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SUMMARY

Deregulation of mitogen-activated protein kinase
(MAPK) signaling leads to development of pancreatic
cancer. Although Ras-mutation-driven pancreatic
tumorigenesis is well understood, the underlying
mechanism of Ras-independent MAPK hyperactiva-
tion remains elusive. Here, we have identified a
distinct function of PCNA-associated factor (PAF) in
modulating MAPK signaling. PAF is overexpressed
in pancreatic cancer and required for pancreatic
cancer cell proliferation. In mouse models, PAF ex-
pression induced pancreatic intraepithelial neo-
plasia with expression of pancreatic cancer stem
cell markers. PAF-induced ductal epithelial cell hy-
perproliferation was accompanied by extracellular
signal-regulated kinase (ERK) phosphorylation inde-
pendently of Ras or Raf mutations. Intriguingly, PAF
transcriptionally activated the expression of late
endosomal/lysosomal adaptor, MAPK and mTOR
activator 3 (LAMTOR3), which hyperphosphorylates
MEK and ERK and is necessary for pancreatic
cancer cell proliferation. Our results reveal an unsus-
pected mechanism of mitogenic signaling activa-
tion via LAMTOR3 and suggest that PAF-induced
MAPK hyperactivation contributes to pancreatic
tumorigenesis.
INTRODUCTION

Pancreatic cancer is the fourth-leading cause of cancer death in

the United States, with a 5-year survival rate of less than 6% (Sie-

gel et al., 2012). Pancreatic cancer is characterized by highly
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aggressive potential and the absence of a distinct biomarker,

which leads to poor early diagnosis (Iovanna et al., 2012).

Thus, understanding the molecular mechanism of pancreatic

tumorigenesis is imperative for efficient treatment, prevention,

and early diagnosis of pancreatic cancer.

Pancreatic tumorigenesis is driven by genetic and epigenetic

deregulation of oncogenes, tumor suppressor genes, and devel-

opmental signaling pathways (Abraham et al., 2002). Among

these, K-Ras oncogenic mutations occur in 90% of pancreatic

cancers (Bos, 1989; Thomas et al., 2007). It was also shown

that the K-Ras genetic mutation is required for not only initiation

but also maintenance of pancreatic cancer (Collins et al., 2012;

Ying et al., 2012). These findings highlight the crucial role of

K-Ras-mediated signaling in pancreatic cancer (Bardeesy and

DePinho, 2002). K-Ras transduces mitogen-activated protein

kinase (MAPK) signaling, which controls cell proliferation, differ-

entiation, and apoptosis (Malumbres and Barbacid, 2003). How-

ever, mutation in the K-Ras gene constitutively hyperactivates

downstream signaling pathways, including extracellular signal-

regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), and

the Ral guanine nucleotide exchange factor (Rajalingam et al.,

2007; Schubbert et al., 2007; Sweet et al., 1984), which subse-

quently leads to cell transformation and tumorigenesis (Camp-

bell et al., 2007; Rajalingam et al., 2007; Schubbert et al.,

2007; Sweet et al., 1984). Despite the pivotal roles of K-Ras-

mediated MAPK signaling in pancreatic tumorigenesis, cancer

therapies targeted directly against Ras have not been successful

(Surade and Blundell, 2012). This has prompted investigators to

seek alternative strategies such as inhibiting the downstream

molecules of Ras or using synthetic lethal interactions (Chan

and Giaccia, 2011). Thus, it is important to understand the full

spectrum of regulatory mechanisms of Ras/MAPK signaling in

pancreatic cancer.

In association with proliferating cell nuclear antigen (PCNA),

PCNA-associated factor (PAF, KIAA0101/NS5ATP9/OEACT-1)

plays roles in translesion DNA synthesis (TLS) during error-prone
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Figure 1. Mitogenic Role of PAF in Pancreatic Cancer Cells

(A) Depletion of endogenous PAF in Panc-1 cells. Immunoblot of Panc-1 stably expressing shGFP or shPAF.

