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We consider maps fK(v) = minA∈K Av and gK(v) = maxA∈K Av,

where K is a finite set of nonnegative matrices and by “min” and

“max” we mean component-wise minimum and maximum. We

transfer known results about properties of gK to fK. In particularwe

show existence of nonnegative generalized eigenvectors of fK, give

necessary and sufficient conditions for existence of strictly positive

eigenvector of fK, study dynamics of fK on the positive cone. We

show the existence and construct matrices A and B, possibly not in

K, such that f nK(v) ∼ Anv and gnK(v) ∼ Bnv for any strictly positive

vector v.
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1. Introduction

The theory of nonnegative matrices has been very well developed since its appearance in papers

of Perron and Frobenius. Vast number of applications to dynamic programming, probability theory,

numerical analysis, mathematical economics, fractal geometry raise even greater interest to this field.

As a result there are many strong generalizations of the Perron–Frobenius theory (see [1,4,6–8,13–

15,17]).

The classical Perron–Frobenius theorem shows that a nonnegativematrix has a nonnegative eigen-

vector associated with its spectral radius, and if the matrix is irreducible then this nonnegative

eigenvector can be chosen strictly positive. One important generalization of this result was obtained

by Rothblum [17], who studied the structure of the algebraic eigenspaces of nonnegative matrices and

described the combinatorics that stands behind the index of the spectral radius and dimensions of the

�
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algebraic eigenspaces. Moreover, it was shown that the algebraic eigenspace of a nonnegative matrix

corresponding to its spectral radius is spanned by a set of nonnegative generalized eigenvectors with

certain strictly positive entries.

Many generalizations of the Perron–Frobenius theory involve homogeneous monotone functions,

especially functions of the form

gK(x) = max
A∈K

Ax,

whereK is a set of square nonnegativematrices of fixeddimension andby “max”wemean component-

wisemaximum. Such functions appear inmanywell-knownproblems, such as the theory of controlled

Markov chains, Leontief substitution systems, controlled branching processes, parallel computations,

transportation networks, etc. The study of maps gK was initiated by Richard Bellman. Using the

Brouwer fixed point theorem he proved existence of a strictly positive eigenvector of the map gK
in the case when each matrix in K is positive and studied the asymptotic behavior of iterations

gnK(v) = gK(gK(. . . gK(v) . . .)) for a nonnegative vector v (see [2] and [3, Chapter XI, Sections 10–11]).

These results were generalized to a set of irreducible matrices by Mandl and Seneta [14].

The most important results for our investigation were obtained by Zijm in [25]. He showed that

there is a simultaneous block-triangular decomposition of the set of matrices K, which was used to

give the necessary and sufficient conditions for the existence of a strictly positive eigenvector of gK
and extend the above mentioned result of Rothblum on nonnegative generalized eigenvectors to gK.

Related results can be found in [24, Chapter 35]. Independently, Sladký [21,22] obtained the same

block-triangular decomposition and used it to get bounds on the asymptotic behavior of iterations

gnK(v) for a nonnegative vector v. Stronger results about asymptotic behavior of iterations gnK(v)were

obtained in [22,23,26] for the case when some special matrices in K are aperiodic.

We consider maps of similar form, but with “minimum” instead of “maximum”:

fK(x) = min
A∈K

Ax.

Thesemaps appear in [12] in connectionwith the construction of “self-similar”metrics on self-similar

sets and finding their Hausdorff dimensions. Also suchmaps appear in the study of growth of Schreier

graphs of groups generated by finite automata [5,11]. These problems demand us to study spectral

properties of maps fK and describe asymptotic behavior of its iterations.

Consideringmaps fK and gK we can always suppose that the setK satisfies the product property, i.e.

K is constructed by all possible interchanges of corresponding rows selected from a finite set of square

nonnegativematrices (see the precise definition and explanation in Section 3). Under this assumption,

for every vector v there exist A = Av ∈ K and B = Bv ∈ K such that fK(v) = Av and gK(v) = Bv. In

the theory of Markov decision processes this property is usually called the optimal choice property

(see [9,3]).

The asymptotic behavior of iterations f n(v) is studied with respect to the following equivalence.

Let an, bn, n� 1, be sequences of nonnegative numbers or vectors of the same dimension. We say

that an � bn if there exists constant q > 0 such that an � q · bn for all n large enough. If an � bn and

bn � an then we say that an ∼ bn and that an and bn have the same growth. Then hn(v) ∼ hn(u) for
any homogenous nondecreasing function h : RN+ → RN+ and any strictly positive vectors v, u. Hence

we can andwewill change one strictly positive vector to another one considering asymptotic behavior

if it is necessary.

Considering maps fK we follow as close as possible to the ideas of Zijm and use his paper [25] as

a model. Notice that we cannot use Zijm’s results for −fK, which can be expressed using maximum,

because matrices should be nonnegative and dynamics is considered on the nonnegative cone. The

problem in transferring the results obtained for gK to fK lies in the convexity property which fK
lacks. In particular, there is no simultaneous block-triangular decomposition, which was extremely

important in [25,21,22]. To overcome this difficulty we show that if the set K satisfies the product

property then there exist matrices B and C in K which give the lowest and the greatest asymptotic

behavior over all matrices in K, i.e. Bnv � Anv � Cnv for all A ∈ K and every strictly positive vector v.

These matrices we call respectively �-minimal and �-maximal for the set K. Using these notions we

study spectral properties of fK. In particular, we prove that fK possesses a strictly positive eigenvector
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if and only if some (every)�-minimal matrix possesses a strictly positive eigenvector. Themain result

shows existence of nonnegative generalized eigenvectors of fK. Finally as a corollary we describe the

asymptotic behavior of each component of f nK(v) by showing that f nK(v) ∼ Anv for some (every) �-

minimalmatrixA.Weprove someotherpropositions similar to the results of [25], sometimes assuming

additional conditions.

