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A new form of multivariable Lagrange inversion is given, with determinants
occurring on both sides of the equality. These determinants are principal minors,
for complementary subsets of row and column indices, of two determinants that
arise singly in the best known forms of multivariable Lagrange inversion. A com-
binatorial proof is given by considering functional digraphs, in which one of the
principal minors is interpreted as a Matrix Tree determinant, and the other by a
form of Gessel-Viennot cancellation. � 1997 Academic Press

1. INTRODUCTION

Multivariable Lagrange inversion formulas give a formal power series
solution f=( f1 , ..., fm) to the system of functional equations, for fixed
positive integer m,

fi=xi gi (f), i=1, ..., m, (1)

where gi is a formal power series with invertible constant, i=1, ..., m.
Gessel [5] gives an excellent account of such formulas, and we refer
the reader to this paper for background; where possible, our notation will
be consistent with Gessel's. We use [m]=[1, ..., m], g=(g1 , ..., gm),
x=(x1 , ..., xm), *=(*1 , ..., *m) and n=(n1 , ..., nm), xn=xn1

1 } } } xnm
m , n!=n1 !

} } } nm!for n1 , ..., nm nonnegative integers. We also write 1=(1, ..., 1), the
vector with m 1's, n�1 when ni�1, i=1, ..., m, and [A] B to denote the
coefficient of A in B. For :�[m], :� denotes the complement of : and
det(aij): is the determinant of the submatrix of (aij)m_m with row and
column indices in :.

In this paper we give a combinatorial proof of the following principal
minor form of multivariable Lagrange inversion, which seems to be new.
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Theorem 1.1 (Principal Minor Lagrange Inversion). Suppose f, g are
specified by (1) above. Then for :�[m], n�1 and formal power series 8
we have

_xn

n!& 8(f(x)) det \xj
�fi

�xj+:

=_*n

n!& 8(*) gn(*) \`
k # :

*k+ det \$ij&
*j

gi

�gi (*)
�*j +:�

The best known forms of multivariable Lagrange inversion are the
extreme cases :=<, [m] of principal minor Lagrange inversion. These
forms are given in the first and second parts of the following result, and we
shall refer to them as the explicit and implicit forms, respectively. In fact,
we prove in the following result that principal minor Lagrange inversion
and these extreme cases are in fact all equivalent, using Jacobi's theorem
for the principal minors of a matrix and its inverse.

Corollary 1.1. Theorem 1.1 is equivalent to each of the following:

(1)

_xn

n!& 8(f(x))=_*n

n!& 8(*) gn(*) det \$ij&
*j

gi

�gi (*)
�*j +m_m

(2)

_xn

n!&
8(f(x))

det \$ij&xj
�

�fj
gi (f)+m_m

=_*n

n!& 8(*) gn(*)

Proof. Theorem 1.1 implies (1): This is immediate by taking :=< in
Theorem 1.1.

(1) implies Theorem 1.1: Differentiating the functional equations (1)
by xj for all j=1, ..., m and rearranging, leads to the matrix equation

\$ij&xi
�gi (f)

�fj +m_m \ 1
gj (f)

�fi

�xj+m_m
=Im . (2)

Now a result of Jacobi says that if AB=I then det(aij):� �det(aij)m_m=
det(bij): , for any :�[m] (see, e.g. [8], p. 21). Applying this result to
Eq. (2), and substituting (1) gives
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\`
k # :

fk+ det \$ij&
fi

gi (f)
�gi (f)

�fj +:� <det \$ij&
fi

gi (f)
�gi (f)

�fj +m_m

=det \xj
�fi

�xj+:
. (3)

Now replace 8(f) in (1) of this result by 8(f) times the expression on either
side of (3) to obtain Theorem 1.1 (the fj arises by dividing the rows by fi

and multiplying the columns by fj , to leave the determinant unchanged).
Finally, the equivalence of Theorem 1.1 and (2) of this result is obtained

by using the determinantal identity corresponding to the choice :=[m] in
(3) above. K

Gessel [5] gave a combinatorial proof of the implicit form of multi-
variable Lagrange inversion. The formal power series were interpreted
as generating series for functional digraphs, and the determinant on the
LHS was treated via the Jacobi identity det=exp trace log. Ehrenborg
and Me� ndez [4] gave a combinatorial proof of the explicit form, counting
functions in the context of coloured species, with the determinant on the
RHS treated via a sign-reversing involution.

