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SUMMARY

Cohesion is essential for the identification of sister
chromatids and for the biorientation of chromo-
somes until their segregation. Here, we have demon-
strated that an RNA-binding motif protein encoded
on the X chromosome (RBMX) plays an essential
role in chromosome morphogenesis through its
association with chromatin, but not with RNA. Deple-
tion of RBMX by RNA interference (RNAi) causes the
loss of cohesin from the centromeric regions before
anaphase, resulting in premature chromatid separa-
tion accompanied by delocalization of the shugoshin
complex and outer kinetochore proteins. Cohesion
defects caused by RBMX depletion can be detected
as early as the G2 phase. Moreover, RBMX associ-
ates with the cohesin subunits, Scc1 and Smc3,
and with the cohesion regulator, Wapl. RBMX is
required for cohesion only in the presence of Wapl,
suggesting that RBMX is an inhibitor of Wapl. We
propose that RBMX is a cohesion regulator that
maintains the proper cohesion of sister chromatids.

INTRODUCTION

Authentic construction of the chromosome structure consisting

of two sister chromatids, named cohesion, is required for faithful

transmission of the genomic DNA to the daughter cells (Nasmyth

and Haering, 2009). The genomic DNA is duplicated in the

S phase, and sister chromatid cohesion is regulated by a cohesin

complex consisting of Scc1 (Rad21), Scc3 (also known as SA1

and SA2 in vertebrates), Smc1, and Smc3 (Nasmyth, 2001;

Koshland and Guacci, 2000; Losada and Hirano, 2005). The

loading of cohesin onto chromatin occurs early in the G1 phase

(Losada, 2008; Peters et al., 2008). Cohesion is established by

the family of Eco1 cohesin acetyltransferases that acetylate

Smc3 during the S phase (Ivanov et al., 2002; Rowland et al.,

2009). The acetylation of Smc3 is necessary for Sororin recruit-
ment to chromatin-bound cohesin complexes in mammalian

cells (Lafont et al., 2010; Nishiyama et al., 2010). This process

is thought to be essential for the maintenance of cohesion during

the S/G2 phase. During mitosis in mammalian cells, cohesion

dissolution is performed via two pathways. One is the prophase

pathway in which a mitotic kinase polo-like kinase 1 (Plk1) phos-

phorylates SA2 and disassociates the cohesin complex along

the chromosome arm (Sumara et al., 2002; Hauf et al., 2005).

The centromeric cohesion between sister chromatids must be

maintained and protected from Plk1 until metaphase. The re-

maining cohesion in the centromeric region is sufficient to allow

proper chromosome alignment and timely segregation (Losada,

2008; Peters et al., 2008). The other pathway involves the sepa-

rase-mediated cleavage of Scc1 after securin degradation by the

anaphase-promoting complex (APC) (Nasmyth, 2002). Recent

studies have revealed that the shugoshin (Sgo) complex contain-

ing Sgo1 and protein phosphatase 2A (PP2A) protects the

centromeric cohesin until the onset of anaphase (Watanabe,

2005; Kitajima et al., 2006; Rivera and Losada, 2006; Tang

et al., 2006). PP2A recruited by Sgo1 can dephosphorylate

SA2 that has been phosphorylated by Plk1. Thus, the depletion

of Sgo1 or PP2A results in the loss of cohesin at centromeres,

leading to premature sister chromatid separation (Kitajima

et al., 2006; Tang et al., 2006). The recruitment of the Sgo

complex to centromeric regions depends on a heterochromatic

protein HP1a and the phosphorylation of H2A by a protein kinase

Bub1 (Yamagishi et al., 2008; Kawashima et al., 2010).

To further elucidate the chromosome morphogenesis, we

performed functional analyses of chromosome proteins that

have been identified previously by the proteome analysis of

human chromosomes (Uchiyama et al., 2005; Takata et al.,

2007c). We found an RNA-binding motif protein encoded on

the X chromosome (RBMX) as a chromosomal protein.