I would like to thank Stéphane Gaubert for bringing my attention to Zijm’s articles and Volodymyr

Nekrashevych for helpful suggestions.

2. Nonnegative matrices: definitions, notations, results

We recall in this section some (usually well-known) definitions and results that we need about

nonnegative matrices (for the references see [4, Chapter 2], [20], [1, Chapter 1], [6, Chapter XIII]).

A matrix A = (aij) is called nonnegative (positive) if aij � 0 (aij > 0) for all indices i, j. Denote by Ai

the ith row of thematrix A and by vi the ith component of a vector v. A vector v is called strictly positive

if vi > 0 for all i. Unless otherwise stated, all matrices will be square of a fixed dimension N. Following

[9,16,25] the set {1, 2, . . . ,N} is called the state space and denoted by S. If S1, S2 ⊂ S then we denote

by A|(S1,S2) the restriction of the square matrix A to S1 × S2 and by v|S1 the restriction of the vector v

to S1.

The spectral radius of a matrix A is denoted by spr(A).
We say that state i has access to state j if there exists a nonnegative integer n such that the ijth entry

of An is positive. Matrix A is called irreducible if any two states have access to each other. In the other

case A is called reducible.

The following theorem states some important properties of square nonnegative matrices.

Theorem 1 (4, Chapter 2). Let A be a nonnegative matrix with spectral radius λ. Then

(a) λ is an eigenvalue of A.
(b) There exists a nonnegative eigenvector v associated with λ.
(c) If Au� σu for u�0 then λ� σ.
If moreover A is irreducible then

(d) There exists a strictly positive eigenvector v associated with λ and any nonnegative eigenvector of A

is a scalar multiple of v.
(e) If Au� λu or Au� λu for u� 0 then Au = λu.
(f ) (σ I − A)−1 > 0 for any σ > λ.
(g) spr(A|(C,C)) < λ for any C�S. If A is reducible then spr(A|(C,C))� λ for any C�S and spr(A|(C,C)) =

λ for some C�S.
(h) If Au > σu (Au < σu) for u� 0 then λ > σ (respectively, λ < σ).

Iterations of a matrix heavily depend on its block-triangular structure. We will describe this fol-

lowing [4,20].

A class of a nonnegative matrix A is a subset C of the state space S such that A|(C,C) is irreducible
and such that C cannot be enlarged without destroying the irreducibility. A class C is called basic if

spr(A|(C,C)) = spr(A), otherwise nonbasic (when spr(A|(C,C)) < spr(A)). It follows that for any matrix

Awe have a partition of the state space S into classes, say C1, C2, . . . , Cn. Then, after possibly permuting

the states and renumbering the classes, A can be written in the form, sometimes called the Frobenius

Normal Form,

A =

⎛
⎜⎜⎜⎝
A(1,1) A(1,2) . . . A(1,n)
0 A(2,2) . . . A(2,n)

0 0
. . .

...
0 0 0 A(n,n)

⎞
⎟⎟⎟⎠

where A(i,j) denotes A|(Ci ,Cj). Hence classes can be partially ordered by accessibility relation. We say

that a class C has access to (from) a class C′ if there is an access to (from) some (or equivalently any)



498 I. Bondarenko / Linear Algebra and its Applications 431 (2009) 495–510

state in C to some (or equivalently any) state in C′. A class is called final if it has no access to any other

class.

The spectral radius of a class C is the spectral radius of A|(C,C).
The next proposition describes when a matrix A has a strictly positive eigenvector and, what is

more important for the subject of this paper, when (Anv)i ∼ (Anv)j for all indices i, j and any strictly

positive vector v.

Proposition 2. Let A be a nonnegative matrix with spectral radius λ. Then the following conditions are

equivalent:
(a) The matrix A has a strictly positive eigenvector.
(b) The basic classes of A are precisely its final classes.
(c) (Anv)i ∼ λn for all i and for some (every) vector v > 0.
(d) (Anv)i ∼ (Anv)j for all i, j and for some (every) vector v > 0.

Proof. The proof of equivalence (a) and (b) can be found in [4, Theorem 3.10]. The proof of the rest will

follow directly from Corollary 5. �

Also notice that if a nonnegativematrix possesses a strictly positive eigenvector then it is associated

with the spectral radius of this matrix.

Already the last proposition indicates importance of the position of basic and nonbasic classes of a

squarenonnegativematrixA for existenceof a strictlypositiveeigenvectorandbehaviorof its iterations.

These positions can be defined precisely by introducing the concept of a chain. A chain of classes of A is

an ordered collection of classes {C1, C2, . . . , Cn} such that Ci has access to Ci+1, i = 1, . . . , n − 1. The

length of a chain is the number of basic classes it contains. The depth of a class C of A is the length of

the longest chain that starts with C. The degree ν(A) of A is the length of its longest chain. Let Si be the

union of all classes of depth i. The partition {S0, S1, . . . , Sν} of the state space S is called the principal

partition of S with respect to A. Principal partitions play a fundamental role in this paper. The next result

is then straight forward.

Proposition 3. Let {S0, S1, . . . , Sν} be the principal partition of S with respect to A. Then, after possibly
permuting the states, A can be written in the form

A =

⎛
⎜⎜⎜⎝
A(ν ,ν) A(ν ,ν−1) . . . A(ν ,0)
0 A(ν−1,ν−1) . . . A(ν−1,0)

0 0
. . .

...
0 0 0 A(0,0)

⎞
⎟⎟⎟⎠ ,

where A(i,j) denotes A|(Si ,Sj).We have that spr(A(0,0)) < spr(A) (if S0 is not empty); spr(A(i,i)) = spr(A)
and the final classes and basic classes of A(i,i) coincide for i = 1, . . . , ν. Each state in Si+1 has access to

some state in Si for i � 1 (here A(i,i−1) is non-zero).

