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ABSTRACT The theory of photon count histogram (PCH) analysis describes the distribution of fluorescence fluctuation ampli-
tudes due to populations of fluorophores diffusing through a focused laser beam and provides a rigorous framework through
which the brightnesses and concentrations of the fluorophores can be determined. In practice, however, the brightnesses
and concentrations of only a few components can be identified. Brightnesses and concentrations are determined by a nonlinear
least-squares fit of a theoretical model to the experimental PCH derived from a record of fluorescence intensity fluctuations. The
c2 hypersurface in the neighborhood of the optimum parameter set can have varying degrees of curvature, due to the intrinsic
curvature of the model, the specific parameter values of the system under study, and the relative noise in the data. Because of
this varying curvature, parameters estimated from the least-squares analysis have varying degrees of uncertainty associated
with them. There are several methods for assigning confidence intervals to the parameters, but these methods have different
efficacies for PCH data. Here, we evaluate several approaches to confidence interval estimation for PCH data, including asymp-
totic standard error, likelihood joint-confidence region, likelihood confidence intervals, skew-corrected and accelerated bootstrap
(BCa), and Monte Carlo residual resampling methods. We study these with a model two-dimensional membrane system for
simplicity, but the principles are applicable as well to fluorophores diffusing in three-dimensional solution. Using simulated
fluorescence fluctuation data, we find the BCa method to be particularly well-suited for estimating confidence intervals in
PCH analysis, and several other methods to be less so. Using the BCa method and additional simulated fluctuation data, we
find that confidence intervals can be reduced dramatically for a specific non-Gaussian beam profile.
INTRODUCTION
As a fluorescent particle diffuses through a laser excitation
beam, pulses of light are emitted that are proportional to
the particle brightness, defined as the number of photons
emitted per second when the molecule is at the position of
maximum intensity of the laser beam. In the absence of elec-
tronic interactions among fluorophores, the brightness is
proportional to the number of fluorophores in the diffusing
particle. Hence, measurements of brightness provide an indi-
cator of fluorophore aggregation. Indeed, fluorescence corre-
lation spectroscopy (FCS) yields the average brightness and
concentration of fluorescent particles in terms of the mean
fluorescence and the zero-time amplitude of the fluorescence
fluctuation autocorrelation function (1,2). However, it would
also be very useful to have some indication of the dis-
tribution of concentrations and brightnesses of a mixture
of fluorescent particles. Several methods based on moments
of the fluorescence fluctuations (3), high-order fluorescence
correlation functions (4), the photon count histogram (PCH)
(5), and fluorescence intensity distribution analysis (6,7),
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which is based on the PCH, have been developed for this
purpose. Our use of PCH analysis to study aggregation in
model membranes has led us to investigate its limits of
applicability in a two-dimensional (membrane) system.
Our overall approach is applicable to three-dimensional
systems as well, and we present a careful analysis of this.

The two-dimensional membrane system chosen as a
model for this purpose is of interest in its own right as a
framework for detecting nanoscopic clusters of lipid and
protein molecules in lipid bilayer membranes and for char-
acterizing their sizes. One application is the formation in the
cell plasma membrane of nanodomains called ‘‘rafts’’ that
are vital to several important biological functions (8–10).
Properly chosen fluorescent lipid molecules will selectively
partition in a nanodomain, and, if there are no substantial
electronic interactions among these fluorescent lipid mole-
cules, the brightness of a nanodomain containing n fluores-
cent lipid probes is n times that of a single probe. If the
number of fluorescent lipid or lipid probe molecules scales
with the size of the nanodomain, PCH analysis enables iden-
tification of relative sizes of nanodomains, and estimation of
the distribution of their sizes, even below the resolution limit
of light microscopy. Similarly, PCH has been used to detect
clusters of epidermal growth factor receptors on the surfaces
of living cells in culture (7).

The analysis involves fitting a model that specifies the
numbers and brightnesses of the fluorescent species in the
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system to the experimental PCH through a nonlinear least-
squares procedure by finding the set of parameter values
(the maximum-likelihood estimates) that minimizes the c2

error between the model prediction and the data. We show
that, due to the relatively shallow curvature of the c2 hyper-
surface in the neighborhood of the optimum, PCH analysis
can yield optimal estimates of parameters with high degrees
of uncertainty unless applied to impractically large datasets.
Statistical theory affords different approaches to estimate
the uncertainties of parameters, and these methods have
different efficacies for PCH data. An earlier analysis of
the statistical errors of estimated parameters, presumably
by the asymptotic standard error method, focused on the
dependence of the errors on time bin duration, concentra-
tion, and brightness (11).