RBMX was identified as a paralog of a Y chromosome-linked

gene, RBMY, which is responsible for spermatogenesis (Del-

bridge et al., 1999; Mazeyrat et al., 1999) and which has

been associated with the activation of liver cancers (Tsuei

et al., 2004). RBMX belongs to the hnRNP family of proteins

that have a highly conserved RNA-binding domain and are

responsible for pre-mRNA splicing (Heinrich et al., 2009). Its
Cell Reports 1, 299–308, April 19, 2012 ª2012 The Authors 299

https://core.ac.uk/display/82014879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sachi@rs.tus.ac.jp
mailto:kfukui@bio.eng.osaka-u.ac.jp
http://dx.doi.org/10.1016/j.celrep.2012.02.005


Time (min)
0-1

0

20

0

40

60

80

100

Fr
eq

ue
nc

y 
[%

]

Control 
RNAi

RBMX 
RNAi

n=39 n=48

10
-20

20
-30

30
-40

40
-50

50
-60

70
-80

90
-10

0

10
0-1

10

11
0-1

20
60

-70
80

-90

12
0-1

30
>1

30

A

CB

C
on

tro
l 

R
N

Ai
R

BM
X 

R
N

Ai

66484839393060

0 12 60 225225 345345 474474

0 666615 33 9999 153153

180 54 105105 405405 477477

570 6 454518 3333

I

IIII

IIIIII

IVIV

D

I II III IV

20

0

40

60

80

ab
er

ra
nt

 m
ito

tic
 c

el
ls

 [%
]

Category

TelophaseAnaphaseMetaphasePrometaphaseProphaseInterphase
D

N
A

R
BM

X
M

er
ge

d

CENP-E

RBMX 
RNAi

Control 
RNAi

0
0.2
0.4

0.6
0.8

1.0
1.2

1.4

R
el

at
iv

e 
in

te
ns

ity

CENP-F Hec1 CENP-C

E

Figure 1. Localization of RBMX and Mitotic Progression Defect

(A) HeLa cells were stained with anti-RBMX antibody (green). DNA was stained with Hoechst 33342 (blue). Deconvolution processing was performed on all

images. Scale bar, 5 mm.

(B) RBMX was depleted in HeLa cells stably expressing GFP-H1.2. The number (top right) in each panel shows the time point (min) after nuclear envelope

breakdown (NEBD). In RBMX-depleted cells, four types of aberrant chromosome dynamics (I–IV) were observed: I, chromosomes never formed the distinct

metaphase plate and were scattered throughout the cytoplasm; II, chromosomes were aligned at the metaphase plate but began to scatter throughout the

cytoplasm after a long arrest at metaphase; III, chromosomes were segregated without alignment at the metaphase plate; and IV, chromosomes were de-

condensed in early mitosis, and the cell became apoptotic.

(C) Frequencies of the four types of aberration of chromosome dynamics in RBMX RNAi cells. Categories I–IV correspond to the numerals indicated

in (B).
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ubiquitous expression in almost all organs indicates that RBMX

has essential functions in various cellular processes. The in vivo

function of RBMX is currently unknown; however it has been

reported to be required for brain development and has been

implicated to have a relationship with systemic lupus erythe-

matosus (Tsend-Ayush et al., 2005; Soulard et al., 2002).

Here, we demonstrate that RBMX plays crucial roles in the

maintenance and centromeric protection of sister chromatid

cohesion.

RESULTS AND DISCUSSION

Depletion of RBMX Inhibits Chromosome Congression
To evaluate the mitotic function, we first examined the localiza-

tion of RBMX in HeLa cells throughout the cell cycle. At inter-

phase, RBMX was localized in the nucleoplasm except for in

the nucleoli (Figure 1A). After the onset of mitosis, RBMX started

to dissociate from the chromosomes to the cytoplasm and was

distributed throughout the cytoplasm at prometaphase. Western

blotting using synchronized cells with double-thymidine treat-

ment and subsequent addition of nocodazole showed that the

RBMX expression level was constant throughout the cell cycle

(see Figure S1A).