Notice that it follows from Proposition 2 that A|(Si ,Si) possesses a strictly positive eigenvector for

every i = 1, . . . , ν .
We need the following useful lemma.

Lemma 1 (25, Lemma 2.5). Let A be a nonnegative matrix with spectral radius λ.

(a) If Av � σ v for some real number σ and a real vector v with at least one positive component, then

λ� σ.
(b) If Av � λv with v > 0 then every final class of A is basic and (Av)i = λvi for every i in a final class

of A.
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Matrices which possess strictly positive eigenvectors have the following additional properties.

Lemma 2. Let A be a nonnegative matrix with spectral radius λ which has a strictly positive eigenvector.
Let S1 ⊂ S be the union of all final classes of A. If Au = λu with u|S1 > 0 then u > 0.

Proof. Let S2 = S \ S1. Then, after possibly permuting the states, A can be written in the form:

A =
(
A(S2,S2) A(S2,S1)

0 A(S1,S1)

)
.

Each class C in S2 has access to some state in S1, spr(A|(C,C)) < λ by Proposition 2, and (λI −
A|(C,C))−1 > 0 by Theorem 1 item (f ). It follows that (λI − A|(S2,S2))−1A(S2,S1) has a positive element

in each row. Then

u|S2 = (
λI − A|(S2,S2)

)−1
A|(S2,S1)u|S1 > 0. �

Lemma 3 (25, Lemma 2.3). Let A be a nonnegative matrix with spectral radius λwhich possesses a strictly

positive eigenvector. Then:
(a) There exists a nonnegative matrix A∗ defined by:

A∗ = lim
n→∞

1

n + 1

n∑
i=0

λ−iAi.

We have AA∗ = A∗A = λA∗ and (A∗)2 = A∗. Moreover, a∗
ij > 0 if and only if j belong to a basic

class of A and i has access to j under A.
(b) The matrix λI − A + A∗ is nonsingular.
(c) If A∗v = 0 for some vector v � 0 (or v � 0), then vi = 0 for every state i belonging to a basic class of

A.
(d) If Av � λv (or Av � λv) for some vector v then A∗v � v (respectively, A∗v � v).

Notice that if A is a (reducible) stochastic matrix then A∗ is a limiting transition probability matrix

and the inverse of (I − A + A∗) is the so-called fundamental matrix of the respective Markov chain.

Asymptotic behavior of iterations of a nonnegative matrix can be studied through its generalized

eigenvectors corresponding to its spectral radius. Let A be a nonnegative matrix with spectral radius

λ. The index η(A) of Awith respect to λ is the smallest integer n such that the null spaces of (A − λI)n

and (A − λI)n+1 coincide. The elements of Null(A − λI)i \ Null(A − λI)i−1 are called the generalized

eigenvectors of order i. It was proved in [17, Theorem 3.1] that η(A) = ν(A). Moreover, it was shown

that generalized eigenvectors can be chosen nonnegative with special strictly positive components.

More precisely (see also [19,25]):

Theorem 4 (17, Theorem 3.1). Let A be a nonnegative matrix with spectral radius λ. Let {S0, S1, . . . , Sν} be
the principal partition of S with respect to A. Then there exists a set of nonnegative generalized eigenvectors

v(1), v(2), . . . , v(ν) such that

Av(ν) = λv(ν),

Av(i) = λv(i) + v(i+1), i = ν − 1, . . . , 2, 1.

Moreover

v
(i)
j > 0, j ∈

ν⋃
k=i

Sk and v
(i)
j = 0, j ∈

i−1⋃
k=0

Sk.

To give estimates on the growth of Anv we need the following lemma.
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Lemma 4. For any integer k � 0 and real λ,β > 0 we have asymptotic relation

n−1∑
i=0

λn−iikβ i ∼
{
nkβn, if β > λ;
nk+1λn, if β = λ.

Proof. The asymptotic relation
∑n−1

i=0 ik ∼ nk+1 is standard. Then for λ = β:

n−1∑
i=0

λn−iikβ i = λn
n−1∑
i=0

ik ∼ nk+1λn

and for β > λwe have inequalities:

(n − 1)kβn−1 �
n−1∑
i=0

λn−iikβ i = λn
n−1∑
i=0

ik

(
β

λ

)i

� λn(n − 1)k
n−1∑
i=0

(
β

λ

)i

� λnnk
(
β
λ

)n − 1

β
λ

− 1
� nk

βn

β
λ

− 1
. �

Corollary 5. Let A be a nonnegative matrix with spectral radius λ. Let {S0, S1, . . . , Sν} be the principal

partition of S with respect to A. Then

(Anv)k ∼ ni−1λn, for k ∈ Si, i � 1

for any strictly positive vector v.

Proof. The statement follows from a general result about asymptotic behavior of matrix powers

obtained in [18]. We sketch the proof to use it later.

Using the identities for the generalized eigenvectors v(i) from Theorem 4 and the above lemma,

one can get by induction that

Anv(i) ∼ λn
ν−i∑
j=0

njv(i+j), for i = ν , . . . , 1 ⇒ (Anv(1))k ∼ ni−1λn, for k ∈ Si.

Since spr(A|(S0,S0)) < λ the S0th components of a strictly positive vector v does not effect the asymp-

totic behavior of Anv|S\S0 . Hence Anv|S\S0 ∼ Anv(1)|S\S0 . �

Remark. Corollary 5 gives us an algorithm of finding the growth of each component of Anv (see the

detailed analysis in [18]). For indices in Si for i � 1 it follows directly from the corollary. For i ∈ S0 we

consider the matrix A|(S0,S0) and its principal partition and so on. This algorithm can be also described

using chains of classes as follows. Take a state i and the corresponding class Ci which contains i. Let β
be the maximum of spectral radii of classes C, where C runs through all classes such that Ci has access

to C. Consider all possible chains that start at Ci and for each chain count the number of classes C in

this chain with spectral radius β . Let k be the maximal among such numbers. Then (Anv)i ∼ nk−1βn

for any strictly positive vector v. In particular, if i belongs to a final class of A then (Anv)i ∼ βn, where

β is the spectral radius of the class.