Modern implementations of nonlinear least-squares
regressions enable scientists to fit complex, multiparameter
models to large data sets. High-level programming lan-
guages combined with packaged data analysis software
make such complex analyses routine for most physical and
biological scientists. The determination of the optimal
parameter values is the primary objective, but an important
secondary goal, that of estimating the uncertainty of the
optimal parameter values, is often underappreciated and
not well understood, despite efforts to remedy this (12,13).
The uncertainty of the parameter values is quantified by
the calculation of confidence regions or confidence intervals.
It is assumed that a set of true parameter values exists that
give rise to the experimental data (which also contains
random noise). It is the size of the noise relative to the signal
that makes estimation of the underlying true parameters
uncertain. Probability theory shows that there is a range of
values of the parameters within which one can be certain
to a specified probability the true values of the parameters
lie. The most common method to calculate confidence inter-
vals of model parameters is the asymptotic standard error
(14). This method is exact for linear models, but can be quite
inaccurate for highly nonlinear models. An extreme example
is given of a microwave absorption data set for which the
nominal 95% asymptotic confidence intervals include the
true values only 10.8% of the time (15). The asymptotic
confidence intervals are symmetric about the optimal value,
which is not the case for many nonlinear models.

An important distinction should be made between joint
confidence regions for all parameters and confidence inter-
vals for each parameter separately. A linear model with
two parameters, p1 and p2, will have a joint confidence
region in the p1-p2 plane that is a circle (with proper scaling
of the axes) if there are no parameter interactions, where
a change in one parameter can compensate for a change in
the other, and an ellipse with major axis lying between the
parameter axes if there are compensatory parameter interac-
tions. Nonlinear models can have confidence regions that
are highly curved, disjoint, or even unbounded along one
parameter axis (14,16). With three or more parameters,
multidimensional joint confidence regions can be difficult
to visualize and understand. Confidence intervals calculated
for each parameter are generally more useful for the prac-
ticing scientist seeking to understand the limits of data
analyses.

In this article, we evaluate several approaches to confi-
dence interval estimation for PCH analysis, including
asymptotic standard error, likelihood joint-confidence
region, likelihood confidence interval, skew-corrected and
accelerated bootstrap (BCa), and a Monte Carlo residual
resampling method. Using simulated fluorescence fluctua-
tion data, we find the BCa method to be particularly well-
suited for estimating confidence intervals in analysis of
PCHs collected from fluorophores diffusing on a membrane,
and several other methods to be ill-suited. We find both the
BCa method and asymptotic standard error to be suitable
for studying fluorophores diffusing in a three-dimensional
liquid. Using the BCa method and additional simulated
fluctuation data for fluorophores diffusing on a membrane,
we confirm earlier predictions (e.g., (17)) that confidence
intervals can be reduced dramatically for specific non-
Gaussian beam profiles.
METHODS

Statement of problem

We consider a distribution of J types of fluorophores diffusing either on

a flat membrane or within a three-dimensional solution. A single fluorescent

lipid probe has one fluorophore, and may be 1) outside any fluorophore

cluster, or 2), diffusing independently, or 3), within a cluster that contains

additional fluorescent lipids. Because the fluorescent lipids in a cluster

diffuse as a unit, we refer for convenience to single fluorescent lipids and

clusters with more than one fluorescent lipid simply as fluorophores of

different brightness. We define the brightness, qj (j ¼ 1, 2, . J), of each

of the J species of fluorophores as the number of photons per unit time

emitted when a member of the species is at the position of maximum inten-

sity of an illuminating laser. The brightness qj is related to the fluorescence

yield Q, absorbance ε, and the number of fluorophores, nj, in the species by

qj ¼ njgεQBo, where g accounts for losses and geometric effects in the

imaging system.

The beam excitation intensity is Gaussian,

Bðr; zÞ ¼ B0 exp

�
� 2r2

u2
� 2z2

u2
z

�
; (1)

where z is the position perpendicular to the focus plane, r is the radial

position parallel to the focus plane and measured from the point of peak

excitation, B0 is the peak intensity of the beam, and u and uz are the

characteristic length-scales of the Gaussian intensity profile, i.e., the

nominal (exp(–2)) beam radius. B(r) is determined by the combination of

laser excitation and fluorescence detection efficiency, normalized so that

B(0) ¼ B0 ¼ 1. The average number of each type of fluorophore in the

observational beam volume (p3/2u2uz) is nj (e.g., Rüttinger et al. (18)).

