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This paper determines the parameters of all two-weight ternary codes C with the 
property that the minimum weight in the dual code CL is at least 4. This yields a 
characterization of uniformly packed ternary [n, k, 41 codes. The proof rests on 
finding all integer solutions of the equation y* = 4 x 3” + 13. 

1. INTRODUCTION 

In 1948 Nagell [ 141 answered a question of Ramanujan [ 151 by showing 
that the only integral values of Q for which the Diophantine equation 

yz = 2” - 7 (1) 

has a solution, are a = 3, 4, 5, 7, 15. This equation turns up in the proof 
given in [ 131 that there does not exist a nontrivial binary 2-error correcting 
code which is perfect. (For the basic definitions of coding theory see 
Section 2 and [ 131.) 

In this paper we show that the solutions of a similar Diophantine equation 
can be used to classify certain kinds of 2-weight ternary codes. We prove 

THEOREM A. Let C be an [n, k] code over F, with exactly two nonzero 
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weights o, and q, where k > 1 and the minimum weight in the dual code 
C’ is at least 4. Then 

(1) if k is even, we have 

4n = 1 - u(u + 1) + 3k’2(2~ + l), w, = ~3(~-“/~. o2 = (U + 1) 3’k-2”‘. 

where u > 1 is a solution of 

(2U + 3)2 = 4 x 3k’2 + 13; 

(2) ifk is odd, 

4n = 1 - $.+ + 1) + 3’k-‘)‘2(2u + I), 

w, = U3(k-N/*, w2 = (u + 1) 3’k-“‘2, 

where u 2 1 is a solution of 

(2U + 7)* = 4 x 3’k+‘“2 + 13. 

This theorem is proved by exploiting the connection between 2-weight 
[n, k] codes over the finite field F, and 2-parameter difference sets in IF:. 
This connection is contained in a theorem of Goethals and van Tilborg [5]. 
Also, Camion [ 1 ] relates the parameters of the code to the parameters of a 
certain difference set arising from a generator matrix for the code. In 
Section 3 we deduce these same relations using only elementary linear 
algebra. Then in Section 4 we derive the formulas contained in Theorem A 
for the parameters of the code. 

In Section 5 we complete the determination of the codes of Theorem A by 
finding all solutions of 

y* = 4 x 3” + 13. (2) 

We prove the following theorem, using only elementary algebraic number 
theory. 

THEOREM B. The only positive integer solutions (a, y) of (2) are (a, y) = 
(1,5), (2, 7), (3, 11). 

Combining Theorems A and B we obtain 

THEOREM C. Let C be an [n, k] code over F, with two nonzero weights 
w, and w2. If k > 1 and the minimum weight in C’ is at least four, then 
either 
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(1) k=2, n=2, w,= 1, w2=2, Or 

(2) k=4, n= 10, w, = 6, w2 = 9, or 
(3) k = 6, n = 56, w, = 36, w2 = 45, or 

(4) k=5, n=ll, w,=6, w,=9. 

Furthermore, there exist codes with each of the above sets of parameters. 
(See [2, 91 and our discussion in Section 2.) As we remark in Section 2, 
Theorem C also yields a characterization of uniformly packed [n, k, 41 codes 
over F,. 

In [ 2 1 ] the second author has proved an analogue of Theorem A for codes 
over an arbitrary finite field ff 4. The existence of codes in the general case is 
related to the solutions of the equation 

Y2 = 4q” + 4q + 1. 

2. ORIENTATION: PERFECT CODES AND UNIFORMLY PACKED CODES 

For the convenience of the reader we start with several basic definitions. 
An [n, k] code C over the finite field F, is a k-dimensional subspace of ff 9”) 
whose elements are called codewords. The weight wt(x) of a vector x in IFi is 
defined to be the number of its nonzero entries. This gives rise to the distance 
function 6(x, u) = wt(x - JJ). In particular, the minimum distance between 
codewords is the minimum weight among all nonzero codewords. We say 
that an [n, k] code C is an e-error correcting code if the minimum nonzero 
weight among codewords of C is d, and e = [(d - 1)/2]. Then C is called an 
[n, k, d] code. 

If C is an e-error correcting code, then any two spheres of radius e 
(defined with respect to the distance function 6) centered at distinct 
codewords must be disjoint. If the union of all such spheres exhausts F;, 
then C is said to be perfect. An alternate characterization has been given by 
MacWilliams [ 12, 131, in terms of the dual code of C: this is the code C’ 
consisting of all vectors of Fz having inner-product zero with all words in C. 
In terms of C’ we have 

THEOREM 1. Let C be an e-error correcting code. Then C is perfect if 
and only if there are exactly e nonzero weights in the dual code Cl. 

For example, if G,, is the perfect [ 11, 6, 51 ternary Golay code (see [6, 7, 
13]), then G:; c G,, and the nonzero weights in Gt, are 6 and 9. 

All perfect. [n, k] codes have been classified by Tietiivliinen [ 191 and van 
Lint [lo]. A related notion is that of a uniformly packed code, introduced by 



TERNARY CODES ANDY*= 4 X 3” + 13 215 

Semakov et al. [ 181, and defined as follows. Let B(x, i) be the number of 
codewords at distance i from x. 

