluric response calculation.
Computers & Geosciences, 25(2):119–125, 1999.

[8] S. G Johnson. Notes on perfectly matched layers (pmls). Lecture notes, Massachusetts Institute
of Technology, Massachusetts, 2008.

[9] P. Joly. An elementary introduction to the construction and the analysis of perfectly matched
layers for time domain wave propagation. SeMA Journal, 57(1):5–48, 2012.

[10] D. Pardo. Multigoal-oriented adaptivity for hp-finite element methods. Procedia Computer Science,
1(1):1953–1961, 2010.

[11] D. Pardo, L. Demkowicz, C. Torres-Verdin, and M. Paszynski. A self-adaptive goal-oriented hp-
finite element method with electromagnetic applications. part ii: Electrodynamics. Computer
methods in applied mechanics and engineering, 196(37-40):3585–3597, 2007.

[12] D. Pardo, L. Demkowicz, C. Torres-Verd́ın, and L. Tabarovsky. A goal-oriented hp-adaptive finite
element method with electromagnetic applications. part i: electrostatics. International Journal
for Numerical Methods in Engineering, 65(8):1269–1309, 2006.

[13] J. Pedersen and J. F. Hermance. Least squares inversion of one-dimensional magnetotelluric data:
An assessment of procedures employed by brown university. Surveys in Geophysics, 8(2):187–231,
1986.

[14] F. Simpson and K. Bahr. Practical magnetotellurics. Cambridge University Press, 2005.

[15] F.L. Teixeira and W.C. Chew. Pml-fdtd in cylindrical and spherical grids. Microwave and Guided
Wave Letters, IEEE, 7(9):285–287, 1997.

[16] F.L. Teixeira and W.C. Chew. Analytical derivation of a conformal perfectly matched absorber
for electromagnetic waves. Microwave and Optical technology letters, 17(4):231–236, 1998.

[17] K. Vozoff. The magnetotelluric method in the exploration of sedimentary basins. Geophysics,
37(1):98–141, 1972.

[18] K. Vozoff. Magnetotellurics: Principles and practice. Proceedings of the Indian Academy of
Sciences-Earth and Planetary Sciences, 99(4):441–471, 1990.

[19] A.J. Ward and J.B. Pendry. Calculating photonic greens functions using a nonorthogonal finite-
difference time-domain method. Physical Review B, 58(11):7252, 1998.

Automatically Adapted PMLs for Problems... Alvarez-Aramberri et al.

979