In this paper we use Gessel's context of functional digraphs. For an
arbitrary functional digraph we shall introduce a graphical substructure
called a colour digraph, and for functional digraphs that are arborescences
we consider another graphical substructure called a path arborescence. In
Section 2 we establish a combinatorial correspondence between functional
digraphs and arborescences such that the colour digraph of the functional
digraph is equal to the path arborescence of the arborescence. This corre-
spondence, given as Theorem 2.1, is called the arborescence substructure
bijection. In Section 3 we prove that the RHS of principal minor Lagrange
inversion is the generating function for functional digraphs with certain
restrictions on the colour digraph, by interpreting the minor that arises
as a Matrix Tree determinant [2]. In Section 4 we prove that the LHS
of principal minor Lagrange inversion is the generating function for
arborescences with exactly the same restrictions on the path arborescence,
in this case by interpreting the minor that arises as a Gessel�Viennot deter-
minant [6]. These pieces are put together in the following way to give the
combinatorial proof of principal minor Lagrange inversion.

Combinatorial proof of Theorem 1.1. It follows immediately by combining
Theorems 2.1, 3.1 and 4.1: First equate the RHS's of Theorems 3.1 and 4.1.
Then multiply by nk+1 } } } nm , and replace (���fk+1) } } } (���fm) F(f) by
8(f). This gives the result for : of the form [k], and the result for arbitrary
: follows by reindexing. K
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Note that this proof specializes for the extreme cases :=<, [m] to
show that multivariable Lagrange inversion can be deduced from the
arborescence substructure bijection and the Matrix Tree Theorem alone in
the explicit form, and from the arborescence substructure bijection and
Gessel-Viennot cancellation alone in the implicit form.

In the case m=1 our combinatorial proof of the explicit form specializes
essentially to Labelle's [9] combinatorial proof of Lagrange inversion in
one variable. Note that an arbitrary minor form of Lagrange inversion can
also be obtained by the method of proof of Corollary 1.1, but we know
of no combinatorial proof of this arbitrary minor result; the Matrix Tree
portion of our combinatorial proof can presumably be extended in this case
by the various combinatorial interpretations of the arbitrary minor of the
Matrix Tree determinant that have appeared (see, e.g., [3], [1]).

The basic combinatorial objects we consider are now described.
Let V(n)=[(i, j) : 1�j�ni , 1�i�m], where m, n1 , ..., nm are positive
integers. The element (i, j) in V(n) is said to have colour i and label j. We
denote (i, ni) by Mi , for i=1, ..., m. Let V0(n)=[0] _ V(n), and 0 is said
to have colour 0. Let F0(n) be the set of functional digraphs of functions
from V(n) to V0(n), and let A0(n)/F0(n) be the set of arborescences
in F0(n) (so they must be indirected at 0). A functional digraph in
F0(n) always has one component that is an arborescence indirected at 0.
Any other components consist of a directed cycle of vertices at which
arborescences are indirected; these other components are called cyclic com-
ponents. For D # F0(n) we will identify the digraph and the function that it
specifies where convenient, for example using D(u)=v for the functional
value and (u, v) # D for the directed edge in the digraph interchangeably.

We also consider the set Am of arborescences on [0] _ [m], indirected at 0,
and the set Fm of functional digraphs of functions from [m] to [0] _ [m].

For D # F0(n) and each vertex v # V0(n) of D, define wtD(v) as follows.
Suppose jl elements of colour l are mapped to v for l=1, ..., m; if v is of
colour i, for some i=1, ..., m, then wtD(v)= gi, j , and if v is of colour 0 then
wtD(v)=H j , where j=( j1 , ..., jm) and gi, j , H j are indeterminates. Then we
define as a weight function the combinatorial monomial associated with D,

9(D)= `
v # V0(n)

wtD(v).

Now if we let

gi (x)= :
j�0

gi, j

xj

j!
, i=1, ..., m,

H(x)= :
j�0

H j

x j

j!
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then the solution f=( f1 , ..., fm) to the functional equations (1) has a
straightforward combinatorial interpretation: fi is the generating function
for arborescences on vertices of colour 1, ..., m, indirected at a vertex of
colour i, with xj an exponential marker for the (labelled) vertices of colour
j, j=1, ..., m, with respect to weight 9. This combinatorial connection with
multivariable Lagrange inversion is the basis of the proof that we develop
for principal minor Lagrange inversion.

2. PATH ARBORESCENCES AND COLOUR DIGRAPHS

We begin with a combinatorial construction on arborescences.