Corollary 5 implies that the components of Anv are comparable with respect to the partial order�.

The �-minimal possible growth of (Anv)i over all indices i is ∼ γ n, where γ is the spectral radius of

some final class C. If state i has access to state j then (Anv)j � (Anv)i. So, (A
nv)i ∼ (Anv)j for any two

states i and j in the same class of A.
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3. Existence of strictly positive eigenvector of fK

Let K be a finite set of nonnegative matrices. In this section we define the notion of a �-minimal

matrix and the principal �-minimal partition of S with respect to K. Using these notions we give

necessary and sufficient conditions for existence of a strictly positive eigenvector for themap fK(v) =
minA∈K Av.

Note that in general we do not have the property that for every vector v there exists A ∈ K such

that fK(v) = Av. The following concept eliminates this difficulty (compare with [20, Section 3.1]).

Definition 1. Let K be a set of nonnegative N × N matrices. We say that K satisfies the product property

if for each subset V ⊆ S and for each pair of matrices A, B ∈ K the matrix C defined by

Ci :=
{
Ai, if i ∈ V;
Bi, if i ∈ S \ V .

belongs to K.

If we have any finite setK0 of nonnegativematrices thenwe can close it with respect to the product

property and obtain another finite set K. We just take all possible matrices C obtained as follows: the

ith row of C is the ith row of some matrix from K. Then it is easy to see that

min
A∈K0

Av = min
A∈K

Av

for any vector v. So we can extend our given set of matrices to a bigger one, which satisfies the

product property, without changing the map fK. Moreover, for every v there exists A = Av ∈ K such

that fK(v) = Av.

Hence we will always assume that K possesses the product property.

As was mentioned in introduction, Richard Bellman in [2] considered compact sets K of positive

matrices and proved that gK has a strictly positive eigenvector. It was generalized to a set of irreducible

matrices in [14]. A simpleproof of this resultwasobtainedbyW.H.M. Zijm [25] following thearguments

in [10, Appendix B]. His proof also works for the maps fK.

Proposition 6. Suppose that every matrix in the set K is irreducible. Then fK possesses a strictly positive

eigenvector associated with λK = minA∈K spr(A).Moreover, it is unique up to a scalar multiple.

Proof. Take any B ∈ K. LetλB be the spectral radius of B and let v be the corresponding strictly positive

eigenvector. Find D ∈ K such that

Dv = min
A∈K

Av

with Di = Bi if (Bv)i �(Av)i for all A ∈ K. If D = B then fK(v) = Bv = λBv and we are done. If D /= B

then Dv�Bv = λBv and λD :=spr(D) < λB by Theorem 1 item (e). Apply the same procedure for the

matrix D with its strictly positive eigenvector u associated with λD. Since K is finite, after a finite

number of steps we will reach a matrix M with spectral radius λ and eigenvector w such that

Mw = min
A∈K

Aw = λw.

Since Aw � λw for every A ∈ K, we get λ = minA∈K spr(A) by Theorem 1 item (e).
Let u, v > 0 be eigenvectors of fK and let fK(v) = Av = λv and fK(u) = Bu = λu. Then spr(A) =

spr(B) = λ, Bv � fK(v) = λv, and Bv = λv by Theorem 1 item (e). Hence by Theorem 1 item (d) the
eigenvector of fK associated with λ is unique up to a scalar multiple. �

The following lemma is an important result for understanding the asymptotic behavior of f nK(v). It
will be used throughout the paper.
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Lemma 5. There exists B ∈ K such that Bnv � Anv for any A ∈ K and v > 0.

Proof. We use induction on dimension N. For N = 1 the statement is obvious. Suppose the lemma is

correct for any dimension< N. Let us fix v > 0.

For each A ∈ K and i ∈ S we can find the asymptotic behavior of (Anv)i using Corollary 5. Define

the setK′ ⊂ K of all matrices B inK for which there exists i ∈ S such that (Bnv)i � (Anv)j for all A ∈ K
and j ∈ S. Note that it follows from Corollary 5 that (Bnv)i ∼ λn for some real λ� 0. For each matrix

B ∈ K′ define
S0(B) = {j ∈ S | (Bnv)i ∼ (Bnv)j ∼ λn}

and S1(B) = S \ S0(B). Suppose some state i in S0(B) has access to some state j in S1(B). Then (B
nv)j �

(Bnv)i. Since the asymptotic behavior of (Bnv)i is �-minimal for B, we have (Bnv)i ∼ (Bnv)j . Hence
j ∈ S0(B) and we have a contradiction. Thus no state in S0(B) has access to any state in S1(B), which

means that B|(S0(B),S1(B)) = 0.

Observe that the spectral radius of every class of B from S0(B) is not greater than λ. If a class C from

S0(B) is final then it has spectral radius λ. The converse is also true: a class C from S0(B)with spectral

radius λ is final. Really, suppose it is not final. Then it has access to a final class from S0(B). Thus there
exists a chain which start at C that contains at least two classes with spectral radii λ. So, (Bnv)i � nλn

for i in C by Corollary 5.

Let us show that K′ contains a matrix B with the biggest set S0(B), i.e. such that S0(B) ⊃ S0(A) for
any A ∈ K′. It is sufficient to show that for any matrices B and D from K′ there exists E ∈ K′ such that

S0(E) ⊃ S0(B) ∪ S0(D). Define E as follows: Ei = Bi for i ∈ S0(B) and Ei = Di for i /∈ S0(B).