DEFINITION. An e-error correcting code C in IF: is said to be uniformly 
packed with parameters A, ,u, satisfying the inequality 

A < (n - e>(s - 1)/k + 11, (3) 

if for x in Ft we have: 

(1) if mincec (6(x, c)) = e, then B(x, e + 1) = A, 

(2) if minrpC (S(x,c))>e+ 1, thenB(x,e+ l)=~. 

Goethals and van Tilborg have shown that perfect codes are exactly the 
codes which satisfy this definition with Iz = (n - e)(q - l)/(e + 1). They have 
also proved the following analogue of Theorem 1 (see [5]). 

THEOREM 2. Let C be an e-error correcting code. Then C is uniform& 
packed if and only if there are exactly e + 1 nonzero weights in the dual 
code CL. 

To obtain an example, let G:, be the code gotten from G:, by taking all 
codewords with 0 as the entry in a fixed coordinate position, and then 
deleting that coordinate position. The code Gi, is a [ 10, 41 code with 2 
nonzero weights 6 and 9. The dual code G,, is a [lo, 6, 41 code, and by 
Theorem 2, G,, is a uniformly packed l-error correcting code. Another 
example of a uniformly packed l-error correcting code was discovered 
independently by Delsarte [2] and by Hill [9]. The dual code is a (56,6) 
code with nonzero weights 36 and 45. 

By Theorem 2, all [n, k, 4] codes over F, which are uniformly packed 
must have dual codes whose parameters are given by Theorem C 
(Section 1). We do not see any way of obtaining this characterization 
without finding all solutions of (2). 

We conclude this section by pointing out the connection between 2-weight 
codes and certain geometric configurations in projective space. Let C be an 
In, k] code and let M be a k x n matrix over F, whose row space is C. Such 
an M is called a generator matrix for C. Also, let G(C) denote the set of n l- 
dimensional subspaces of IFi generated by the n columns of M. Then O(C) 
consists of points in PG(k - 1, q), (k - 1)-dimensional projective space 
over IF,. 

The following result is due to Goethals and van Tilborg. 

THEOREM 3. Let C be an [n, k] code over F,. Then C has exactly two 
nonzero weights if and only if 
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(1) any point Q of PG(k - 1, q) on O(C) is collinear with a fzxed 
number E, of pairs of points of O(C); and 

(2) any point Q of PG(k - 1, q) not on O(C) is collinear with afzxed 
number E, of pairs of points of O(C). 

This theorem is also an easy consequence of the results presented in 
Section 3. We remark that when C = G&,, the set O(C) is an elliptic quadric 
in PG(3, 3) (see [9]). Games [4] refers to these geometries as caps with 
constant elimination number. 

3. NECESSARY CONDITIONS FOR EXISTENCE 

Let C be an [n, k] code over IF, with exactly two nonzero weights o, and 
w2, where w, < oz. Throughout this section we shall suppose that the 
minimum weight in the dual code C’ is at least four. Under this assumption 
we shall deduce certain necessary conditions which must be satisfied by the 
parameters n, k, wl, co2 of the code. (See Eqs. (8)-( 13).) 

To begin with, if M is a k x n generator matrix for C, then any two 
columns of it4 are linearly independent, since a dependence would give rise to 
a vector of weight two in Cl. Let 

~=(fg;gisacolumnofM} (4) 

and let fi be the k x 2n matrix with column set a. Matrix A? is a generator 
matrix for a [2n, k] code c’ with two nonzero weights 20, and 20,. Let 
m, ,..., mk be the rows of iI?, and let G = Ft. We regard G as an additive 
group of column vectors. 

The column vector h = (h, ,..., h,J in G corresponds to the codeword 
c(h) = cf=, himi in c’. We order the elements g, ,..., g3k of G so that g, = 0 
and 

wt(c(gj)> = 2w, 9 if 2<j<A,+l, 

= 204, if A, +2<j< 1 +A, +1t,=3~, 

where Ai is the number of codewords of weight wi, i = 1,2. 
We now consider the 3k x 3k integral matrix B = [bij] defined by 

b, = 1, if gi - gj E a, 

(5) 

= 0, otherwise. 

The necessary conditions we derive for the existence of the code C will 
follow from considering the minimal polynomial of B on the orthogonal 
space (over C) of the 3k-dimensional vector (1, l,..., l)t. 
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We first compute B2 in terms of the numbers 

E(g) = cardinality{(h,, h,); h,, h, E R and h, + h, = g}. 

LEMMA 1. The ijth entry of B2 is E(g, - gj). 

Proof. The ijth entry of B2 is equal to the number of g, for which 
gi - g, = h, and g, - gj = h, are simultaneously in R. Since gi - gj = 
h, + hz, this number is easily seen to coincide with E(g, - gj). 

We next compute the eigenvectors of B. Let r = ezXi13 be a primitive cube 
root of unity and define the column vector V, by setting 

(v,)~ = ((K,ni), 1<i<3k, gEG, 

where (g, h) denotes the usual inner product on G. 

LEMMA 2. The vector v, is an eigenvector of B with eigenvalue 
2n - 5 wt(c( g)). 