Construction 2.1. Given an arborescence A # A0(n), carry out the
following for j=1, ..., m:

v Let +=max([m]&[_1 , ..., _j&1]).

v Find the dipath \ in A from M+ to the first vertex x whose colour is
in [0] _ [_1 , ..., _j&1].

v On \ let the previous vertex to x be y, and let the vertex of the same
colour as y that is closest to M+ (or is equal to M+) be z. (Thus y can equal
z, and z can equal M+ when y is of colour +).

v Define _j to be the colour of vertex y (and z), and let K_j
=x, F_j

=z.
Let ?_j

be the dipath in \ from z to y inclusive.

Before considering the properties of this construction, we give an
example.

Example 2.1. For the arborescence E given in Fig. 1, with m=4,
n1= } } } =n4=5, Construction 2.1 yields:

For j=1, +=4, M4=(4, 5), x=0, y=(2, 4), z=(2, 2), so _1=2, K2=0,
F2=(2, 2), and ?2=((2, 2), (2, 1), (3, 4), (1, 2), (2, 3), (1, 1), (2, 4)), where
the dipath is specified by listing its vertices, in order.

For j=2, +=4, M4=(4, 5), x=(2, 2), y=(4, 4), z=(4, 5), so _2=4,
K4=(2, 2), F4=(4, 5), and ?4=((4, 5), (4, 3), (1, 4), (4, 4)).

For j=3, +=3, M3=(3, 5), x=(2, 3), y=(1, 2), z=(1, 5), so _3=1,
K1=(2, 3), F1=(1, 5), and ?1=((1, 5), (1, 3), (3, 4), (1, 2)).

For j=4, +=3, M3=(3, 5), x=(1, 5), y=(3, 3), z=(3, 5), so _4=3,
K3=(1, 5), F3=(3, 5), and ?3=((3, 5), (3, 3)).

In Construction 2.1 it is clear that _=_1 } } } _m is a permutation of [m].
For example, for the arborescence E above we obtain _=2413. Now define
P(A) # Fm to be the digraph with edges directed from _j to the colour of
K_j

, for j=1, ..., m. For Example P(E) is given in Fig. 1 for the

299MULTIVARIABLE LAGRANGE INVERSION



File: 582A 282706 . By:XX . Date:08:07:01 . Time:01:48 LOP8M. V8.0. Page 01:01
Codes: 998 Signs: 522 . Length: 45 pic 0 pts, 190 mm

Fig. 1. An arborescence indirected at 0 and its path arborescence.

arborescence E above. Let P( j)(A) be the subgraph of P(A) induced by
vertices [0] _ [_1 , ..., _j], for j=0, 1, ..., m. In particular P(0)(A) is the
single vertex [0], and P(m)(A)=P(A).

Various properties of the construction are recorded next, including an
appealing combinatorial relationship between _ and P(A), expressed in
terms of a subset of elements of the permutation _ called rlmax elements.
These are _i such that _i=max[_i , ..., _m].
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Proposition 2.1. If Construction 2.1 is applied to an arborescence
A # A0(m), then, for j=1, ..., m,

(1) if _j is an rlmax in _ then F_j
=M_j

, otherwise if _j is not an rlmax
in _ then F_j

=K_j+1
,

(2) P( j)(A) is an arborescence indirected at 0, and the smallest leaf in
P( j)(A) is _j ,

(3) the dipath ?_j
contains no vertex of colour in [0] _ [_1 , ..., _j&1].

Proof. (1) For + chosen at step j of the construction, if _j=+ then _j

is an rlmax in _ since +=max[_j , _j+1 , ..., _m], and in this case we must
choose F_j

=M_j
. Otherwise, if _j {+ then _j is not an rlmax in _, and in

this case + will be unchanged at step j+1, which forces the choice
K_j+1

=F_j
.

(2) By construction, the colour of K_j
lies in [0] _ [_1 , ..., _j&1] for

j=1, ..., m, so it follows by induction that P( j)(A) is an arborescence, with
_j as a leaf. Now if _j&1 is not an rlmax in _, then from (1) of this result,
we have K_j

=F_j&1
, so the colour of K_j

equals _j&1 (since F_j
is, by

construction, of colour _j for all j=1, ..., m). Thus, in this case, _j&1 is not
a leaf in P( j)(A). It follows by induction that any _1 , ..., _j&1 that is not an
rlmax in _ cannot be a leaf in P( j)(A). But any _1 , ..., _j&1 that is an rlmax
in _ must be larger than _j , so _j is the smallest leaf in _.