For the two-dimensional case, the excitation intensity is planar (uz[u)

and Eq. 1 simplifies to a planar Gaussian profile, B(r)¼ Bo exp(�2r2/u2). In

two dimensions, nj is the average number of fluorophores of type j that

appear in the nominal beam area defined as pu2 (1). The goal in both

cases is to find the brightnesses qj and the average numbers nj of each

type of fluorophore.
Biophysical Journal 103(5) 898–906
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PCH analysis

During an experiment, the numbers of photons registered during time

windows of duration T, called bins, are counted and the fraction of bins con-

taining m photons is plotted versus m to create the experimental PCH. T is

chosen to be less than one-fifth the smallest diffusion time of the system

under study, so that the molecular motion during each bin time is small

and yet the bin time is as long as possible to minimize shot noise. For a

single fluorophore component the probability P(m) of measuring m photon

counts from an area illuminated with uniform laser intensity is

PðmÞ ¼
XN
n¼ 0

PðmjnÞPðnÞ

¼
XN
n¼ 0

�ðnqtÞm
m!

e�nqT

��hnin
n!

e�hni
�
; (2)

where n and hni denote the number and average number of fluorophores in

the illuminated area, and P(mjn) is the probability of detecting m photons if

n fluorophores are in this region (6). Both P(n) and P(mjn) can be repre-

sented as Poisson distributions in which q is the emission rate (photons

per s) of a fluorophore, and nqT is the mean number of photons emitted

per bin interval when n fluorophores are in the sampling region.

To account both for systems with several species of fluorophores with

different brightnesses (i.e., different numbers of individual fluorescent

lipids) and also for the spatial variation of the excitation intensity (a two-

or three-dimensional Gaussian in this case), it is useful to express the gener-

ating function, G(x), of the PCH distribution (6). The generating function is

GðxÞ ¼
XN
m¼ 0

PðmÞxm: (3)

When x ¼ exp(im), is chosen, with i ¼ ffiffiffiffiffiffiffi�1
p

, P(m) becomes the Fourier

transform of its generating function, with m the Fourier space variable.

For a single diffusing species of concentration nj and brightness qj, the

series method of Meng and Ma (19) was used as

ln
�
GjðxÞ

� ¼ nj
XN
k¼ 1

ðx� 1Þk
k!

gk

�
qjT

�k
; (4)

where

gk ¼
ZþN

�N

ZþN

0

ðBðr; zÞÞkrdrdz

for three dimensions and

gk ¼
ZþN

0

ðBðrÞÞkrdr

for two dimensions. For the Gaussian beam shapes of Eq. 1, the following

recursion relations are convenient: gk ¼ g1/k
3/2 for three dimensions and

gk ¼ g1/k for two dimensions.

Conventional PCH (6) is adapted easily to measurements on membranes

(7). Adopting a two-dimensional Gaussian shape for the area illuminated on

the bilayer surface, we note that, because the system is quasi-two-dimen-

sional, it is not necessary to characterize the shape of the laser-illuminated

volume along the optical axis. For experiments on giant unilamellar vesi-

cles (GUVs), we suppose that the curvature of the GUV is small over
Biophysical Journal 103(5) 898–906
distances comparable to u. For a GUV with radius R10 mm, this will be

valid for typical values of u in the range of 0.3 mm.

The generating function of a system with J species of fluorophores

diffusing in two or three dimensions, each with a possibly unique concen-

tration nj and unique brightness qj, can be written via the following

superposition:

lnðGðxÞÞ¼
XJ

j¼ 1

ln
�
GjðxÞ

� ¼ XJ

j¼ 1

XN
k¼ 1

ðx�1Þk
k!

njgk

�
qjT

�k
: (5)

Simulations

Monte Carlo simulations were performed on idealized monomer/tetramer

systems (J ¼ 2, q2 ¼ 4q1) using MATLAB (The MathWorks, Natick,

MA). The monomer fluorophores and nanodomains containing four fluoro-

phores were assumed to diffuse at the same speed.

For simulations of fluorophores on a planar membrane, populations of

prescribed numbers of monomers and tetramers were randomly dispersed

over a circular region of radius 15u. At each time step, each fluorophore

shifted a distance D ¼ 0.15u in a random direction from the previous

time step. Each species then emitted a random number p of photons accord-

ing to a Poisson distribution P(p), with the mean emission rate (photons per

time bin of duration T) varying with radial position of the fluorophore and

the peak emission rate qj:

PðpÞ ¼
�
qjTBðrÞ

�p
p!

exp
�� qjTBðrÞ

�
: (6)

The time- and distance scales of the steps are related to the diffusion

constantD of the fluorophores, which can be measured independently using

standard FCS techniques,

D2

4T
¼ D ¼ u2

4tD
; (7)

where tD is the FCS diffusion time. Thus, T ¼ 0.0225 tD, fulfilling the

requirement that the time bin be short relative to the diffusion time. The

brightness values in the simulations are in photons/bin time, are in the upper

range of brightness values that we have seen experimentally in GUVs, and

correspond to several kHz/molecule.

For the coverage analysis of the three-dimensional system, 500 PCHs

were generated by adding binomial noise (5) to an ideal PCH, using

MATLAB’s ‘‘binornd’’ function with 105 trials.