E =
(
D|(S1(B),S1(B)) ∗

0 B|(S0(B),S0(B))
)

Then E ∈ K′ and S0(E) ⊃ S0(B), because (E
nv)i = (Bnv)i for i ∈ S0(B). In order to prove that S0(E)

contains S0(D), it is sufficient toprove that each classC ofE,whichbelong to S0(D) \ S0(B)with spectral

radius λ is final (if it is empty we are done). By construction E|(C,C) = D|(C,C) and C belongs to some

class C′ of D from S0(D). If C /= C′ then spr(D|(C′ ,C′)) > spr(D|(C,C)) = spr(E|(C,C)) = λ by Theorem 1

item (g) and we have contradiction with C′ ⊂ S0(D). Thus C = C′ and E|(C,S\C) = D|(C′ ,S\C′) = 0. So

C is final and our claim is proved.

Choose B ∈ K′ to be a matrix with the biggest set S0(B). Denote S0 :=S0(B) and S1 :=S1(B).
If S0 = S thenwe are done – thematrix B satisfies the condition of the lemma. Suppose that S1 /= ∅.

The set K|(S1,S1) satisfies the product property and we can apply induction to it. So there exists D ∈ K
such that (D|(S1,S1))nv|S1 � (A|(S1,S1))nv|S1 for any A ∈ K. Define a matrix E in the same way as above:

Ei = Bi for i ∈ S0 and Ei = Di for i /∈ S0. We want to show that it satisfies the condition of the lemma.

Again (Env)i = (Bnv)i for i ∈ S0. So (E
nv)i � (Anv)i for any matrix A ∈ K for i ∈ S0. We need to

prove the previous inequality for i ∈ S1.

(Env)|S1 � (D|(S1,S1))nv|S1 +
n−1∑
l=1

(D|(S1,S1))n−lD|(S1,S0)(B|(S0,S0))lv|S0 �

� (D|(S1,S1))nv|S1 +
n−1∑
l=1

(D|(S1,S1))n−lλlv|S1 =
n−1∑
l=0

(D|(S1,S1))n−lλlv|S1 .

Fix i in S1 and let ((D|(S1,S1))nv|S1)i ∼ nkβn. Suppose β < λ. Then there exists j ∈ S1 such that

((D|(S1,S1))nv|S1)j ∼ βn. Then:

(Env)j �
n−1∑
l=0

(D|(S1,S1))n−lλlv|S1 ∼
n−1∑
l=0

λlβn−l ∼ λn

and therefore j must be in S0. We get a contradiction, hence β � λ.
If β > λ then
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(Env)i �
n−1∑
l=0

(D|(S1,S1))n−lλlv|S1 ∼
n−1∑
l=0

λl(n − l)kβn−l ∼ nkβn ∼ ((D|(S1,S1))nv|S1)i �

� ((A|(S1,S1))nv|S1)i � (Anv)i

for every A ∈ K.

Now suppose that β = λ. Let Ci be the class of D|(S1,S1) that contains i. Then λ is the maximum of

spectral radii of D|(S1,S1)|(C,C), where C runs through all classes of D|(S1,S1) such that Ci has access to C.

Also the maximal number of classes C with spr(D|(S1,S1)|(C,C)) = λ in chains that start at Ci is k. If the

maximum of spectral radii ofD|(C,C), where Ci has access to C, is greater than λ, then (Dnv)i � nk+1λn.
If not then the maximal number of classes C of B with spr(D|(C,C)) = λ in a chain that starts at Ci is at

least k + 1, otherwise there exists a state j in S1 with (Env)j ∼ λn. Thus, (Dnv)i � nk+1λn. Notice that

the above statement is true for anymatrixA ∈ K, i.e. if ((A|(S1,S1))nv|S1)i ∼ nkλn then (Anv)i � nk+1λn.
Then

(Env)i �
n−1∑
l=0

(D|(S1,S1))n−lλlv|S1 ∼
n−1∑
l=0

λl(n − l)kλn−l ∼ nk+1λn � (Anv)i

for any A ∈ K. So (Env)i � (Anv)i for all i and A ∈ K. �

By similar arguments one can show that there exists C ∈ K such that Anv � Cnv for every A ∈ K.

Definition 2. A matrix B ∈ K which satisfies Lemma 5 will be called �-minimal for K.

There is a simple (butnoteffective) algorithmtofindall�-minimalmatrices.Wefindtheasymptotic

behavior of (Anv)i for allA ∈ KbyCorollary5and takematriceswith�-minimal growth (suchmatrices

exist by Lemma 5).

If the spectral radius of a matrix A is zero, then A is nilpotent and asymptotic behavior of Anv is

trivial. Consideration of suchmatrices is elementary but does not fit precisely in the discussion below.

To avoid these unnecessary complications and without loss of generality in the sequel all considered

matrices have spectral radius> 0.

The principal partitions, spectral radii and degrees of every two �-minimal matrices coincide,

which follows fromCorollary 5 and from the fact that Anv ∼ Bnv for any�-minimalmatrices A, B ∈ K.

Notice that the spectral radius of a �-minimal matrix is equal to minA∈K spr(A). Denote λ = spr(B)
and ν = ν(B) for a �-minimal matrix B ∈ K.

Definition 3. The principal partition {S0, S1, . . . , Sν} of a �-minimal matrix is called the principal �-

minimal partition of S with respect to K.

The following proposition gives a sufficient condition for existence of a strictly positive eigenvector

for themap fK. Moreover, itwill follow fromCorollary 12 that this condition is also necessary, andwhat

is more important for the subject of this paper that it is equivalent to the property that all components

of the iterations f nK(v) have the same growth.

Proposition 7. Suppose that some �-minimal matrix possesses a strictly positive eigenvector. Then fK
possesses a strictly positive eigenvector associated with λ.