(3) This is immediate from the construction. K

In view of (2) of this result, we call P(A)=P(m)(A) the path arborescence
of A.

Now given a functional digraph D # F0(n) suppose the colour of D(Mj)
is cj for j=1, ..., m. Then the digraph in Fm with edges directed from j to
cj , for j=1, ..., m is called the colour digraph of D, denoted C(D). Of
course, in general C(D) is not an arborescence.

The main result of this section is a bijection, given as Theorem 2.1 below,
between arborescences A and functional digraphs D, in the case that C(D)
is an arborescence; in fact the bijection is such that C(D)=P(A). For
convenience, we first consider separately two combinatorial operations on
functional digraphs.

For u, v # V(n) of the same colour, and D # F0(n), suppose D$ # F0(n) is
given by D$(u)=D(v), D$(v)=D(u), and D$(x)=D(x) for all other
x # V(n). Then we say that D has been switched at u and v to obtain D$;
we do not insist that u and v are distinct, though when u=v we simply
obtain D$=D. Clearly 9(D$)=9(D), since u and v are of the same colour,
and we thus say that switching is 9-preserving.

Next consider u, v # V(n) of the same colour, say c, and D # F0(n) such
that D contains a directed path ? from u to v, with u, v distinct. Now move
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back along the dipath from v to D(u) and find all vertices of colour c
whose label is largest among all vertices of colour c encountered to that
point. Call these vertices w1 , ..., wk in order, beginning with w1=v so k�1.
(In fact the labels of w1 , ..., wk are rlmax in the sequence of labels of the
vertices of colour c on the dipath.) Suppose D$ # F0(n) is given by
D$(u)=D(v), D$(wk)=D(u), and D$(wi)=D(wi+1), for i=1, ..., k&1, with
D$(x)=D(x) for all other x # V(n). Then we say that the dipath ? has been
c-peeled from D to obtain D$. If u=v, then we define D$=D. In both cases
9(D$)=9(D), so peeling is also 9-preserving.

We can now give the main result of this section, involving a bijection
with a sequence of steps, alternately peeling and switching.

Theorem 2.1 (Arborescence Substructure Bijection). For each n�1 and
T # Am ,

[
:

P(A)=T
A # A0(n)

9(A)=

[
:

C(D)=T
D # F0(n)

9(D)

Proof. Consider A # A0(n) and apply Construction 2.1 to obtain, say,
P(A)=T. Now start with A, considered as a functional digraph, and
perform the following pair of operations in succession, for j=1, ..., m:

(a) _j-peel ?_j
,

(b) switch at M_j
and F_j

.

Our claim is that, after these 2m operations are performed, A has been
transformed to a functional digraph D # F0(n), such that C(D)=T and
9(A)=9(D), and moreover that this is a bijection, which would establish
the result. (Note that these operations may be fixed points, when ?_j

is a
single vertex, and M_j

=F_j
, respectively.) To prove our claim, first note

that at stage j, the only vertices whose functional values are changed are of
colour _j (we call this the disjoint colour property of the mapping). Thus by
Proposition 2.1(3) the dipath ?_j

is not affected by the operations at stages
1, ..., j&1, so the mapping is well-defined, and since peeling and switching
are both 9-preserving, we immediately obtain 9(A)=9(D). Second, at
stage j, after operation (a) the functional value of F_j

is K_j
, and hence after

operation (b) the functional value of M_j
is K_j

; thus from the disjoint
colour property we conclude that

D(M_j
)=K_j

, for j=1, ..., m, (V)

so that C(D)=T.
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To establish that this is a bijection, we now show that it is reversible, by
considering D # F0(n) with, say, C(D)=T. Thus we begin by setting
P(A)=T, and by successively removing the smallest leaves from T we
recover _, by Proposition 2.1(2). Then determine K_j

and F_j
for each _j ,

j=1, ..., m by (*) and Proposition 2.1(1), respectively (note that M_j
is the

fixed element of colour with the largest label). Moving backwards, as j is
reduced from m to 1, clearly operation (b) is now reversible at each stage,
with the result that the functional value of F_j

is K_j
. To reverse opera-

tion (a), find the cyclic components in the functional digraph with at least
one vertex of colour _j on the cycle, but no vertices of colour 0, _1 , ..., _j&1.
The _j-peeling is now easily reversed by cutting each of these cycles after
their largest element of colour _j , and placing them between F_j

and K_j
by

decreasing order of these largest elements (this works because, moving
forward, every cycle introduced at stage j must have an element of colour
_j on it, by the disjoint colour property; also by Proposition 2.1(3), the
cycles introduced in (a) have no vertices of colour 0, _1 , ..., _j&1 on
them). K

As an example of this bijection, the arborescence E given in Fig. 1 and
considered in Example 2.1 corresponds to the functional digraph given in
Fig. 2. Note that, in this case, Mi=(i, 5), for i=1, 2, 3, 4, so the colour
digraph is indeed equal to P(E), given in Fig. 1.