Simulated data took the form of time histories of photon counts F(sT),

s ¼ 1, 2,. S, during each of S time bins of duration T. For the simulations

in this study, S ¼ 105. From these data, a PCH was derived as

PCHðmÞ ¼
XS

s¼ 1

Hðs;mÞ; (8)

where
Hðs;mÞ ¼ 1 if FðsTÞ ¼ m; and Hðs;mÞ ¼ 0 otherwise:

Nonlinear regression and confidence interval
computations

Several statistical approaches are available to assess the degree of uncer-

tainty of the fitted parameter estimates from the nonlinear regression. We

present here a range of available statistical approaches, and assess their
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efficacy for interpreting confidence intervals derived from PCH data. In

each of these approaches, the first step is to fit a model function f(x,q)

with p parameters to n experimental data points y(xi), i¼{1, 2, . n}.

The parameter values are contained in the p-dimensional vector q. The

fitting is accomplished by finding the set of optimal parameter values, bq,
which minimizes the c2 error. All computations were done with MATLAB.

We use the MATLAB nonlinear regression function with the Levenberg-

Marquardt algorithm, and our PCH model function uses the generating

function and the discrete Fourier transform to guarantee accuracy and

decrease computation time. The termination tolerance on the change in

the residual sum of squares was set to 10�8. All regressions were performed

with weighting by using the standard deviation of the 1000 simulated data

sets at each point. In practice, such a large number of replicate data sets is

rarely available, but other methods of calculating the weights, such as using

the binomial distribution (5) or the diagonal covariance matrix elements

(11), are easily implemented and are essentially equivalent to our method.

We assess the confidence interval methods by fitting 1000 separate simu-

lated data sets, calculating the confidence intervals for all sets by each

method at different probability levels, and seeing what percentage of the

confidence intervals contain the true values of the parameters, which are

known from the simulations. For a 95% confidence interval 950 of the

1000 confidence intervals should contain the true parameters.
Asymptotic standard error

The asymptotic approach is the most common method of evaluating confi-

dence intervals in linear and nonlinear regressions because of its relative

simplicity and computational speed (14,16). The fitting function f(x,q) is

assumed to be linear such that it can converge with only the terms before

the second-order derivatives if expanded as a Taylor series. The sensitivity

of the estimate to experimental error is then given fully by the degree to

which f(x,q) changes with infinitesimal perturbations to each of the param-

eters q at each experimental measurement condition xi. The system of first-

order derivatives from Taylor expansions representing these changes, is

composed of the weighted partial derivatives of f(x,q) with respect to

each parameter, evaluated at each experimental measurement condition,

A ¼

26666664
1

s1

$
vf ðx1; qÞ
vqð1Þ

/
1

s1

$
vf ðx1; qÞ
vqðpÞ

« 1 «

1

sn

$
vf ðxn; qÞ
vqð1Þ

/
1

sn

$
vf ðxn; qÞ
vqðpÞ

37777775; (9)

where si is the statistical weighting function of the data point (xi, yi). The

confidence error is derived from the diagonal of the following matrix that

is based on the matrix A:

C ¼ �
ATA

��1
: (10)

The confidence interval of the rth parameter, q (r), or the range above or

below the estimated parameter bqðrÞ, in which the true parameter q (r) lies

with a probability of 1� a, is then

CI1�a

�
qðrÞ

� ¼ bqðrÞ5 ta=2n�p ,
ffiffiffiffiffiffiffiffibcðrrÞp

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼ 1

"
f
�bq; xi�� yi

si

#2
n� p

vuuuut
;

(11)

where bcðrrÞ is defined as the rth diagonal element of C evaluated at the esti-

mated parameters bq, the terms in the radical represent the square-root of the
least-squares norm at the minimum, n is the size of the dataset, p is the

number of parameters in q, and ta=2n�p is the upper a/2 percentage point

of the t-distribution with the number of degrees of freedom specified at

(n – p). Because the A matrix is evaluated at each iteration during the

optimal parameter search, there is very little additional computation in

the confidence interval calculation by this method. This asymptotic

approach is strictly valid only for linear regression and is unable to produce

precise confidence intervals if f(,) is nonlinear, because the first-order

derivatives of Taylor expansions of f(,) plus the f(,) value at the estimated

parameters may diverge from the real value of f(,) (12).
Likelihood method

The likelihood method is an application of the classical hypothesis testing

of a null hypothesis and an alternative hypothesis (i.e., can one reject, with

a chosen level of certainty, that the value of a particular parameter, or

parameter set, lies within a subset of parameter space (20)). The metric

used for the test is the sum of squares of weighted errors as a function of q,

SðqÞ ¼
Xn

i¼ 1

�
f ðq; xiÞ � yi

si

�2
;

which is compared to the sum of squares of weighted errors at the optimum

parameter set, sðbqÞ.
The likelihood joint confidence region using the F-test was first proposed

by Beale (21), and gives the confidence region of all parameters together.