Proof. Note that by Proposition 2 if one �-minimal matrix possesses a strictly positive eigenvector

then all �-minimal matrices do.

Let B be a �-minimal matrix with strictly positive eigenvector v. Apply the same procedure as in

the proof of Proposition 6. Find D ∈ K such that
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Dv = min
A∈K

Av

with Di = Bi if (Bv)i �(Av)i for all A ∈ K. Then Dv � λv and Dnv � λnv = Bnv. Thus D is �-minimal,

has strictly positive eigenvector and spr(D) = λ. Since each final class of D is basic, (Dv)i = (λv)i for
all i in final classes by Theorem 1 item (e). Hence Di = Bi for i in the final classes of D and the set of

final classes of B contains the set of final classes of D.

By Proposition 2 each nonfinal class of D is nonbasic. Let S1 ⊂ S be the union of all final classes and

let S2 = S \ S1. Then, after possibly permuting the states

D =
(
D|(S2,S2) E

0 B|(S1,S1)
)

with spr(D|(S1,S1)) = λ and spr(D|(S2,S2)) < λ. Define

u|S1 = v|S1 and u|S2 = (λI − D|(S2,S2))−1Ev|S2 . (1)

Then Du = λu and thus u > 0 by Lemma 2. Suppose ui > vi for some i ∈ S. Then it follows from

Du = λu and Dv � λv that

D|(S2,S2)
[
u|S2 − v|S2

]
� λ

[
u|S2 − v|S2

]
.

This contradicts spr(D|(S2,S2)) < λ by Lemma 1. Hence v � u > 0.

By construction u = v if and only if D = B. We can apply the same procedure to D and u. On each

step the set of final classes of the new matrix is contained in the set of final classes of the previous

matrix and the next eigenvector coincides with the previous one on the states from final classes of

the new matrix. Since K is finite, after some steps all received matrices will have the same set of final

classes and all received eigenvectors are the same on this set. Now suppose this process will never

stabilize. It means that all received eigenvectors are different. Since K is finite, some matrix appears

in this process at least two times with different strictly positive eigenvectors that coincide on the final

classes of thismatrix. But by (1) eigenvector of amatrix is uniquely defined by its coordinates from the

final classes of this matrix. We get a contradiction. Thus after a finite number of steps we will reach a

�-minimal matrixM ∈ K with strictly positive eigenvector w such that

Mw = min
A∈K

Aw = λw. �

Corollary 8. Under the conditions of Propositions 6 or 7 the asymptotic relation

(f nK(u))i ∼ λn

holds for any strictly positive vector u and i ∈ S.

So, if there exists a �-minimal matrix with strictly positive eigenvector, then the growth exponent

of each component of f nK(v) is equal to the spectral radius of this �-minimal matrix.

The next proposition with ν = 1 gives the basis of induction for Lemma 7.

Proposition 9. Let {S0, S1, . . . , Sν} be the principal �-minimal partition of the state space S with respect

to K. Then there exists a nonnegative vector w with w|Sν > 0 such that

min
A∈K

Aw = λw.

Proof. Let B be any �-minimal matrix. Since {S0, S1, . . . , Sν} is the principal partition of B, the matrix

B|(Sν ,Sν ) possesses a strictly positive eigenvector v associated with λ. The set K|Sν = {A|(Sν ,Sν ), A ∈ K}
also satisfies the product property and B|Sν is �-minimal for it. We can apply Proposition 7 for K|Sν .
There exists a strictly positive vector u defined on Sν such that

min
A∈K

A|(Sν ,Sν )u = λu.

Take w such that w|Sν = u and w|S\Sν = 0. Then w satisfies the condition of the proposition. �
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Itwas shown in [25,22] that a stronger result holds for gK, which proves existence of a simultaneous

block-triangular representation of the matrices in K and allows one to define the “principal partition”

of S with respect to K. This partition plays a fundamental role in those papers. This result does not

hold for fK.

4. Generalized eigenvectors of fK

We prove in this section two lemmata from which the main result follows immediately. The first

lemma proves existence of a solution of a set of “nested” functional equations. As it was noticed in

[25], it can be viewed as a generalization of the Howard’s policy iteration procedure [9].

Let t be an integer greater than 1. Suppose that for each A ∈ K we have a sequence of vectors

ri(A), i = 1, . . . , t − 1.

Lemma 6. Assume that the set of rectangular matrices

{(A, r1(A), r2(A), . . . , rt−1(A)) | A ∈ K}
satisfies the product property. Suppose that there exists (for all) a �-minimal matrix B ∈ K with a strictly

positive eigenvector v. Suppose furthermore B∗rt−1(B) > 0 for any�-minimalmatrix B (here B∗ is defined

in Lemma 3). Then there exists a solution {v(1), . . . , v(t)} of the set of functional equations:
min
A∈K

Av(t) = λv(t)

min
A∈Ki

{
Av(i−1) + ri−1(A)

}
= λv(i−1) + v(i), i = 2, . . . , t,

where Ki is defined recursively by

Kt :={A | A ∈ K, Av(t) = λv(t)},
Ki :={A | A ∈ Ki+1, Av

(i) + ri(A) = λv(i) + v(i+1)}, i = 2, . . . , t − 1.

Furthermore v(t) > 0.

Proof. The set of equations

Bv(t) = λv(t),

Bv(i) + ri(B) = λv(i) + v(i+1), i = 1, . . . , t − 1, (2)

B∗v(1) = 0

has a unique solution

v(t) = B∗rt−1(B),

v(i) = (λI − B + B∗)−1[ri(B)+ B∗ri−1(B)− v(i+1)], i = 2, . . . , t − 1,

v(1) = (λI − B + B∗)−1[r1(B)− v(2)].
Moreover v(t) > 0. Since we have the “extended” product property, there exists a matrix D ∈ K such

that

Dv(t) = min
A∈K

Av(t),

Dv(i) + ri(D) = min
A∈Hi+1

{
Av(i) + ri(A)

}
, i = 1, . . . , t − 1,
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where Hi ⊂ K denotes the set of matrices which minimize the right hand side of ith equation above.