To examine the function of RBMX in chromosome dynamics,

we performed RNA interference (RNAi)-mediated depletion of

RBMX. The expression of RBMX significantly decreased (by

over 60%) after 48 hr of transfection of HeLa cells with two

different RBMX-specific siRNAs, siRNA-1 or siRNA-2 (Figures

S1B and S1F). There were no significant differences in the

knockdown phenotypes between the two RNAi experiments

with different siRNAs (Figures S1C, S1D, S2B, and S2C);

siRNA-1 was used for further studies of RBMX. The depletion

of RBMX resulted in the accumulation of mitotic cells by longtime

arrest at prometaphase. The reduction of RBMX frequently

caused defects in chromosome alignment. Although chromo-

some condensation occurred in the normal way in RBMX-

depleted cells, chromosome alignment at the metaphase plate

was significantly impaired (Figure 1B). Nonaligned chromo-

somes (when more than ten chromosomes were not aligned at

the metaphase plate or when chromosomes were scattered

throughout the cytoplasm) were frequently observed in RBMX-

depleted cells (76.8% of mitotic cells). Misaligned chromosomes

(when most of the chromosomes were aligned at the metaphase

plate, but one to ten chromosomes were not aligned) were also

observed in 5.2% of RBMX-depleted mitotic cells. Chromo-

somal defects like these were rarely observed in the control cells

(misaligned, 1.6%; nonaligned, 0.9%). The expression levels of

cyclin B1, which is degraded at anaphase, were the same in

the RBMX-depleted cells and in the control metaphase cells (Fig-

ure S1E). The expression level of securin increased in the RBMX-

depleted cells (Figure S1F). Furthermore, inhibition of APC/C

activity using MG132 did not decrease the defect in chromo-
(D) The time intervals between NEBD and the onset of anaphase were measure

showed a significant delay in the onset of anaphase.

(E) Changes in the localization of outer kinetochore proteins. After immunostaining

protein were quantified. (n > 3; mean values and SD are shown). Error bars repre

See also Figure S1.
some congression (Figure S1G). These results indicate that

these chromosomal defects were generated before anaphase.

The expression levels of Sororin, Scc1, Sgo1, tri-methylated

K9 of histone H3, Bub1, BubR1, HP1a, Plk1, and Mad2 were

the same in the RBMX-depleted cells and in the control cells

(Figures S1F and S1H–S1J).

To investigate the effects of RBMX depletion on chromosome

dynamics in living cells, we performed time-lapse observations

of GFP-histone H1.2 in RBMX-depleted HeLa cells (Gambe

et al., 2007). We found that 87.5% of the RBMX-depleted cells

remained from prometaphase to metaphase for more than

130 min, whereas in control RNAi cells, chromosome alignment

occurred about 30 min after the nuclear envelope breakdown

(Figures 1B and 1D). Chromosome alignment defects and arrest

in prometaphase were the highest frequency defects (Figure 1C).

Consistent with the observations in fixed cells (Figures 1A and

S1C), chromosome condensation occurred appropriately, but

chromosome congression was severely affected in RBMX-

depleted cells. Moreover, we found that the expression of

RNAi-refractory RBMX reduced the percentage of congression

defects in RBMX RNAi cells (Figure S1D). This observation

shows that the congression defects in mitotic chromosomes

were the direct result of RBMX repression by RNAi. Thus, we

have shown that RBMX can play an important role in mitotic

progression before chromosome alignment.