The confidence region is defined as all values of q such that

sðqÞ%
�
1þ p

n� p
$Fa

p;n�p

�
, s

	bq
; (12)

where Fa
p;n�p is the upper-a percentage point of the F-distribution with

its two degrees of freedom specified as p and (n – p). Note that p and

(n – p) are also degrees of freedom for s(q) and sðbqÞ, respectively. For linear
models, the joint confidence region will be a hyperellipsoid of dimension p,

but for nonlinear models the region can be far from ellipsoidal, and even

disjoint or unbounded (16). Evaluation of the joint confidence region is

computationally intensive, as it requires a search in p-dimensional param-

eter space to find the contours of the region defined by Eq. 12.

There is also difficulty in visualizing the complex, high-dimensional

shape of the confidence regions for most nonlinear problems. For these

reasons, the full confidence region is less than satisfactory for practical

purposes. Confidence regions for subsets of the parameters can be defined

in an analogous way, which produce two-dimensional confidence regions

for pairs of parameters, for instance, that are slices of the higher-dimen-

sional region. There may be many pairwise combinations of parameters

for a complex model, however, which again makes visualization and eval-

uation difficult. Confidence intervals for each parameter separately can also

be defined by the likelihood method. The confidence interval for the r0th

parameter, qr, is all values of qr such that

s
	
qp�1; q

0


%

�
1þ 1

n� p
$Fa

1;n�p

�
, s

	bq
; (13)

where q p�1 is the parameter vector of all parameters except qr, and

s(q p�1, qr) is the sum of squares of weighted errors for qr, minimized

over the other parameters. Practically, the upper and lower limits of the

confidence interval are found by one-dimensional searches along the

chosen parameter axis. Starting at the optimal value, qr is incremented,

a new regression is performed holding qr constant and varying the others

to find a new least-squares minimum, and the sum of squares is evaluated

by Eq. 13. This procedure is continued until the upper limit for the value

of qr satisfying Eq. 13 can be found to any desired precision. A similar
Biophysical Journal 103(5) 898–906
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search is then performed along the parameter axis in the opposite direction

to find the lower limit. An optimized search strategy can find each limit with

relatively few steps.

Here, we generate two-dimensional contours of this volume as follows.

The contributed PCH dataset for Fig. 1, A and B, was obtained from Monte

Carlo simulation with supplied parameter values of n1 ¼ 1.2, n2 ¼ 0.3,

q1 ¼ 1.0, and q2 ¼ 4.0, whereas the estimated values from nonlinear fit

are 1.208, 0.236, 1.141, and 4.332, respectively. All plots are produced

by starting with two fixed parameters, varying two other parameters around

their estimated values, and getting each corresponding s(q). Then it is

possible to generate contour plots with s(q) less than certain level values

from Eq. 13. It is shown in Fig. 1 that both the two concentrations and

the two brightnesses for the PCH system are highly correlated. This is

indicated by the high degrees of flatness and inclination of the ellipses.

In other words, the increase of one parameter is compensated by a decrease

in the other parameter with the overall compensatory interaction indicated

by the slope of the major axis of the ellipse. Clearly, as the degree of flatness

of the ellipse increases and the absolute value of the slope of the major axis

becomes closer to 1, the degree of correlation of the two parameters

increases.
Bootstrap method

Bootstrapping was first proposed by Efron (22,23). The fundamental

concept in bootstrapping is the construction of a sample distribution for

a particular statistic by resampling from the datasets that are at hand. To

estimate bootstrap confidence intervals of a parameter-vector q based on

an original dataset P, B replicate data sets fbP1; bP2;.; bPBg are generated

by random sampling of data with replacement from the original dataset.

Each resampled data set, bPb, thus has the same number of data points as

the original. The number of replicates, B, is typically on the order of

1000. Then optimal parameter sets fbq1; bq2;.; bqBg are computed by

least-squares fitting for all bootstrap samples. Therefore, confidence inter-

vals of q can be determined from the generated replicates distributions.

This approach is schematically illustrated in Fig. 2.