We choose D = B if B satisfies above equations, i.e. if B ∈ H1.

Then Dv(t) � λv(t) and thus D is �-minimal and possesses a strictly positive eigenvector. As above,

the set of equations (2) with the matrix D instead of B has a unique solution {u(1), . . . , u(t)} with

u(t) > 0 and so on. We want to show that this process will eventually stop. It is easy to see that if v(i)

and u(i) satisfy the following properties

(a) u(t) � v(t);

(b) if u(i) = v(i) for i = k + 1, . . . , t then u(k) � v(k);

(c) if u(i) = v(i) for all i = 1, . . . , t then D = B,

then, since K is finite, after a finite number of steps we will reach a matrix which stays intact under

application of this process. The corresponding solution of (2) will satisfy the conditions of the lemma.

Let us prove (a), (b) and (c). Let C ⊂ S be the union of all final classes of D.

(a) Using Lemma 3 and construction of u(i) and v(i) several times we get

u(t) = D∗u(t) = D∗[Du(t−1) − λu(t−1) + rt−1(D)] = D∗rt−1(D)�

� D∗[λv(t−1) + v(t) − Dv(t−1)] = D∗v(t) � v(t).

(b) Now suppose u(i) � v(i) for i = k + 1, . . . , t. Define vectorsψ(i), i = 1, . . . , t, such that:

Dv(t) = λv(t) + ψ(t),

Dv(i) + ri(D) = λv(i) + v(i+1) + ψ(i).

From (2) for the matrix D and the previous equations we get:

D[v(i) − u(i)] = λ[v(i) − u(i)] + [v(i+1) − u(i+1)] + ψ(i). (3)

Thus,ψ(i) = 0 and Dv(i) + ri(D) = Bv(i) + ri(B) for i = k + 1, . . . , t. Hence B ∈ Hk+1. It follows that

ψ(k) � 0 and

D[v(k) − u(k)] = λ[v(k) − u(k)] + ψ(k) ⇒ (applying D∗) (4)

D∗ψ(k) = 0.

Henceψ
(k)
i = 0 for i ∈ C by Lemma 3 item (c).

Consider the case k � 2. Then ψ
(k−1)
i

� 0 for i ∈ C and hence D∗ψ(k−1) � 0 by Lemma 3 item (a).

Applying D∗ to (k − 1)st equation of (3) we obtain:

0 = D∗[v(k) − u(k)] + D∗ψ(k−1), but D[v(k) − u(k)] � λ[v(k) − u(k)].
Hence [v(k) − u(k)] �D∗[v(k) − u(k)] = −D∗ψ(k−1) � 0, becauseψ

(k−1)
i

� 0 for i ∈ C.

For k = 1 we have B ∈ H2 and since ψ
(1)
i = 0 for i ∈ C we may choose Di = Bi for i ∈ C. In this

case D∗
i = B∗

i and u
(1)
i = v

(1)
i = 0 for i ∈ C. Thus D∗v(1) = 0. It follows from (4) that

[v(1) − u(1)] �D∗[v(1) − u(1)] = 0.

(c) As above,ψ(i) = 0 for all i and hence B ∈ H1. Thus D = B by construction. �

Lemma 7. Let {S0, S1, . . . , Sν} be the principal�-minimal partition with respect to K. There exists a set of

nonnegative vectors v(1), v(2), . . . , v(ν) such that

min
A∈K

Av(ν) = λv(ν), (5)



I. Bondarenko / Linear Algebra and its Applications 431 (2009) 495–510 507

min
A∈Ki+1

Av(i) = λv(i) + v(i+1), i = ν − 1, . . . , 2, 1;

where

Kν :={A | A ∈ K, Av(ν) = λv(ν)},
Ki :={A | A ∈ Ki+1, Av

(i) = λv(i) + v(i+1)}, i = 2, . . . , ν − 1.

Moreover

v
(i)
j > 0, j ∈

ν⋃
k=i

Sk and v
(i)
j = 0, j ∈

i−1⋃
k=0

Sk. (6)

Proof. By induction on ν . For ν = 1 the result follows from Proposition 9. Suppose that the lemma

holds for ν < t and let now ν = t.

Notice that

Kt = {A | A ∈ K, Av(t) = λv(t) and A|(S\St ,St) = 0}
for any given v(t) such that v(t)|S\St = 0. Define the set of matrices

H = {A|(S\St ,S\St), A ∈ Kt}.
Clearly H also satisfies the product property and B|(S\Sν ,S\Sν ) is a �-minimal matrix for H for any

�-minimal matrix B for K. Thus S0, S1, . . . , Sν−1 is the principal �-minimal partition of H. By the

induction hypothesis there exist nonnegative vectors u(1), u(2), . . . , u(t−1) defined on S \ Sν such that

u
(t−1)
i > 0 for i ∈ St−1 and

min
A∈H

Au(t−1) = λu(t−1),

min
A∈Hi+1

Au(i) = λu(i) + u(i+1), i = t − 2, . . . , 2, 1.

Now we need to find vectors v(1), v(2), . . . , v(t) such that (5) holds. Let us take

v
(i)
j = u

(i)
j and v

(t)
j = 0 for j ∈ S\St .

ThenKi ⊂ {A | A ∈ Kt , A|(S\St ,S\St) ∈ Hi} for i = 1, . . . , t − 1, and thevectorsv(i), independentof their

coordinates on St , satisfy (5) for states in S\St . It remains to determine v
(i)
j for j ∈ St , i = 1, . . . , t. The

conditions on v(i)|St are the following:

min
A∈K

A|(St ,St)v(t)|St = λv(t)|St ,

min
A∈Ki+1

⎧⎨
⎩A|(St ,St)v(i)|St +

t−1∑
j=i

A|(St ,Sj)w(i)|Sj
⎫⎬
⎭ = λv(i)|St + v(i+1)|St , i = t − 1, . . . , 2, 1.