Fig. 2. The functional digraph corresponding to arborescence E.
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3. THE MATRIX TREE THEOREM AND COLOUR DIGRAPHS

In this section we consider the RHS of the arborescence substructure
bijection, and begin by expressing it directly in terms of the generating
series H and g1 , ..., gm , in a form reminiscent of the RHS of the various
multivariable Lagrange inversion formulas given in the Introduction. In
this result, for T # Fm , Sl(T ) denotes the set of vertices i such that
(i, l) # T, for each l=0, 1, ..., m.

Lemma 3.1.

[
:

C(D)=T
D # F0(n)

9(D)=_ *n&1

(n&1)!&{\ `
i # S0(T )

�
�*i + H(*)=

_ `
m

l=1
{\ `

i # Sl (T )

�
�*i+ gnl

l (*)=
Proof. The summation of the left side of this result is the generating

function for all functional digraphs with colour digraph T, with the
preimage of each element marked by wtD .

Now, without considering the colour digraph, the generating function for
each element of colour l is gl(*), where *j is an exponential marker for the
elements of colour j in the preimage, so the generating function for the nl

elements of colour l is gnl
l (*). But if C(D)=T, then the elements Mi for

i # Sl(T ) must appear in the preimages of the nl elements of colour l, and
the generating function for this is

\ `
i # Sl (T )

�
�*i+ gnl

l (*), l=1, ..., m.

Similarly the generating function of the preimage of element 0, with the
restriction that Mi must appear, for i # S0(T ), is

\ `
i # S0(T)

�
�*i+ H(*).

We multiply these generating functions together and take the coefficient of
*n&1�(n&1)!, since the location of M1 , ..., Mm has been fixed by applying
���*1 , ..., ���*m , and thus there remains only nl&1 labelled elements of
colour l to be distributed among the preimages, for l=1, ..., m. This gives
the required result. K

Now we use the Matrix Tree Theorem in the directed case to sum the
above result over all T in T(k), where T(k)�Am consists of those
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arborescences containing edges (k+1, 0), ..., (m, 0), for each fixed k=0, 1,
..., m. (The adjacency matrix of the Matrix Tree Theorem appears in a dif-
ferential theoretic manner.) This produces, in the next result, an expression
in terms of H, g1 , ..., gm that leads directly to the RHS of principal minor
Lagrange inversion.

Theorem 3.1.

[
:

C(D) # T(k)
D # F0(n)

9(D)=
1

nk+1 } } } nm _*n

n!& *k+1 } } } *m \ �
�*k+1

} } }
�

�*m
H(*)+

_gn(*) det \$ij&
*j

gi

�gi (*)
�*j +[k]

Proof. The Matrix Tree Theorem [2] for indirected arborescences gives

:
T # Am

`
(i, j) # T

bij=det \$ij \bi0+ :
m

:=1

bi:+&bij+m_m

from which we immediately obtain

:
T # T(k)

`
(i, j ) # T

bij=bk+10 } } } bm0 det \$ij \bi0+ :
m

:=1

bi:+&bij+[k]

(4)

Now for T in Lemma 3.1 we have (i, l) # T meaning that i # Sl(T ), so we
apply result (4) to Lemma 3.1 with bij identified with (���*i) gnj

j (*) for
j=1, ..., m, and bi0 identified with (���*i) H(*), and products bij blj iden-
tified with (���*i)(���*l) gnj

j (*) for j{0, and (���*i)(���*l) H(*) for j=0.
Under this identification, the effect of the diagonal term bi0+�m

:=1 bi: is,
by the product rule, to simply apply ���*i to H(*) >m

l=1 gnl
l (*), and this

differential operator can be replaced by multiplying by ni�*i , since we are
taking the coefficient of *ni&1�(ni&1)! Thus

[
:

C(D) # T(k)
D # F0(n)