Several techniques have been developed to build confidence intervals

from replicate distributions (24). The normal-theory interval assumes that

fbq1; bq2;.; bqBg is normally distributed, and uses normal distribution prop-

erties to determine confidence intervals of q. The percentile-theory interval

is based on the empirical quantiles such that the (1 – a) percentile confi-

dence intervals of q are created by the a/2 and the (1 – a/2) quantiles of

replicates distributions. Because the normal-theory works well only for

normal distributions, and the percentile-theory requires that the distribu-

tions be symmetric about the observed statistic, we recommend the more
1.16 1.2 1.24
0.22

0.23

0.24

0.25

n1

n 2

1.13 1.16
4.2

4.3

4.4

q1

q 2

95%
90%
68%

FIGURE 1 Two-dimensional slices of the nearly four-dimensional ellip-

tical confidence volume of a noise-assigned monomer/tetramer system with

n1 ¼ 1.2, q1 ¼ 1, n2 ¼ 0.3, and q2 ¼ 4. (A) Correlation between n1 and n2 at

q1 ¼ 1.1 and q2 ¼ 4.3. (B) Correlation between q1 and q2 at n1 ¼ 1.2 and

n2 ¼ 0.2.
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general bias-corrected and accelerated approach (BCa) to compute PCH

confidence intervals.

BCa adjusts for both bias and skewness in the replicates distributions. It

is verified by Efron (24) to be of second-order accuracy. The bias z0
(r) and

the skewness a(r) of the replicates distribution of the rth parameter, q(r), are

first computed from

zðrÞo ¼ F�1

8>><>>:
PB
b¼ 1

I
nbqðrÞb <bqðrÞo

B

9>>=>>;; (14)

Pn 	bðrÞ bðrÞ 
3
aðrÞ ¼ i¼ 1

qð�iÞ � qð�iÞ

6

24 Pn
i¼ 1

	bqðrÞð�iÞ � bqðrÞð�iÞ

2

353
2

: (15)

Then the (1 – a) percentile confidence interval of q(r) is generated from

CI1�a

�
qðrÞ

� ¼"bG�1

(
F

"
z
ðrÞ
0 þ z

ðrÞ
0 þ za=2

1� aðrÞ
	
z
ðrÞ
0 þ za=2


#);

bG�1

(
F

"
z
ðrÞ
0 þ z

ðrÞ
0 þ z1�a=2

1� aðrÞ
	
z
ðrÞ
0 þ z1�a=2


#)#
(16)

where F�1($) is the standard-normal quantile function, with za ¼ F�1(a),0BB@
PB
b¼ 1

I
nbqðrÞb <bqðrÞo

B

1CCA
is the proportion of bootstrap replicates below the original sample estimated

parameter bqðrÞ, n is the size of original sample, bqðrÞð�iÞ is the value of q(r)

produced when the ith observation is deleted from the original sample,bqðrÞð�iÞ is the average of bqðrÞð�iÞ, and bG�1
(,) is the cumulative-replicates quan-

tile function. Note that if the correction factors a(r) and z0
(r) are both 0, the

replicates distribution is symmetric about the estimated parameter value. In

this case, the BCa method is the same as the percentile method.
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Monte Carlo with residuals resampling

Another nonparametric approach similar to the bootstrap method, Monte

Carlo with residuals resampling (MCRR), resamples the residuals, rather

than the data points, and uses them to construct synthetic data sets (25).

It is applied by: Step 1. Least-squares fitting of the data to find the optimal

parameter values; Step 2. Calculating a theoretical, or perfect, dataset from

the model using the optimal parameter values; Step 3. Generation of many

synthetic data sets by adding noise (obtained by resampling the residuals

from Step 1 analysis) to the theoretical dataset; Step 4. Least-squares fitting

of the noise-containing, synthetic datasets and tabulating the distribution of

optimal parameter values from these fits; and finally Step 5. Generation of

confidence intervals by the percentile-theory (25). This approach is sche-

matically illustrated in Fig. 3. Note that the bias and the acceleration of

the replicates distributions need further exploration, which is beyond the

scope of this article.
RESULTS AND DISCUSSION

Comparison of coverages

To test the accuracy of each confidence interval computation
method, we generated confidence intervals/regions for 1000
simulated experiments on a planar membrane. We analyzed
PCH datasets by using each method, and calculated the
coverage, i.e., the fraction of the confidence intervals that
include the true parameter values, known from the simula-
tion. Specifically, we assigned representative values of 1.2,
0.3, 1.0, and 4.0 to n1, n2, q1, and q2, respectively, and
used Monte Carlo simulation to produce 1000 two-compo-
nent PCH datasets and fit these 1000 data sets using
nonlinear regression. Note that all datasets are fitted with
statistical weights corresponding to different photon
numbers for each measurement. Each data set and corre-
sponding analysis yielded slightly different optimal param-
eter values and confidence intervals/regions, attributed to
the limited number of bins (105) in the simulation and the
random noise inherent in the experiment. Then we deter-
mined the fraction of the parameter sets having the true
value within the derived confidence intervals. The compar-
ison is summarized in Table 1.