Proof: We have 

(Bv,)~ = y <(gj’g) = r(gi*g) T ,$8j-ni*n) 

Ki-RjEQ ni-gjE R 

= (Qi z pg) for 1 <i<3k. 
hell 

Now the components of the codeword c(g) are the numbers (h, g), for 
h E R, and so 

wt(c(g)) = cardinality{h E R; (h, g) Z 01. 

It follows that 

\’ ‘$h.H = 

hTQ 

\\’ c(h) + v <Vu) 

h% hi;“n 
(h.@=O (h.g)#O 

= 2n - wt(c(g)) + twt(c(g))(t + t-l) = 2n - $wt(c(g)), 

and this proves the lemma. 

LEMMA 3. If J is the 3k x 3k matrix with every entry 1, then Jv,, = 3 kid, 
andJvgi=O ifi> 1. 
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Proof: This follows from the fact that the map h + r(hVg) is a character of 
G, and 

& t(h9g)=lGl, if g=g,, 
= 0, otherwise. 

(6) 

Note that the vectors u,* are independent: for a relation of the form 

C uJ(~.~~) = 0, for all i, 
gee 

implies by (6) that 

for all h in G. Thus the matrix S = [U g, ,..., u,J is invertible, and 

S-‘JS = diag[3k, 0 ,..., 01, 

where diag [a i ,..., a,] is a diagonal matrix with diagonal entries a, ,..., a,. We 
have further by Lemma 2 and the labeling described in (5) that 

[ 

2n 0 
S-‘BS=D= (2n - 3q) I, 

’ 0 (2n - 30.1,) I, 1 
where Z, is the A, x A, identity matrix. Now 

3k(D - (2n - 3q) Z)(D - (2n - 30,) Z) = 9w, q diag[3k, O,..., 01. 

Conjugating by S we obtain 

(B - (2n - 3~0,) Z)(B - (2n - 3~0,) Z) = (90, CU~/~~) J. (7) 

We now compare off-diagonal entries in (7). If g k$ R and g # 0, then by 
Lemma 1 we have 

E(g) = 9w, 0,/3k. (8) 

Thus E(g) = E is constant for g & a, g # 0. If g E 0, then 

E(g) - 4n + 3(0, + CL+) = 9w, c1+/3~. (9) 

Recall that the minimum weight in the dual code C’ is at least 4. It follows 
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that the only way to write g =h,+h, with h,,h,Ea is to take h,= 
h, = -g. Hence if g E 0, E(g) = 1. Note also that E(0) = 2n. 

From these facts and from Lemma 1 we deduce the equation 

I?*-B-E(J-B-I)-2nz=o, 

or 

B*-(l-E)B+(E-22n)z=EJ. (10) 

It is clear that (7) and (10) must coincide, so comparing the discriminants of 
the left-hand sides of these equations gives 

9(o, - oJ’ = (1 -E)* + 4(2n - E). (11) 

We now appeal to a result of Delsarte [3, Corollary 2, p. 531, according to 
which o, = ~3’ and o2 = (u + 1) 3’ for some integers U, t, u > 1. With this 
(8) becomes 

E= u(u + 1) 32’/3k-2, (12) 

and from (9) and (11) we obtain 

3*‘+*=1-6E+E2+8n=1-6E+E2+2(1+(2u+1)3’+’-E}, 

or 

3 *‘+*yE*-8E+3+(4u+2)3’+‘. (13) 

In the next section we complete the proof of Theorem A by analysing (12) 
and (13). 

We remark that the above discussion shows R to be a 2-parameter 
difference set in IF:, assuming that C is a two-weight code. Conversely, if 52 
is known to be a 2-parameter difference set, then an equation of type (10) 
must hold, so that B has two eigenvalues on the space orthogonal to 
(1, L..., 1)‘; from this it follows that C is a two-weight code (by Lemma 2). 

4. THE PROOF OF THEOREM A 

In this section we assume k > 1. 
From (12) we have 

E = u(u + 1)/3”, (14) 
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where 

a=k-2-2t. (15) 

Putting this into (13) gives 

3k-a = (u(u + 1)/3”)2 - 8(u(u + 1)/3”) + 3 + (4~ + 2) 3(k-a)‘2. (16) 

We first discuss the cases a = 0, 1. 

LEMMA 4. If a = 0, then 

u = (-3 + d4 x 3k’2 + 13)/2. (17) 

Proof. If a = 0, then (16) becomes 

3k - (4u + 2) 3k’2 - 3 = u*(u + l)* - 8u(u + 1). 

We subtract 4~ from both sides and obtain 

(3k’* + 1)(3k’2 - (4U + 3)) = u(u + 3)(U(U + 3) - (4U + 4)) 

so that 

{ (3k’* + 1) - U(U + 3)} ((3k’2 + 1) - (4U + 4) + U(U + 3)} = 0. 

If the second factor is zero, then 

u = (1 i d/13 - 4 x 3k’2)/2. 

Since k > 0 we have k = 2 and u = l,O. The first possibility is covered by 
(17) and the second is impossible. In any case we conclude that the first 
factor is zero and it follows that (17) holds. 