Microtubule attachment to kinetochores and the formation of

stable kinetochore fibers are essential for chromosome align-

ment (Kline-Smith and Walczak, 2004). Therefore, we analyzed

the localization of the outer kinetochore components, CENP-E,

CENP-F, Hec1, and Mis13 (Cheeseman and Desai, 2008; Obuse

et al., 2004), by immunostaining. The two distinct signals from

these proteins were detected outside the CREST signals on indi-

vidual chromosomes in the control cells (Figures S1K–S1N). In

RBMX-depleted cells the signals from these proteins decreased

to less than 30%of the signals in the control cells (Figures 1E and

S1K–S1N). In contrast to the outer kinetochore proteins, the

signal intensities from the inner kinetochore proteins, CENP-A

and CENP-C, were not changed by RBMX depletion (Figures

1E and S1O). The degeneration of the outer kinetochore struc-

ture that is indicated by this result might induce defects in chro-

mosome alignment because microtubule attachment to the

kinetochores is impaired.

RBMX Associates with Chromatin in
an RNA-Independent Manner
Wenext investigatedwhich domains of RBMXmight be essential

for normal mitotic progression. We defined three characteristic

domains in RBMX: RRM, the RNA recognition motif; SRR,

a serine and arginine-rich region; and TRR, a tyrosine-rich region

(Figure 2A). To investigate the possible role of each of these

domains, we constructed four rescue vectors encoding GFP-

tagged RNAi-refractory full-length RBMX (Full-r) and RBMX
d in live-cell imaging of control and RBMX RNAi cells. RBMX-depleted cells

of CENP-E, CENP-F, Hec1, and CENP-C, the fluorescence intensities of each

sent SD in triplicate experiments.
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Figure 2. Domain Analyses of RBMX

(A) Domain structure of RBMX.

(B) Mitotic index was calculated after immunostaining with anti-GFP and anti-a-tubulin antibodies. HeLa cells were transfected with RNAi-refractory GFP-tagged

RBMX deletion mutants and were subsequently transfected with RBMX siRNA. Error bars represent SD in triplicate experiments.

(C) Localization of RBMX deletion mutants. HeLa cells transiently expressing GFP-tagged RBMX deletion mutants were fixed with 4% PFA and immunostained

with anti-GFP antibody. Scale bar, 5 mm.

(D) Fluorescence recovery of RBMX deletion mutants was monitored and quantified. Lines represent the best-fitting curves for the individual data sets. (nR 10;

mean values and SD are shown).

See also Figure S2.
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deletion mutants (RRM-del, SRR-del, and TRR-del). Next, we

transfected HeLa cells, first with the rescue vectors and then

with RBMX siRNA. Forty-eight hours after the second transfec-

tion, we found that Full-r and two of the deletion mutants,

RRM-del and SRR-del, could rescue the accumulation of mitotic

cells induced by RBMX depletion. In contrast, TRR-del did not

reduce the percentage of accumulated mitotic cells (Figure 2B).

This result suggested that the TRR domain is important for

normal mitotic progression.

To gain more insight into the functions of these domains, we

observed the localization patterns of the RBMX deletion

mutants. HeLa cells transiently expressing the deletion mutants

were immunostained with anti-GFP antibody. Immunostaining

analysis showed that similarly to the intact RBMX, Full-r, RRM-

del, and SRR-del were localized throughout the nucleoplasm

excluding the nucleoli (Figure 2C). TRR-del, on the other hand,

was localized in the nucleoli in addition to in the nucleoplasm

(Figure 2C), whereas a TRR-only protein (a GFP-tagged TRR

protein) was localized in the nucleoplasm excluding the nucleoli

(Figure S2A). These results clearly imply that the TRR domain of

RBMX was responsible for either nucleoplasm retention or

nucleoli exclusion.

To further confirm this result, we analyzed the mobility of the

RBMX deletion mutants using fluorescence recovery after pho-

tobleaching (FRAP). A part of the nucleus was photobleached,

and the redistribution of GFP signals in the photobleached region

was monitored and quantified. We found that the mobility of

RRM-del was the same as that of intact RBMX and Full-r (Fig-

ure 2D). This result and the results of the rescue experiment

together strongly suggest that RNA-binding ability mediated by

the RRM domain is dispensable, not only for normal chromo-

some congression in mitosis but also for the stable association

of RBMX with chromatin in interphase. Interestingly, TRR-del

showed much faster recovery than the other deletion mutants,

possibly because it diffused in the nucleus (Figure 2D), suggest-

ing that the TRR domain is essential for the stable binding of

RBMX to chromatin. These results indicate that the association

of RBMX with chromatin and its function in mitotic progression

are not dependent on its RNA-binding ability via the RRM

domain.