It is obvious from Table 1 that no method is able to
provide absolutely accurate confidence intervals/regions
for PCH parameters. Bootstrap (BCa) is overall the most
accurate and is recommended as an effective approach to
predict PCH confidence intervals. The asymptotic method
Prob.
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FIGURE 3 Schematic of procedures for the Monte Carlo with residuals

resampling (MCRR) method: P, the original dataset; bRb, a residual resam-

ple; bPb, a database resample; and bqb, the regression result of a resample.
is a fast operational approach that does not produce bad
coverage; thus, it can be recommended as a prompt and
rough estimate of PCH confidence intervals. However, joint
confidence region is not well applied to a PCH model. It is
not clear why Monte Carlo with residuals resampling, which
has similarities to BCa, does as poorly as shown in Table 1.
It is possibly due to the lack of bias correction of the repli-
cates distributions that is applied in the BCa method, and
warrants further exploration along this path. Also, it is inter-
esting that the coverage of the likelihood method is not
better than the asymptotic standard method. This is probably
due to the fact that both the likelihood and asymptotic
methods are approximate methods (15) An earlier study
has shown that the two methods produce confidence inter-
vals of essentially the same length for a different model
system (26).

For fluorophores diffusing through a three-dimensional
fluid, 500 two-component PCH datasets were studied using
the two methods that performed best for analysis of PCHs
acquired from flat membranes. The BCa and asymptotic
standard error methods both produced reasonably good
coverage with the BCa method slightly better than the
asymptotic (Table 2).

Although we have rigorously explored only a subset of
the four-dimensional parameter space for PCHs acquired
from two-dimensional membranes, there is evidence that
the conclusions apply to more of the full space. Fig. 4 shows
a comparison of the 95% confidence level coverage by the
asymptotic standard error and the BCa methods for a range
of brightness values. As the brightness of the two species
increases, the confidence interval becomes smaller, but the
BCa method is substantially better than the asymptotic stan-
dard method for all brightness values examined.

In principle, PCH analysis promises to supply the bright-
ness and concentrations of many fluorescent components. In
practice, however, only a few components can ordinarily be
identified, and there can be large uncertainties in the optimal
values of concentration and brightness determined from
least-squares regression analysis. Fig. 5 suggests why this
is so for an analysis of a typical two-component system.
The value of c2 is plotted against n1 and n2 for a system
with n1 ¼ 1.2, q1 ¼ 1, n2 ¼ 0.3, and q2 ¼ 4. The plot shows
that the c2 surface has the shape of a curving elongated
valley with low curvature along the valley floor due to the
compensation between n1 and n2 in the PCH model.

Longer data collection that provides larger data sets will,
of course, reduce the relative noise level and decrease the
size of the confidence intervals for all methods, thus more
accurately determining the correct values of the concentra-
tions and brightnesses. We can see this effect clearly by
increasing the length of the simulations (data not shown.)
The decrease in signal/noise and reduction of the confidence
interval length depends only on the square root of
the number of data points, which puts practical limits on
how much one can reduce the uncertainty in parameters
Biophysical Journal 103(5) 898–906



TABLE 1 Comparison of confidence interval coverage for two-dimensional PCH analysis

Method

Theoretical confidence

level

Simulated confidence interval coverage
Approximate computation

time (seconds)n1 n2 q1 q2

Asymptotic standard error 95% 88.9% 86.4% 85.9% 87.2% 0.3

90% 82.8% 79.8% 79.4% 80.8%

68% 57.6% 58.2% 58.6% 60.8%

Likelihood joint confidence region 95% 84.6%

90% 77.7%

68% 57.8%

Likelihood confidence interval 95% 85.6% 88.2% 87.5% 88.2% 15

90% 78.3% 82.0% 80.4% 82.7%

68% 54.9% 59.3% 59.2% 61.7%

Bootstrap (BCa) 95% 98.2% 96.5% 96.9% 94.8% 220

90% 92.5% 90.3% 89.2% 88.4%

68% 57.5% 62.8% 60.1% 64.6%

Monte Carlo with residuals

resampling (MCRR)

95% 81.6% 84.0% 83.1% 83.3% 130

90% 72.7% 76.6% 74.1% 75.8%

68% 47.3% 54.5% 53.0% 55.6%
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this way. Even with larger data sets, however, the BCa
method outperforms the asymptotic method.

An additional contribution to the uncertainty of parameter
estimation is the presence of systematic noise that is not
taken into account in this study. There can be many sources
of such noise, e.g., photobleaching, vibrations, laser fluctu-
ations, etc., which contribute differently in different experi-
ments. We have focused on the stochastic elements inherent
in the method that contribute in all experimental situations.

One factor that contributes to difficulty of determining
adequately the brightnesses and concentrations in a multi-
component system is the Gaussian shape of the excitation
laser beam. Ambiguity results from that fact that a dimmer
fluorophore in the center of the beam will yield an emission
intensity comparable to a brighter fluorophore in the
periphery. Benefits from hard boundaries of the laser excita-
tion area have been proposed for some time (e.g., (17)). This
idea is corroborated by examining the results of simulations
using a disk-shaped excitation beam profile in which the
excitation intensity is constant over the disk and is zero
outside the disk. With this excitation profile, the fluores-
cence signal from a fluorophore anywhere in the disk is
the same (apart from shot noise) and is proportional to the
brightness of the fluorophore.