LEMMA 5. Zf a = 1, then 

u = (-7 + d/4 x 3’k+ ‘)‘2 + 13)/2. (18) 

Proox If a = 1, then (16) becomes 

3k-’ - (4U + 2) 3’k-“12 - 3 = (u(u + 1)/3)* - 8u(u + 1)/3. 

Multiplying through by 9 and subtracting 36~ from both sides we obtain 

(3 (k+ I)/* + 3)(3’k+ I)/2 - 3(4U + 3)) 

= (u + 3)(U + 4)((U + 3)(U + 4) - (12U + 12)), 
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and so 

((3 (k+‘)‘2 + 3) - (u + 3)(U + 4)} 

x (3 (k+‘)‘2 + 3 - (1224 + 12) + (u + 3)(u + 4)} = 0. 

If the second factor is zero, then 

u=(5* &3 - 4 x 3’k+ ‘)‘2)/2; 

but this is impossible since we are assuming k > 1. We conclude that the first 
factor is zero, and this implies (18). 

The remainder of this section is devoted to proving that a = 0 or a = 1. 
Theorem A will then follow from Lemmas 4 and 5, Eqs. (9) and (15) and 
the fact that o, = u3’, w2 = (U + 1) 3’. 

Before continuing we note that the case k = 2 is included in Lemma 4. For 
k = 2 implies a = -2t by (15). If t > 0, then by (14), 9 1 E; but this is 
impossible by (13). Thus a = t = 0. We shall henceforth assume k > 2. 

LEMMA 6. Ifk>2,rhent>Oanda>-1. 

Proof. Suppose k > 2 and t = 0. Then by (14) we have 3 1 u or 
3 1 (u + l), so u > 2. Now (13) gives 

-24 > E2 - 8E, 

which is impossible since x2 - 8x + 24 has imaginary roots. We conclude 
that t > 1. Again by (13) we see that 9jE, and so a> -1 from (14) 
and (15). 

We postpone discussion of the case a = -1. We shall assume a > 2 and 
derive a contradiction. In the later work we require the following estimate. 

LEMMA 7. If  a > 2, then (k - a)/2 > 2a + 1. 

ProoJ: By (14) we have 3” ) 24 or 3” 1 (U + 1). Since 

E>u>3”--1>8, 

equation (13) gives 

3k-” > (4U + 2) 3 (k-a)/2 > (4 x 3” _ 2) 3(k-a)/2 > 3”+ 13fk-dl2, 

and so (k - a)/2 > a + 2. 

(19) 

Since u = ~3” or u = s 3” - 1. for some integer s, we see from (16) that 

3k-a = s’(s3” zt f)‘- 8s(s3” + 1) + 3 + (424 + 2) 3(k-a)“. 
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Viewing this equation modulo 3” gives 

Q(s) = s2 r 8s + 3 E 0 

and modulo 3a+2 we have 

(mod 3”), (20) 

Q(s) + s2 3'( f2s - 8) = 0 (mod 3O+‘). (21) 

By (20) we see that 3 1 s or s = k2 (mod 9). Therefore s2(*2s - 8)~ 0 
(mod 9) or s2(f2s - 8) s 2 (mod 9). If we let Q(s) = 13”, then by (21), 
1 E 0 or 7 (mod 9). Since the discriminant of Q(s) is not a square we cannot 
have L = 0. Furthermore, Q(s) = (s 7 4)’ - 13 > -13, and so A> 0. Now if 
A= 7, we obtain the impossible congruence 

s2~8s+3s0 (mod 7), 

so we conclude that 12 9, and Q(s) > 9 x 3a. 
We now claim that s > 3(0+1)/2 + 3-“. If this is false, then 

9X 3"-Q(s)>9X3"- {(3'"+"" +3-")2 +8(3(a+1)'2 +3-")+3} 

> 6 x 3” - 9 x 3(0+1)/z 

But a > 2, so that Q(s) ( 9 x 3”. This contradiction proves our claim. 
We next claim that 

8u(u + 1)/3“ < (4a + 2) 3(k-a)‘2; 

for otherwise 4(u + 1) > ((4~ + 2)/2u) 3(kta)‘2 > 2 X 3(kta)‘2, and 

(4u + 2) 3(k-")'2 > 2 x 3k - 2 x 3ck-a'i2 > 3", 

which is false by the first inequality in (19). 
Therefore it follows from (16) that 

3k-” > ((u(u + 1))/3”)2 > s2(s 3” - 1)2. 

Using s > 3(o+1)‘2 + 3 -a, this gives 

3k-” > 3 at1 3 3a+l 9 

i.e., k - a > 4a + 2. This completes the proof. 