RBMX Regulates the Centromeric Localization of the
Sgo Complex
To examine the effect of RBMX depletion on chromosome struc-

ture, we prepared metaphase chromosome spreads from both

control and RBMX RNAi cells (Figure 3A). We observed the

following four morphologies (Figure 3B): closed arm, open arm,

mild separation, and complete separation. In control cells,

79% of prometaphase chromosomes showed open arm chro-

mosomes, and mild and complete separation morphologies

were rarely observed (Figure 3B). In contrast when siRNA-1

was used in RBMX-depleted cells, sister chromatids were dras-

tically separated (mild separation, 2%; complete separation,

94%) (Figure 3B). A similar phenotype was observed when

siRNA-2 was used (Figures S2B and S2C). These results indicate

that depletion of RBMX caused loss of sister chromatid cohe-

sion. The chromatid separation caused by RBMX depletion

was rescued by exogenous expression using the Full-r vector
(Figure 3B). Neither the TRR-del vector nor a vector with only

the TRR domain could suppress the chromatid separation

(Figures S2 and S2C). This result suggests that the TRR domain

is necessary but not sufficient for RBMX’s role in cohesion.

Chromatid separation depends on the removal of cohesin with

Plk1. Indeed, 94% of Plk1-depleted cells exhibited closed arm

chromosomes (Figure 3B) as was previously reported (Gimé-

nez-Abián et al., 2004). When double knockdown of RBMX and

Plk1 was performed, precocious chromatid separation was

dramatically diminished compared to what was observed in

RBMX-depleted cells (Figure 3B). These results indicate that

centromeric cohesin was inappropriately removed with Plk1 in

RBMX-depleted cells. Subsequently, we investigated the locali-

zation of Sgo1 and one of the PP2A subunits (B56a) after RBMX

RNAi. In control cells the signals from Sgo1 and B56a were de-

tected between paired kinetochores visualized by the kineto-

chore marker CREST during prometaphase (Figures 3C and

3D). In RBMX-depleted cells, single intense CREST signals

were detected from scattered chromatids, demonstrating that

the sister chromatids were unpaired. Signals from Sgo1 and

B56a could not be detected from the separated chromatids,

indicating that RBMX was required for centromeric localization

of the Sgo complex. In RBMX-depleted cells, centromeric cohe-

sin signals were not detected (Figure 3E), although the expres-

sion level of Scc1 was unchanged compared to the control (Fig-

ure S1H). Scc1 depletion did not induce the reduction of outer

kinetochore proteins (Figures S3A–S3C) as was previously re-

ported (Vagnarelli et al., 2004), suggesting that the displacement

of outer kinetochore components might not be directly attributed

to the absence of Sgo complex. Moreover, we could not detect

centromeric localization of Sgo1 in RBMX/Plk1 double-knock-

down cells (Figure 3F). The percentage of closed arm chromo-

somes in RBMX/Plk1 double-knockdown cells was comparable

to their percentage in Plk1 knockdown cells (Figure 3B).

However, the elimination of Sgo1 from centromeric regions

was caused specifically by depletion of RBMX, indicating that

precocious sister chromatid separation was caused by the loss

of cohesin at centromeres. Because Aurora B activity has also

been implicated in the removal of cohesin from chromosome

arms (Losada et al., 2002; Dai et al., 2006; Salic et al., 2004),

we also investigated the effect of Aurora B depletion in RBMX

RNAi cells. Depletion of Aurora B increased the percentage of

closed arm phenotype in spread chromosomes (Figure 3B).