(B and C) Growth inhibition of Panc-1 cells by PAF depletion. Panc-1 (shGFP or shPAF) cells were plated and analyzed for phase-contrast imaging (B) and cell

proliferation by cell counting (C) (n = 3).

(D) G1 cell-cycle arrest by PAF depletion. Cell-cycle analysis of Panc-1 using flow cytometry. A representative image is shown (n = 3).

(E and F) PCNA-independent mitogenic role of PAF. Panc-1 cells (shGFP or shPAF) were stably transfected with mutPIP-PAF or nt-PAF. Then, the same number

of each group of cells were plated and counted after 4 days.

(E) Cell counting (n = 3).

(F) Phase-contrast images. Error bars indicate SD.

See also Figure S1.
DNA repair and homologous recombination (Emanuele et al.,

2011; Povlsen et al., 2012). Here, we found that PAF overexpres-

sion was associated withMAPK signaling activation and pancre-

atic cancer cell proliferation. Our mouse models demonstrated

that PAF ectopic expression induces pancreatic neoplasia. Inter-

estingly, PAF hyperactivates MAPK signaling via transactivation

of LAMTOR3 (MAP2KIP1/MAPBP/MAPKSP1/MP1), a scaf-

folding protein that facilitates interaction between MEK and

ERK, and hyperphosphorylates MEK and ERK (Schaeffer et al.,

1998). Our results reveal an unsuspected mechanism of MAPK

signaling activation via PAF-mediated LAMTOR3 transactivation

in pancreatic cancer.

RESULTS

Mitogenic Role of PAF in Pancreatic Cancer Cells
To identify genes that play pivotal roles in pancreatic tumorigen-

esis, we analyzed multiple data sets of human pancreatic cancer

using the Oncomine database (http://www.oncomine.org).

Among several genes highly overexpressed in pancreatic can-

cer, we focused on the PAF gene, based on the high expression

of PAF in pancreatic cancer cells (Figure S1; Emanuele et al.,

2011; Logsdon et al., 2003). Consistent with previous studies

(Emanuele et al., 2011), we observed that PAF is significantly

overexpressed in human pancreatic adenocarcinoma, but is
C

not expressed in normal pancreas, including ductal epithelial,

acinar, and islet cells (data not shown), which led us to hypothe-

size that PAF expression is associated with pancreatic tumori-

genesis. First, we asked whether PAF expression contributes

to proliferation of pancreatic cancer cells. Consistent with

in silico analysis, Panc-1 cells expressed a high level of PAF pro-

tein, which prompted us to perform PAF loss-of-function anal-

ysis in Panc-1 cells. To deplete the endogenous PAF protein,

we used lentiviruses encoding shRNA against GFP (shGFP; con-

trol) or PAF (shPAF; Figure 1A) and examined the effects of PAF

knockdown on Panc-1 cell proliferation. Intriguingly, shRNA-

mediated PAF knockdown inhibited proliferation of Panc-1 cells

(Figures 1B and 1C). Also, we observed that PAF knockdown

increased the proportion of cells in the G1 phase of the cell cycle

(Figure 1D). Additionally, ectopic expression of nontargetable

wild-type PAF (ntPAF) reverted the shPAF-induced cell growth

inhibition (Figure 1E, lane 5), confirming the specific effect of

shPAF on PAF transcripts.

PAF was initially identified as a PCNA-interacting protein (Yu

et al., 2001). Thus, we tested whether PAF-PCNA association is

dispensable for PAF-mediated pancreatic cancer cell prolifera-

tion, using a PAF mutant harboring mutations in the PIP motif

(mutPIP-PAF; I65A:F68A:F69S). Consistent with ntPAF, mutPIP-

PAF also rescued shPAF-induced cell growth inhibition (Figures

1E and 1F), indicating that PAF-PCNA interaction is dispensable
ell Reports 5, 314–322, October 31, 2013 ª2013 The Authors 315
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Figure 2. PAF Expression Induces PanIN

(A) PAF-inducible mouse model.