We now return to equation (16). Multiplying through by 32a and 
rearranging we obtain 

32yjk-a - (4u + 2) 3(k-@/2 - 3) = u’(u + 1)2 - 8u(u + 1) 3”, 
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and subtracting 4~3~” from both sides gives 

3*“(3 (k-a)/* + 1)(3’k-a’/2 _ (4n + 3)) 

= u(u + 3){U2 t 3u - (4U t 4)} - (3” - 1){8u(n t 1) + 4u(3” + 1)}.(22) 

Define the quartic pOlynOmialfk,,(x) by 

fk,JX) = x(x t 3)(x(x t 3)-(4x t 4))- 32a(3(k-a)‘2 t 1)(3’k-a)‘2 -(4x t 3)) 

- (3” - 1)(8x(x t 1) t 4x(3” t 1)). (23) 

We regard k and a as fixed and we let x vary. We shall prove that u is the 
unique root of fkJx) on the interval [3” - 1, m). We then derive a 
contradiction by trapping u(u t 1) in an interval that does not contain an 
integral multiple of 2 f 3”. 

LEMMA 8. If a > 2, then fkJx) is strictly increasing on the interval 
[3” - 1, co). 

Proof. Differentiating (23) gives 

f;Jx) > 4x3 t 6x2 - 14x - 12 t (3” - 1)(16x t 8 t 4(3” t l)), 

and since x > 3a - 1 we have 

f;,,(x) > 4x3 t 6x2 - 14x - 12 - x(16x t 8 t 4(x + 2)) 

= 4x3 - 14x2 - 30x - 12. 

The right-hand side has a unique positive root, which is contained in the 
interval (0,6), so that f;,,(x) > 0 for x > 3” - 1 and a 2 2. 

It follows from (22) and Lemma 8 that ZJ is the unique root offk,Jx) on 
[ 3” - 1, co). Now let x, be the unique positive root of 

x,(x1 t 3)+(3” - 1)2~,=3~(3 (k-o)‘2 + l)-2(3” - 1)2 x 3”/(3” - l), (24) 

and let x, be the unique positive root of 

x*(x2 t 3) + (3” - 1) 2x2 = 3o(3+@‘2 + 1) - (3” - 1)2 2. (25) 

Since the right-hand sides of (24) and (25) are positive, by Lemma 7, and 
x2+(1 t2x3”)x is increasing for x20 and equal to 0 at x=0, thexi 
exist and are unique. Furthermore, xi < x2 since the right side of (24) is 
smaller than the right side of (25). 
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LEMMA 9. If a > 2, then 

3” - 1 <x < x 1 I < 13(k-@l* 
216 

Proof. If x, < 3” - 1, then (24) gives 

(3” - 1)(3” + 2) + 2(3” - l)* > 3°(3(k-a)‘2 + 1) - 2 x 3”(3” - l), 

and so 5 x 3*O > 3” x 3(k-“)‘2. But this is impossible by Lemma 7. Thus 
3” - 1 <x1. 

If x2 > 93(k-a)‘2, then by (25) we have 

3a jfk-a)/2 > x; > #-a, 

and so 3(k-o)‘2 < 36 X 3”, which again contradicts Lemma 7. This completes 
the proof. 

We shall prove that if a > 2, then fk,Jx,) < 0 and fk,Jx2) > 0. Then 
Lemma 9 implies x, < u < x2. We begin by transforming (23) using the 
substitution 

x(x + 3) = 3a(3+@‘* + 1) - (3” - 1)(2x + (3” - l)y). (26) 

Setting 

g = 32a(3(k-a)‘* + 1)(3’k-““2 - (4x + 3)) 

and 

h = (3” - 1)(8x2 + 16x + 4x(3” - I)), 

equation (23) becomes 

fk,a(x) = {3”(3’k-““* + 1) - (3” - 1)(2x + (3” - 1)y)J 
x {yy’k-a’/* + 1) - (3a - 1)(2x + (3” - 1)y) - (4x + 4)} 

-g-h. 

Expanding, we obtain 

fkJX) = 3a(3+@‘2 + 1) 3a(3+“)‘2 + 1 - (4x + 4)) 

+ 3a(3(k--=)‘* + 1)(3” - 1)(4x + 4) 

- 2 x 3”(3” - 1)(3’k-““2 + 1)(2x + (3” - 1)Y) 

+ (3a - 1)2 (2x + (3” - 1)Y)2 

+(3”-1)(2x+(3”-l)y)(4x+4)-g-h, 
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whence 

j&(x) = (3” - 1) 34(3(k-a)‘2 + 1)(4 - 2(3” - 1)~) 

+ (3” - 1)’ (2x + (3” - l)y)2 

+ (3” - 1)(2x + (3” - l)y)(4x + 4) - h. 

We now substitute for 3L1(3(k-a)‘2 + 1) from (26) and find after some 
simplification that 

fk,JX) = (3” - 1)(4x2 + 4x) + (3” - 1)2 

x {(4-2y)(x2+x)+4x3”y-(3”- l)‘y’]. (27) 

LEMMA 10. Zf a > 2, thenf,,,(x,) < 0. 

Proof: If x =x,, then by (24), y = 2 x 3”/(3” - 1). Using 4 - 2-v = 
-4/(3” - l), we obtain from (27) that 

fk&JX,) = (3” - 1)(8 X 3*” - (3” - 1) 4 x 32”). 

Since a > 2 we do havefk,,(x,) < 0. 

Note that j&(x,) = 0 if a = 1. 

LEMMA 11. If a >, 2, then fk,Jx2) > 0. 