Additionally, Aurora B depletion could rescue the chromatid

separation phenotype observed in RBMX-depleted cells. These

results suggest that RBMX is essential for centromeric localiza-

tion of Sgo1, and that Plk1 and Aurora B are required for sister

chromatid separation in RBMX-depleted cells.

RBMX Is Required for Cohesin Maintenance
Of RBMX/Plk1 double-knockdown cells, 19% exhibit mild and

complete separation morphologies (Figure 3B), suggesting that

RBMX reduction impairs cohesion maintenance before the

prophase pathway. In support of this hypothesis, FISH experi-

ments in G2 cells released from a thymidine block revealed

that paired chromatids in RBMX-depleted cells at the G2 phase

were more distantly located than in control cells (Figure 4A). Of

RBMX-depleted cells, 31% showed distances that were outside
Cell Reports 1, 299–308, April 19, 2012 ª2012 The Authors 303
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Figure 3. RBMX Functional Analyses in Chromosome Construction
(A) Chromosomemorphology in control and in RBMX-depleted cells. Cells were synchronized at mitosis using 0.1 mg/ml colcemid for 3 hr, and spread on a glass

slide using Cytospin. Chromosomes were visualized with DAPI. Scale bar, 5 mm.

(B) Chromosomemorphologies were categorized into four groups: closed arm, chromosomesmaintained sister chromatid cohesion over their entire length; open

arm, sister chromatids cohered at the centromeric region, but not along the chromosome arm; mild separation, sister chromatids were partially separated, and

their cohesion was maintained at the centromere or on the chromosome arm, and primary constriction was not observed at the centromere; and complete

separation, sister chromatids were completely separated. DNAwas stained with DAPI (blue), and kinetochores were visualized with CENP-A (green). Values were

derived from more than 57 cells in 3 independent experiments.

(C) RBMX knockdown cells were immunostainedwith anti-Sgo1 antibody (green) and anti-CREST serum (red). Enlargement shows an example of the centromeric

region. Scale bar, 5 mm.

(D) RBMX knockdown cells were immunostainedwith anti-B56a antibody (green) and anti-CREST serum (red). Enlargement shows an example of the centromeric

region. Scale bar, 5 mm.

(E) RBMX knockdown cells were immunostained with anti-Scc1 (green) antibody. Scale bar, 5 mm.

(F) Plk1 knockdown, and RBMX and Plk1 double-knockdown cells were immunostained with anti-Sgo1 antibody (green) and anti-CREST serum (red). Scale bar,

5 mm.

See also Figure S3.
the range of the distances in control cells. These data suggest

that RBMX depletion induced a partial premature resolution or

abnormal association of the sister chromatids, resulting in the
304 Cell Reports 1, 299–308, April 19, 2012 ª2012 The Authors
failure in proper cohesion between sister chromatids. To confirm

the chromatin association of RBMX, cell lysates of synchronized

cells at S or G2 phase were separated into cytoplasmic, nuclear,
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Figure 4. RBMX Is Required for Cohesion Maintenance

(A) The distance between sister chromatids was measured by FISH experiments. HeLa cells were synchronized by double-thymidine treatment. Cells were

harvested 5 hr after release from the second arrest. FISH analysis using a probe specific for the trisomic tff1 locus on chromosome 21 successfully detected two

pairs of FISH signals (green) in the control and RBMX RNAi cells. DNA was counterstained with DAPI (blue). The paired signals are magnified (lower left in each

image). The distance between paired FISH signals was measured. Scale bar, 5 mm.

(B) Depletion of RBMX at G2 phase activated the G2/M checkpoint. HeLa cells were synchronized by double-thymidine treatment. RBMX and histone H3 were

inactivated at G2 phase by chromophore-assisted light inactivation with KillerRed fused with RBMX (KR-RBMX) and histone H3 (KR-H3). The controls are

HeLa cells expressing GFP-H1.2. The control, KR-RBMX, and KR-H3 cells were irradiated with green light 5.5 hr after release from the second arrest (control

light, KR-RBMX light, and KR-H3). The time of mitotic entrance was determined by detecting the nuclear envelope breakdown using live imaging based on

GFP-H1.2 fluorescence.