(B) PAF induction strategy.

(C and D) PanINs by PAF ectopic expression: (D) hematoxylin and eosin staining (PanIN1-3), and (D) quantitative analysis of PanINs.

(E and F) Hyperproliferation of pancreatic ductal epithelial cells by PAF: (E) Ki67 immunostaining and (F) quantification of Ki67-positive cells. Doxy was

administered for 2 months.

(G–J) Tumorigenic marker expression by PAF: (G) Alcian blue (doxy: 2 months), (H) MUC1, (I) CK19, and (J) COX2 (Doxy: 8 months)

(K) MUC1 and CK19 expression in PanINs of Pdx1-Cre:K-RasLSLG12D mouse. Scale bar, 20 mm. Error bars indicate SD.
for PAF-mediated pancreatic cancer cell proliferation. These re-

sults suggest that PAF expression is required for pancreatic can-

cer cell proliferation independently of PCNA interaction.

Pancreatic Intraepithelial Neoplasia by PAF
Given (1) the overexpression of PAF in pancreatic cancer cells

and (2) the mitogenic role of PAF in pancreatic cancer cells,

we hypothesized that conditional expression of PAF induces

pancreatic tumorigenesis. To address this, we assessed the

in vivo effects of PAF overexpression on pancreatic cell prolifer-
316 Cell Reports 5, 314–322, October 31, 2013 ª2013 The Authors
ation using genetically engineered mouse models. In order to

mimic the overexpression of PAF in pancreatic cancer, we

used doxycycline (doxy)-inducible PAF (iPAF) transgenic mice

(Jung et al., 2013a). First, we bred an iPAF with a Rosa26-rtTA

strain. Upon doxy treatment, reverse tetracycline transactivator

(rtTA) expressed from the Rosa26 promoter became active and

bound to TetO, which then transcriptionally induced the expres-

sion of PAF (Figure 2A). After doxy administration for 8 months,

we examined the pancreatic tissues of control (iPAF + doxy)

and experimental (iPAF:Rosa26-rtTA + doxy) groups of mice
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Figure 3. Pancreatic CSC Marker Expres-

sion by PAF

(A) Downregulation of CXCR4 and CD24 by

PAF knockdown. qRT-PCR of Panc-1-shGFP and

Panc-1-shPAF.

(B) Downregulation of ALDH activity by PAF

depletion. ALDH activity analysis of Panc-1-

shGFP and Panc-1-shPAF cells. A representative

image is shown (n = 2).

(C and D) Expression of CD44, CD133, and CD24

by PAF. Pancreatic tissues from control (iPAF)

and PAF-induced (Rosa26-rtTA:iPAF; doxy for

4 months) mice were immunostained for (C) CD24

and (D) CD44 and CD133. Scale bar, 20 mm. Error

bars indicate SD.
(Figure 2B). Intriguingly, the PAF-induced mice exhibited pan-

creatic intraepithelial neoplasias (PanINs), with characteristic

features of columnar cell morphology, aberrant foci, papillary in-

foldings, and chronic pancreatitis, whereas the pancreas of con-

trol mice displayed normal cuboidal ductal epithelium (Figures

2C and 2D). Given that PAF is required for pancreatic cancer

cell proliferation in vitro (Figure 1), we examined whether PAF-

induced PanINs is due to hyperproliferation of pancreatic ductal

epithelial cells. Indeed, PAF-induced mice exhibited mitogenic

activation of pancreatic ductal epithelial cells, as manifested

by cells positive for Ki67 (a cell mitotic marker), whereas control

mice did not show any Ki67-positive cells (Figures 2E and 2F).