Since {S0, S1, . . . , St} is the principal partition of any �-minimal matrix B ∈ K, the matrix B|(St ,St)
possesses a strictly positive eigenvector associated with λ. Moreover u(t−1)|St−1

> 0. Each final class

of B|(St ,St) has access to some state in B|(St−1,St−1). Thus

(B|(St ,St−1)u
(t−1)|St−1

)i > 0

for some i in every final class of B|(St ,St). Then B|∗(St ,St)B|(St ,St−1)u
(t−1)|St−1

> 0 for any �-minimal B by

Lemma 3 item (a). We can now apply Lemma 6 and find v(i)|St .
It may happened that v(i) does not satisfy the nonnegativity constrains (6) on St (they satisfy it on

S \ St by induction). In this case consider
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w(t) = v(t), (7)

w(i) = v(i) + αv(i+1), i = 1, . . . , t − 1.

They also satisfy (5) and we can choose α large enough so thatw
(i)
j > 0 for all j ∈ St , i = 1, . . . , t. �

Now we are ready to prove the main result.

Theorem 10. Let {S0, S1, . . . , Sν} be the principal�-minimal partition with respect toK. Then there exists

a set of nonnegative vectors v(1), v(2), . . . , v(ν) such that

min
A∈K

Av(ν) = λv(ν),

min
A∈K

Av(i) = λv(i) + v(i+1), i = ν − 1, . . . , 2, 1.

Moreover

v
(i)
j > 0, j ∈

ν⋃
k=i

Sk and v
(i)
j = 0, j ∈

i−1⋃
k=0

Sk.

Proof. Use Lemma7 to find solutions v(1), v(2), . . . , v(ν) of the corresponding system (5). Nowconsider

the vectors w(1),w(2), . . . ,w(ν) from (7). It is easy to see that for α large enough

min
A∈Ki+1

Aw(i) = min
A∈Ki+2

Aw(i) = . . . = min
A∈K

Aw(i), i = 1, . . . , ν.

Hence for α large enough the vectors w(1),w(2), . . . ,w(ν) satisfy the conditions of the theorem. �

Corollary 11. Let {S0, S1, . . . , Sν} be the principal �-minimal partition with respect to K. Then
(f nK(v))i ∼ nk−1λn, where i ∈ Sk ,

for any strictly positive vector v and k � 1.Moreover, for any �-minimal matrix B ∈ K
(f nK(v))i ∼ (Bnv)i

for any strictly positive vector v and i ∈ S.

Proof. The proof of the first part is the same as for a single matrix (see Corollary 5). Thus (f nK(v))i ∼
(Bnv)i for i /∈ S0. We need to prove this asymptotic relation for i ∈ S0.

The upper bound f nK(v) � Bnv is obvious. Define

H = {A ∈ K | A|(S0,S\S0) = 0} and fK|S0 = min
A∈H

A|(S0,S0).
Then B|(S0,S0) is �-minimal for H|S0 for any matrix B �-minimal for K. Let β = spr(B|(S0,S0)) for �-

minimal B (notice that β < λ) and let {S′
0, S

′
1, . . . , S

′
ν′ } be the principal�-minimal partition of S0 with

respect to H|S0 . By Theorem 10 there exist nonnegative vectorsw(1), . . . ,w(ν
′) defined on S0 such that

fK|S0(w(ν
′)) = βw(ν

′)

fK|S0(w(i)) = βw(i) + w(i+1), i = ν′ − 1, . . . , 2, 1,

and with specified nonnegative constrains. Notice that then (Bnv)i ∼ nk−1βn for i ∈ S′
k , k � 1.

Let v be a strictly positive vector defined on S \ S0 such that A|(S\S0,S\S0)v � λv (take for example

v(1)|S\S0 ). Define vectors u(i)αi , i = ν′, . . . 2, 1, such that u(i)αi |S\S0 = αiv and u(i)αi |S0 = w(i). Then
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fK(u
(i)
αi
) = min

A∈K

(
αiA|(S\S0,S\S0)v + A|(S\S0,S0)w(i)
αiA|(S0,S\S0)v + A|(S0,S0)w(i)

)
= min

A∈H
Au(i)αi , i = ν′, . . . 2, 1,

for αi large enough. Moreover we can additionally choose αi such that αiλv �αiβv + αi+1v for i =
ν′ − 1, . . . 2, 1. Then

fK(u
(ν′)
αν′ ) �

(
αν′λv
fK|S0(w(ν′))

)
=
(
αν′λv
βw(ν

′)

)
�
(
αν′βv
βw(ν

′)

)
= βu(ν

′)
αν′ ,

fK(u
(i)
αi
) �

(
αiλv

fK|S0(w(i))
)

=
(

αiλv

βw(i) + w(i+1)

)
�
(
αiβv + αi+1v

βw(i) + w(i+1)

)
= βu(i)αi + u(i+1)

αi+1
,

for i = ν′ − 1, . . . , 1. It follows that (f nK(u
(1)
α1
))i � nk−1βn for i ∈ S′

k , k � 1, and the lower bound is

proved for i in S \ S0 and S0 \ S′
0. We can now do the same for the states in S′

0. �

Corollary 12. The following conditions are equivalent:
(a) Function fK has a strictly positive eigenvector.
(b) Some (every)�-minimal matrix has a strictly positive eigenvector.
(c) (f nK(v))i ∼ λn for all i and for some (every) vector v > 0.
(d) (f nK(v))i ∼ (f nK(v))j for all i, j and for some (every) vector v > 0.
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