(C) Immunoblotting was performed using immunoprecipitates from the nuclear fraction. Immunoprecipitates (IP) were obtained with Scc1 antibody (Scc1)

or a control antibody and analyzed by immunoblotting with Scc1, Smc3, SA1, and RBMX antibodies. Of the IP protein amount, 1.25% was loaded for the

input.
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and chromatin fractions at different NaCl concentrations. RBMX

was detected mainly in the chromatin fraction; this is similar to

what was observed for the cohesin subunits, Scc1 and Smc3

(Figure S4A). Scc1 depletion did not influence the subnuclear

localization of RBMX (Figures S4B and S4C), suggesting that

RBMX can associate with chromatin in a cohesin-independent

manner. Moreover, RBMX fused with the photosensitizer

KillerRed, which generates reactive oxygen species upon light

irradiation (Bulina et al., 2006), induced the arrest at the mitotic

entrancepossibly becauseof theactivationof aG2/Mcheckpoint

by DNA damage (Figures 4B and S4D–S4F). This result also

supports the proposal that RBMX associates with chromatin.

By immunoprecipitation an association between RBMX and

endogenous Scc1 was detected (Figures 4C and S4G); in addi-

tion, exogenous RBMXwas found to associate with Scc1, Smc3,

and the cohesin regulator, Wapl (Kueng et al., 2006) (Figure 4D).

We observed that RBMX dissociated frommitotic chromosomes

and was localized abundantly in the cytoplasm during mitosis

(Figure 1A). The interaction between RBMX and cohesin was de-

tected in the nuclei at G2 and S phases and was absent in the

cytoplasm at M phase (Figure 4E), suggesting that at M phase

there is no association between cytoplasmic RMBX and cohesin.

This raises the possibility that the association of RBMX with co-

hesin might be an indirect interaction bridged by chromatin

rather than a direct protein-protein interaction (Peters et al.,

2008). To further investigate this possibility, we performed the

immunoprecipitation with RBMX lacking TRR, which cannot

interact with chromatin (Figures 2C and 2D). The results show

that the TRR-del proteins were associated with Scc1 and

Smc3 (Figure 4F), indicating that the TRR domain was not neces-

sary for the association between RBMX and cohesin. This result

suggested that RBMX associatedwith cohesin not through chro-

matin but via a protein-protein interaction. A two-hybrid interac-

tion analysis demonstrated that RBMX could interact with other

proteins through all regions except through the RRM domain

(Heinrich et al., 2009). Taken together, these results imply that

RBMX can interact with cohesin through the regions except

the RRM and TRR domains.

At S/G2 phase, Sororin antagonizes Wapl, the regulatory

protein responsible for cohesion dissolution from the cohesin

complex (Nishiyama et al., 2010). To examine the functional

relationships between the cohesion regulatory proteins, we per-

formed double knockdowns of RBMX, Sororin, and Wapl (Fig-

ure 4G). The phenotype of closed arms in RBMX/Wapl double-

knockdown cells was the same as the phenotype in cells with

Wapl knockdown alone. This observation indicates that RBMX
(D) Immunoblotting was performed using immunoprecipitates from the nuclear frac

Immunoprecipitates (IP) were obtained with GFP antibody and analyzed by imm

amount, 1.25% was loaded for the input.

(E) Immunoblotting was performed using immunoprecipitates from the nuclear fra

at M phase of synchronized cells stably expressing GFP-RBMX. Immunoprecipita

Scc1, Smc3, and GFP antibodies. Of the IP protein, 1.25% was loaded for the in

(F) Immunoblotting was performed using immunoprecipitates from the nuclear fr

(IP) were obtained with GFP antibody and analyzed by immunoblotting with Scc

(G) Chromosome morphologies in knockdown cells were categorized into three g

their entire length; open arm, sister chromatids cohered at the centromeric regio

separated.