Proof: If x = x2, then y = 2, so (27) gives 

fkJx2) = (3” - 1)(4(x; +x2) + 8 x 3”(3” - 1) - 4(3” - l)“}. 

We substitute for x2(x2 + 1) using (25) and obtain 

fkJx2) = 4(3” - 1){3a(3’k-a”2 + 1) - 2x, 3” - 2(3” - I)* 

+ 2 x 3”(3” - 1) - (3” - l)j} 

> 4 x 3”(3” - 1)(3+““* - 2x, - (3” - I)*) 

> 4 x ,Q(,, - l){(f3’k-@l* -2x,) + ($‘k-“‘12 - 3*“)1. 

The lemma now follows from Lemmas 9 and 7. 

LEMMA 12. Zf k > 2, then u = -1, 0, or 1. 

ProoJ: By Lemma 6 we have u > -1. Suppose a > 2. We have shown 
that u is the unique root of f,.,(x) on the interval [3” - 1, m). By 

641/16/Z-6 



226 BREMNER ET AL. 

Lemmas 9-l 1 we see that x, < u < x2. Furthermore, by (24) and (25) we 
have 

u(u + 1) + 2u 3” = 3a(3(k-“)‘2 + 1) - (3” - 1)2 y, 

where 2 ( y ( 2 x 3O/(3” - 1). Note that u(u + 1) + 2u 3” is divisible by 
2 x 3”, from (14). However, the interval (3a(3(k-0)‘2 + 1) - 2 X 3”(3” - I), 
3”(3(k-u)/2 + 1) - 2(3” - 1)2) does not contain ,a multiple of 2 X 3”. This is 
because the left end point is divisible by 2 x 3” and the length of the interval 
is 2(3” - 1). Therefore a < 2. 

We shall now prove a # -1. If a = -1, then (16) becomes 

3’(+’ = 9u2(u + 1)2 - 24u(u + 1) + 3 + (4~ + 2) 3’k+“‘2. (28) 

Define the polynomial&(x) by 

fk(x) = 9x2(x + 1)2 -24x(x + 1) + 3 + (4x + 2) 3’k+“‘2 - 3&+‘. (29) 

Differentiating with respect to x we find that&(x) is strictly increasing on 
the interval [0, co), for k > 3. Now let x, be the positive root of 

3x,(x, + 1) = 3’k+“‘2 - (2x, - I), (30) 

and let x2 be the positive root of 

3x,(x, + 1) = 3’k+“‘2 - (2x, - 3). (31) 

LEMMA 13. If k > 2, then a = 0 or 1. 

Proof: We suppose a = -1 and prove that x1 < u < x2. Since fk(x) is 
increasing it suffices to prove fk(xl) < 0 and fk(x2) > 0. Equations (29) and 
(30) give 

fk(X1) = (3’k+“‘2 - (2x, - 1))2 - 8(3’k+‘)‘2 - (2x, - 1)) 

+ 3 + (4x, + 2) 3’k+1”2 - 3k+‘, 

which reduces to 

fk(X1) = 4x,(x, - 1) - 4(3’k+“‘Z - (2x, - 1)). 

Now (30) implies fk(xl) < 0. 
Similarly, equations (29) and (31) give 

fk(X2)= 4X; +4X, - 12. 
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If &(x2) < 0, then x2 < (-1 + @)/2, and from (31) we deduce that 
9 > 3’kt ‘)‘2. But k > 2, so this is impossible. Therefore fk(x2) > 0, and 
x, <u<x,. 

Finally, equations (30) and (31) give 

3’k+“‘2 + 1 < u(3u + 5) < 3’k+1”2 + 3, 

which is impossible since u(3u + 5) is even. Thus a # -1, and the lemma 
follows from Lemma 12. 

This comples the proof of Theorem A. 

5. PROOF OF THEOREM B 

To prove Theorem B we shall consider three cases. If we set a = 3n, 
3n + 1, 3n + 2, respectively in (2), we are led to consider the equations 

y2 = 4 x 33” + 13, (32) 

y* = 12 x 33” + 13, (33) 

y2 = 36 x 3j” + 13. (34) 

To handle the first and third equations we shall work in an appropriate cubic 
extension of Q; the discussion of (33) will take place in a( 0). (For an 
Hernate proof see [22].) 

(a) We first consider (32). Set x = 3” and multiply through in (32) by 
42, to give 

(4~)’ = (4~)~ + 16 x 13 = norm(4x + 26’), 

where the norm is from K = O(m) to Q and 8 = @. (For the details of 
the arithmetic in K, such as class number, fundamental unit, and integral 
basis, we refer to Selmer [ 171.) Working in K, write 

(4x + 28) = Ix& 2, 

where a is a square-free integral ideal. Since (2) = jr: in K (jr, denotes a 
prime ideal of norm a), and since /r2 ]] 8 (exactly divides), we have that 
jr’: ]] (4x + 28), so /r,$a. Moreover, if < = (-1 + fl)/2, and L is the 
number 

then 

A = (4x + 2r8)(4x + 2y2e) = 4(4x2 - 2x8 + e2), 

1(4x + 28) = norm(4x + 28) = (4y)*, 
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and 

(4y)2 = @)(4x + 28) = (A) L.&c*. 