9(D)=_ *n&1

(n&1)!&{\ `
m

i=k+1

�
�*i+ H(*)=

_gn(*) det \$ij
ni

*i
&

1
gnj

j (*)
�

�*i
gnj

j (*)+[k]

and the result follows. K
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4. A GESSEL-VIENNOT DETERMINANT AND
PATH ARBORESCENCES

In this section we consider the LHS of the arborescence substructure
bijection. In this case we have been unable to find an analogue of
Lemma 3.1, but by a cancellation argument similar to Gessel-Viennot
cancellation [6] for lattice paths, we are able to obtain the analogue of
Theorem 3.1. (The cancellation acts on a set of dipaths in an arborescence,
one dipath for each colour, defined below.) This is given as Theorem 4.1,
and produces an expression that leads directly to the LHS of principal
minor Lagrange inversion.

We require the following notation. For an arborescence A # A0(n), find
the dipath from Mi to 0 and let the previous vertex to 0 on this dipath be
called Ni (A); let {i (A) be the dipath from Mi to Ni , i=1, ..., m. For any j
for which there is a vertex of colour j in {i (A), let Lj ({i) be the vertex of
colour j in {i (A) that is closest to Ni (this will be Ni itself when it is of
colour j), j=1, ..., m.

For example if E is the arborescence given in Fig. 1 and considered in
Example 2.1, then M1=(1, 5), so N1(E )=(2, 4), L1({1)=(1, 1), L2({1)=
(2, 4), L3({1)=(3, 4), and L4({1) is not defined, since there is no vertex of
colour 4 on the dipath {1 from (4, 5) to (2, 4) in E. We also have N2(E )=
N3(E )=N4(E )=(2, 4) in this example.

For fixed k=0, 1, ..., m, let S(k) consist of arborescences A # A0(n) for
which

v for i=k+1, ..., m, {i (A) are pairwise disjoint,

v for i=k+1, ..., m, Ni (A) is of colour }i (A), for some permutation
} of [m]&[k].

(Thus, for example, E in Example 2.1 is not in S(k) for any k=0, ..., 3,
though E # S(4) trivially.) Let R (k) be the subset of S(k) in which {i (A)
has no vertex of colour larger than i, for i=k+1, ..., m, and let U(k)=
S(k)&R(k). Note that for A # R (k), this condition forces }(A) to be the
identity permutation on [m]&[k].

Theorem 4.1.

[
:

P(A) # T(k)
A # A(n)

9(A)=
1

nk+1 } } } nm _xn

n!&{
�

�fk+1

} } }
�

�fm
H(f)=

_det \xj
�fi

�xj+[m]&[k]
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Proof. First, from Construction 2.1, R(k) is precisely the set of
arborescences A # A0(n) such that P(A) # T(k), so

[
:

P(A) # T(k)
A # A0(n)

9(A)= :
A # R(k)

9(A)= :
A # R(k)

sgn(}(A)) 9(A) (5)

since }(A) must be the identity permutation for A # R(k).
Now we prove that

:
A # U(k)

sgn(}(A)) 9(A)=0 (6)

by considering the mapping , on U(k), where for U # U(k),

v let # be the largest j such that {j (U ) has a vertex of colour larger
than j,

v let ; be the largest colour of vertex appearing in {#(U ),

v switch U at L;({#(U )) and L;({;(U )) to obtain ,(U ).

If ,(U )=U$, then applying , to U$ gives the same choices of #, ;, L;({#)
and L;({;), so , is an involution. Moreover, }(U$) is obtained from }(U )
by applying the transposition (#, ;), and by construction ;>#, so
sgn(}(U ))=&sgn(}(U$)), and , is sign-reversing. Finally, 9(U )=9(U$)
since switching is 9-preserving, so , is weight-preserving, and we have
established (6) above.

Combining (5) and (6) gives

[
:

P(A) # T(k)
A # A0(n)

9(A)= :
A # S(k)

sgn(}(A)) 9(A) (7)

But the arborescences A # S(k) with fixed choice of } are arborescences
indirected at 0 in which one neighbour of the root is a distinguished vertex
of colour }j for each j=k+1, ..., m (this vertex is N}j

). Thus, to construct
such A, we place an arborescence indirected at N}j

, with the restriction that
vertex Mj must appear in this arborescence, for j=k+1, ..., m. The con-
tribution to the sum in (7) from these arborescences is

sgn(})
1

nk+1 } } } nm _xn

n!&{
�

�fk+1

} } }
�

�fm
H(f)= xk+1 } } } xm `

m

j=k+1
\

�f}j

�xj+
and the result follows by summing this over all }. K
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