See also Figure S4.
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is required for cohesion only when there is sufficient expression

of Wapl, suggesting that, in addition to Sororin, RBMX is an

antagonist of Wapl. It is possible that, as a regulatory factor of

cohesion, RBMX is part of the cohesin complex during the S/

G2 phase to M phase transition. Moreover, the percentage of

the chromosomes with the separation phenotype caused

by the double knockdown of RBMX and Sororin was more

than the percentage for either the RBMX or Sororin knockdowns

alone (Figure 4G). This observation implies that RBMX and

Sororin are involved in the regulation of cohesion through

different pathways.

This report is, to our knowledge, the first to identify RBMX as

a regulator of sister chromatid cohesion. We believe that this

finding is an important step to understanding how chromosomes

are constructed.
EXPERIMENTAL PROCEDURES

RNAi-Mediated Knockdown

We used RBMX siRNA-1 (50-UCAAGAGGAUAUAGCGAUATT-30) and RBMX

siRNA-2 (50-CGGAUAUGGUGGAAGUCGAUU-30) for RBMX knockdown.

The knockdowns of Aurora B, Plk1, Sororin, and Wapl were performed using

gene-specific siRNAs (Takata et al., 2007a; Schmitz et al., 2007; Kueng

et al., 2006). For the RBMX siRNA rescue assay, three silent mutations

were introduced into the GFP-RBMX vector, changing the nucleotide

sequence at position 921–932 in the RBMX gene to 50-GGCTACAGCGAC-30

(the italics indicate silent mutations). The RNAi-refractory constructs

were transfected into HeLa cells 4 hr before transfecting them with the

siRNAs. Negative control siRNA (S5C-0600) was purchased from Cosmo

Bio (Tokyo).

Live-Cell Imaging and Chromophore-Assisted Light Inactivation

HeLa cells stably expressing GFP-histone H1.2 were cultured in 35 mm

glass-bottom dishes (Matsunami, Osaka, Japan) and transfected with siRNA

using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The medium was

changed to a CO2-independent medium (Invitrogen) supplemented with 10%

FBS, 100 U/ml penicillin G, 0.1 mg/ml streptomycin, 4 mM glutamine, and

20 mM HEPES (pH 7.4) 1 hr before imaging. Dishes were placed on the in-

verted platform of a fluorescence microscope (IX-81; Olympus, Tokyo)

equipped with a CO2 chamber set at 37�C. Fluorescence images were

acquired every 3 min using a 403 objective (Olympus, PlanFLN, NA =

1.30) controlled with MetaMorph software (Universal Imaging, Burbank,

CA, USA). Stacks were assembled and processed using MetaMorph

software.

Chromophore-assisted light inactivation was performed using HeLa cells

stably expressing GFP-histone H1.2. The cells were transfected with

KillerRed (Evrogen, Moscow) fused with RBMX and synchronized with thymi-

dine. KillerRed phototoxicity was induced by 550 nm green-light irradiation ac-

cording to a previously described method (Bulina et al., 2006), 5.5 hr after the

release from thymidine arrest.
tion of HeLa cells transiently expressing GFP or stably expressingGFP-RBMX.

unoblotting with RBMX, Scc1, Smc3, and Wapl antibodies. Of the IP protein

ction at S and G2 phases, the chromatin (M-ch) and cytoplasm fractions (M-cy)

tes (IP) were obtained with GFP antibody and analyzed by immunoblotting with

put.

action of HeLa cells transiently expressing GFP-TRR-del. Immunoprecipitates

1 and Smc3 antibodies. Of the IP protein, 1.25% was loaded for the input.

roups: closed arm, chromosomes maintained sister chromatid cohesion over

n, but not along the chromosome arm; and separation, sister chromatids were
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