This implies that a 1 A. Since a 1 (2x + O), it follows that 1x divides 

in + (28 - 2x)(2x + e) = 3e2. 

NOW (4 = b2h so that II 1 (3) /z3. But y is relatively prime to 39, so we 
must have a = 1. 

Hence (4x + 28) = &*, which implies that & is a principal ideal, since K 
has class number 3 (by Selmer’s tables). Consequently, 

4x+2e=f+ or Ifrev*, (35) 

where E = 3 - t9 is the fundamental unit in K and q is an algebraic integer in 
K. We may ignore the minus signs since y, 8, and E are all positive. Now the 
integers of K have the form 

v = (U - be + ce*y3, a, b, cEZ, a=b=c (mod 3). 

Using the fact that 

r* = 
a2 -952bc + 26~’ ; 2ab e + b2 + 2ac e2 9 , 

the two possibilities in (35) give rise to the following systems of equations, 
on equating coefficients of 1, e, 82: 

a* - 52bc = 4 X 3”‘*, 

26c2 - 2ab = 18, 

b=- 2ac=O, 

(36) 

3a2 - 156bc - 26b2 - 52ac = 4 X 3”+*, 

18c2 - 6ab - a2 + 52bc = 18, (37) 

3b2 + 6ac - 26c2 + 2ab = 0. 

Equations (37) are easily seen to be contradictory. For the third and first 
equations imply, respectively, that 2 1 b and 2 1 a. Then the last equation 
implies 2 I c, which is impossible by the second relation. 
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We are thus left with (36). It is clear that a = 2~2,) b = 2b, with 
a,, b, E Z. Putting in these values gives 

ai - 26b,c = 3”+‘, 

13~’ - 4~2, b, = 9, 

b;$ a,c =O, 

where a, b, c # 0. The last equation shows that any prime divisor of a, is a 
divisor of b,, and so we have that a, = 3’, r > 0, by the first equation. (We 
may assume a > 0 by multiplying q by - 1.) If r = 0, then a, = 1, bf = -c 
and 

0 = 13b; - 4b, - 9 = (b, - 1)(13b; + 13b; + 13b, + 9) 

which has the unique integer solution b, = 1. Thus a = 2. b = 2, c = - 1. and 
n= 1. 

We now suppose that r > 0. Then a, = 3a,, 6, = 3bz, c = 3c, with 
a2, b,, c2 E Z, and the system becomes 

a; - 26b, c2 = 3”. 

13~; - 4a,b, = 1, (38) 

b;+ a,c,=O. 

Here a2 = 3’-‘. If r = 1, then a2 = 1 and 13b”, - 4b, - 1 = 0, which is 
impossible. Thus r > I and 3%~. The last equation in (38) now shows that 
b, is exactly divisible by 3”, where m = (1. - 1)/2 > 0, and the first equation 
gives that n = m, since the power of 3 dividing the left-hand side is 3”. Thus 
a, = 32n, b, = 3”b,, and eliminating c, = -b: from the equations leads to 
136: - 4 x 33”b3 - 1 = 0. But this equation has no integer solutions for any 
n > 0, and so the case r > 0 does not occur. 

Thus n = 1, y = 11 is the only positive solution of (32). 

(b) To solve (34) we argue similarly. Multiply through by 362, giving 

(36~)~ = norm(36x + 68) 

where x = 3” and 0 = fl. As in (a) we set 

(36x + 66) = d2, 

with 1x square-free. Since the prime divisors jr2 and jr3 of (2) =/z: and 
(3) = /r: divide 36x + 68 exactly to the fourth power, we have (LX, /r2b3) = 1. 
It follows as before that LZ divides 13 = (6x + @)(6x + (‘0) = 
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36x2 - 6x8 + 19*, and so AZ divides L + (28 - 6x)(6x + 8) = 3e2. Again this 
shows that IX = 1 and (36x + 66’) = b2. 

Now K = Q(m) has class number 3 (see [ 17]), so we conclude that 

where 

& = -2134079 + 8419448 - 80154e2 

is the fundamental unit of K. (We shall not need the actual value of E; see 
below.) An integral basis of K is 1, t9, e2, so the first possibility in (39) gives 
rise to the equation 

36x + 68 = (a + be + cf?‘)’ = a2 + 156bc + (78~~ + 2ab) 0 + (b2 + 2~) e2. 

Equating coeflicients, we find that 

a2 + 156bc=4 x 3”+2, 

78c2 + 2ab = 6, 

b2 + 2ac=O. 

We may set a = 2~2,) b = 2b, with a,, b, E Z, and the system becomes 

a; + 78b,c = 3”+2, 

39c2 + 4a, b, = 3, 

b:+ a,c =O. 

It is clear from these equations that a, = 3’, r > 0, that 3 ] 6, and that 31~. 
As before we have b, = 3mb2, where 3%b, and 2m = r > 0. The first equation 
then shows that m + 1 = n + 2, and combining the second and third 
equations gives 

13b; + 4 x 33”+2b2 - 1 = 0. 

Since this has no integral solutions for any n 2 0, the lirst case in (39) is 
impossible. 