Moreover, PAF-induced pancreatic lesions exhibited marked

expression of several pancreatic tumormarkers, including Alcian

blue, Mucin1 (MUC1), cytokeratin 19 (CK19), and cyclooxyge-

nase 2 (COX2) (Figures 2G–2J), as shown in the Pdx1-Cre:K-

RasLSLG12D pancreatic cancer mouse model (Figure 2K). These

results suggest that conditional expression of PAF is sufficient to

initiate PanIN, the precursor lesion of human pancreatic cancer.
Cell Reports 5, 314–322,
Pancreatic Cancer Stem Cell
Marker Expression by PAF
A growing body of evidence suggests

that cancer stem cells (CSCs), the origin

of cancer cells, are mainly responsible

for tumor heterogeneity, metastasis,

recurrence, and therapy resistance (Ma-

gee et al., 2012). Given that PAF is specif-

ically expressed in pancreatic cancer

cells (Figure S1) and its ectopic expres-

sion is sufficient to develop pancreatic

neoplasia (Figure 2), we asked whether

PAF expression is also associated with

positive regulation of pancreatic CSCs.

We analyzed the expression of pancreatic

CSC markers, including CD24, C44,

CD133, and CXC chemokine receptor 4

(CXCR4) (Hermann et al., 2007; Li et al.,

2007), in the setting of PAF ectopic ex-

pression or depletion. First, we assessed

the expression of CXCR4 and CD24 in

Panc-1 cells (shGFP and shPAF) using

quantitative RT-PCR (qRT-PCR). Inter-
estingly, depletion of endogenous PAF downregulated the

expression of CXCR4 and CD24 (Figure 3A). Additionally, the

activity of aldehyde dehydrogenase (ALDH), another pancreatic

CSCmarker (Rasheed et al., 2010), was significantly inhibited by

PAF knockdown in Panc-1-shPAF cells (Figure 3B). Next, we

further examined the effects of PAF ectopic expression on

pancreatic CSC marker expression in our iPAF mouse model.

Consistent with in vitro results obtained with Panc-1 cells,

pancreatic CSC markers (CD133, CD44, and CD24) were

induced in neoplastic lesions of PAF-induced mice, in contrast

to the normal pancreatic ducts of control mice (Figures 3C and

3D). These results imply that PAF induction may also contribute

to the development or maintenance of pancreatic CSCs during

pancreatic tumorigenesis.

PAF Induces MAPK Hyperactivation via LAMTOR3

Transactivation
Having observed the mitogenic role of PAF in pancreatic cancer

cells, we sought to determine the underlying mechanism of
October 31, 2013 ª2013 The Authors 317
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Figure 4. PAF-Induced MAPK Signaling Activation via LAMTOR3 Transactivation

(A) In vivo ERK phosphorylation by PAF. Immunostaining of pancreatic tissues from control and PAF-induced mice (doxy for 2 months). Arrowheads: pERK-

positive pancreatic ductal epithelial cells.

(B) Hyperphosphorylation of ERK by PAF. Immunoblot analysis of BxPC-3 cells transfected with empty vector or FLAG-PAF expression plasmids.

(C) Dephosphorylation of ERK by PAF knockdown. Immunoblot of Panc-1-shGFP and Panc-1-shPAF cells.

(D) No Ras activation by PAF. BxPC-3 cells were transiently transfected for PAF expression and analyzed for Ras activity. Serum-free and EGF treatment

conditions served as negative and positive controls, respectively.

(E and F) Downregulation of LAMTOR3 by PAF knockdown. Panc-1 cells (shGFP and shPAF) were analyzed by semiquantitative RT-PCR (E) and

qRT-PCR (F).

(G) LAMTOR3 upregulation by PAF in vivo. Pancreatic tissues of control and PAF-induced mice (doxy for 2 months) were immunostained for LAMTOR3. All

images were taken with the same exposure time for quantification. Of note, artifacts (asterisks) by tissue autofluorescence were observed equally in both control

and experimental samples.

(H) LAMTOR3 expression in pancreatic cancer. Pancreatic cancer tissue microarray was immunostained. 3,30-Diaminobenzidine (DAB, brown): LAMTOR3;

hematoxylin (blue): nuclear counterstaining.