As expected and as illustrated in Fig. 6, the confidence
intervals are tighter for both the concentrations and the
brightnesses for a system measured using a disk-shaped
beam profile than for the same system measured with a
TABLE 2 Comparison of confidence interval coverage for three-dim

Method Theoretical confidence level

Simulated co

n1

Asymptotic standard error 95% 93.8% 93

68% 76.6% 66

Bootstrap (BCa) 95% 95.9% 98

68% 63.7% 72
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Gaussian excitation profile. Evidently, using a disk-shaped
excitation profile would be advantageous for PCH measure-
ments, but implementing this approach is difficult. FCS
measurements are commonly performed with a laser excita-
tion profile of minimal size, i.e., a diffraction-limited
profile. This minimizes the background fluorescence and
also the diffusion correlation time. It does not appear to
be possible to have both a diffraction-limited and also
a disk-shaped beam profile. To approximate a disk it would
be necessary to enlarge the beam so that the diffraction
fringes at the beam periphery (27) would contribute rela-
tively little to the overall excitation intensity. But this would,
then, increase background and correlation time. It would be
interesting in future work to explore the possibility of using
different beam shapes to determine the concentrations and
brightnesses by PCH measurements more precisely.
CONCLUSIONS

An important component of the analysis of experimental
data by least-squares curve fitting is the calculation of
how trustworthy, or alternatively, how uncertain, the results
of the regression analysis really are. The most common
approach for determining confidence intervals of model
parameters is the asymptotic standard error, due to its speed
and ease of computation. Although valid for linear models,
the asymptotic approach applied to nonlinear models may
severely underestimate the size of the confidence intervals,
ensional PCH analysis

nfidence interval coverage

Approximate computation time (seconds)n2 q1 q2

.6% 95.6% 92.6% 0.3

.4% 65.8% 67.6%

.3% 95.1% 94.5% 220–440

.6% 68.6% 65.9%



FIGURE 4 95% confidence interval coverage and the normalized

confidence interval width of n1 versus q2 given that n1 ¼ 1.2, n2 ¼ 0.3,

and q2/q1 ¼ 4. The BCa method outperforms asymptotic standard method

over a range of brightness values.

FIGURE 6 Comparisons of normalized confidence-interval widths

(using BCa) of monomer/tetramer systems diffusing on a Gaussian beam

(Gaussian) and a disk-shaped beam (Cylindrical). Each width above is

the average of widths from 100 simulated monomer/tetramer systems

with n1 ¼ 1.2, q1 ¼ 1, n2 ¼ 0.3, and q2 ¼ 4.
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leading to erroneous conclusions. The theory describing
PCH data, either directly in terms of the super-Poissonian
distribution or in terms of the generating function approach,
is highly nonlinear in the variables of interest, i.e., the
number and brightness of the species in the system. A
surprising result is that the asymptotic approach leads to
very good and quite consistent coverage over a broad range
of conditions. However, as shown in Fig. 4, the asymptotic
approach underestimates the confidence intervals for all
conditions for fluorophores diffusing on a membrane, and
for many conditions does so significantly. We have shown
in this article that the bias-corrected and accelerated boot-
strap method is a reliable and accurate way to calculate
FIGURE 5 c2 surface of a simulated monomer/tetramer system with

n1 ¼ 1.2, q1 ¼ 1, n2 ¼ 0.3, and q2 ¼ 4.
the confidence intervals for the four parameters in a two-
component PCH in these cases. For fluorophores diffusing
in a three-dimensional fluid, the BCa and asymptotic stan-
dard error approaches appear equally good.

The selection of a method for identifying confidence
intervals is a trade-off between experimental and computa-
tional time. Improvement over confidence intervals calcu-
lated from a dataset by asymptotic standard error can be
made in two ways. The first is to use the BCa method, and
the second is to acquire a longer data record and use asymp-
totic standard error, recognizing that the confidence inter-
vals would be better still if one were to use the BCa
method on this longer data record. Deciding between these
requires a decision about the relative importance of experi-
mental accuracy versus computational speed. We note as
well that one can never be certain of the accuracy of confi-
dence intervals calculated using asymptotic standard error
without performing lengthy computations like those pre-
sented in this article. Although the computation time of
the BCa method is roughly three orders-of-magnitude
greater than the asymptotic standard method, it nevertheless
requires only several minutes for such an analysis, and the
use of optimized software packages such as MATLAB can
make its application routine. Confidence intervals calcu-
lated using BCa are significantly better in many cases and
require little additional computation time.
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