Hence for any solution we must have 

36x+6O=q;. 

In particular, n = 0, x = 1, y = 7 is a solution, and so 

36+68=&q;, 

(40) 

(41) 
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for some integer q2. If there is another solution, with x = 3” > 1, then 
multiplying (40) and (41) gives 

(6x + 0)(6 + 0) = rl*, 

for some integer r,r of K. Squaring and comparing coefficients yields 

a* + 156bc = 4 x 3”+2, 

78c* + 2ab = 6 + 6 X 3”. 

b* + 2ac= 1. 

We set a = 6a, and c = 3c, with a,, c, E Z (note 3$b), and obtain 

a: + 13bc, = 3”, 

117c:+ 2a,b =1+3”, 

b* + 36a,c, = 1. 

It follows easily that a, and b are odd, while c, is even. But then the second 
equation implies 

2 = 1 + 3” (mod 4), 

so that n is even. In that case y* - 36 X 3 ” = 13 is a difference of squares, 
which only happens when y = 7 and 6 x 33n’2 = 6, or n = 0. 

Thus n = 0, y = 7 is the only solution of (34). 

(c) To solve (33) we work in the quadratic field Q(q), which has 
class number 1 and fundamental unit E = (3 + @)/2. (We do not work in 
K = Q($%i),becuase the arithmetic in this field is too complicated. For 
instance, K has class number 6, which is even.) We write (33) in the form 

(y’ - 13)/4 = 3x3, x = 3”. 

Now ((u + \/I7i)/2, (y - @)/2) = ((y + @)/2, @) = 1, and (3) = 
(4 + &3)(4 - l/m, so on supposing that y E 1 (mod 3) (by changing y to 
--y if necessary) we have that 

*(y + @)/2 = ~((4 f @)(a + bu)3, 

where i = -1, 0, or 1 and w  = t(l + fl). Absorbing the sign into the cube 
and multiplying out gives the equations 

(y + fl)/2 = a{(a” + tr.z’b + qab* + 5b2) + fl($a*b + tab* + 2b3)l, 
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for a = (1 + fl)/2, 4 + 0, and (25 + 7 fl)/2. We thus get, respec- 
tively, on comparing coefIicients of a, 

u3 + 3azb+ 12ab2+ 7b3= 1 (i = -I), (42i) 

2a3 + 15a’b + 33ab* + 26b3 = 1 (i = 0), (42ii) 

7a3 + 48a2b + 11 lab’ + 85b3 = 1 (i = 1). (42iii) 

Equation (42ii) is clearly impossible, since it implies a2b + ab* E 1 (mod 2). 
Moreover we know Norm(a + bo) = i-3”, i.e., a* + ab - 3b2 = &3”. Thus, if 
n > 0, we have 

a(u + 6) = 0 (mod 3). 

But both (42i) and (42iii) imply that 

a3 + b3 = 1 (mod 3), 

and thus in each case a z 0 (mod 3). By (42i)-(42iii) this results in the 
congruences 

7b3 = 1 (mod 9) resp. 4b3 3 1 (mod 9), 

both of which are impossible (* 1 are the only cubes mod 9.) 
Therefore we must have n = 0 and y = 5. 
This completes the proof of Theorem B. Since the proof we have given is 

heavily dependent on the arithmetic in the fields Q( @6), Q( fl), O( fl), 
we would like to point out that an alternate (non-elementary) proof may be 
given, which with some modifications is applicable to any equation of the 
form y2 = up” + d. For this proof we start with the equation in the form 

(y’ - 13)/4 = 3”, (43) 

and find by an easy argument (as in case (c)) that 

(y f P)/2 = &-%“, (44) 

where E = (3 + @)/2, II = (5 + fl)/2, and m > 0. (Note norm R = 
rrrr’ = 3.) Conjugating (44) and subtracting, we have 

f ~=&-mnn-&m7Y, 

so that 

f fl/&%” = & -2m - (n’/n)“. (45) 

By (43), m log E = n log(n/fl) + c, where 1 c 1 < 2, and so the left-hand side 
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of (45) is “small.” One can now obtain an upper bound on n by applying a 
result of Schinzei [ 16, Theorem 21, which gives explicit lower bounds for 
expressions of the form am -/I”, with a,/7 algebraic. From this theorem it 
follows that n < 10 “. Further, for any p ossible n in this range a little more 
argument shows that 

m -- log 7r/n’ < 21 
n log&2 n3”/2’ (46) 

i.e., that m/n is an excellent rational approximation to the real number 

0 = log n/n’ 19+5fl 
=log 6 

I 
~oi% 

11+3fl 
log E2 2 . 

Consideration of the continued fraction of 8 (only the first 43 convergents 
are required) then shows that (46) cannot hold for any n with 12 < n < 10”. 

We are grateful to F. Beukers and A. Odlyzko for pointing out this 
method of proof to us, and to A. Odlyzko for his computations showing that 
Eq. (46) cannot hold for 12 < n < 10”. As we have remarked, this method 
of proof is nonelementary (due to its reliance on Schinzel’s theorem), but 
depends less on happenstance than the arithmetic proof we have given above. 
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