(I) In silico analysis of LAMTOR3 expression in pancreatic cancer. Oncomine analysis of LAMTOR3 expression in pancreatic cancer. NCBI Gene Expression

Omnibus (GEO) accession number: GSE3654. 1: normal pancreas; 2: pancreatic adenocarcinoma; 3: pancreatic ductal adenocarcinoma; 4: pancreatic endo-

crine carcinoma; 5: pancreatic intraductal papillary mucinous carcinoma; 6: pancreatic osteoblast-like giant cell carcinoma.

(J and K) Coexpression of PAF and LAMTOR3 in pancreatic cancer. Coimmunostaining of (J) PAF-induced lesions (PAF-induced mice; doxy for 2 months; n = 3)

and (K) human pancreatic cancer tissue microarray (15 out 20 pancreatic adenocarcinoma samples showed coexpression of PAF and LAMTOR3). Represen-

tative images are shown.

(legend continued on next page)
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PAF-induced pancreatic neoplasia. Most pancreatic cancer

cells exhibit hyperactivation of the Ras/MAPK signaling pathway

(Bardeesy and DePinho, 2002). Moreover, K-Ras oncogenic

mutation is sufficient to initiate pancreatic cancer in genetically

engineered mouse models (Aguirre et al., 2003; Hingorani

et al., 2003), which led us to hypothesize that PAF modulates

Ras/MAPK signaling activity positively. To test this, we exam-

ined whether PAF ectopic expression affects the phosphoryla-

tion status of ERK1/2, MAPK signaling components. Intriguingly,

immunostaining for phosphorylated ERK1/2 showed that PAF

expression induced phosphorylation of ERK1/2 in neoplastic

ductal epithelial cells, whereas the control mice displayed no

phosphorylation of ERK1/2 in ductal epithelial cells (Figure 4A).

Next, we tested whether PAF expression per se is sufficient to

activate ERKs in pancreatic cancer cells. Due to genetic muta-

tion in the K-Ras gene (G12D) Panc-1 cells exhibit constitutive

activation of MAPK signaling. Thus, we utilized BxPC-3 pancre-

atic cancer cells that harbor the wild-type K-Ras gene. Indeed,

PAF ectopic expression hyperphosphorylated ERK and MEK in

BxPC-3 cells (Figure 4B). Additionally, to complement the gain-

of-function approach, we tested whether PAF knockdown

downregulates ERK1/2 phosphorylation in Panc-1 cells exhibit-

ing constitutive activation of MAPK by K-Ras mutation. Inter-

estingly, PAF knockdown (shPAF) significantly suppressed

phosphorylation of ERK1/2 in Panc-1 cells (Figure 4C). However,

Raf pull-down assays showed that PAF ectopic expression did

not affect Ras GTPase activity in BxPC-3 cells (Figure 4D), sug-

gesting that PAF acts downstream of Ras to activate MAPK

signaling. Given the canonical role of the PAF-PCNA complex

in facilitating TLS (Emanuele et al., 2011; Povlsen et al., 2012),

it is plausible that PAF ectopic expression might compromise

the DNA repair pathway and cause genetic mutations in Ras/

MAPK signaling components. Thus, we performed sequencing

analysis of Ras and Raf genes in PAF-induced neoplastic lesions

of pancreas. However, we found no mutations in Ras (K-Ras,

H-Ras, and N-Ras) or Raf genes (Figure S2), indicating that

PAF-mediated TLS is not involved in PAF-induced pancreatic

neoplasia. This is also consistent with our results showing the

PCNA-independentmitogenic function of PAF in pancreatic can-

cer cells (Figures 1E and 1F). These in vitro and in vivo results

suggest that PAF activates MAPK signaling downstream of Ras.

In a recent study, we observed that PAF occupies the proximal

promoter and transactivates b-catenin target genes (Jung et al.,
(L) LAMTOR3 rescues PAF depletion-induced pancreatic cancer cell growth i

(LAMTOR3 or empty [control]) were plated (8 3 105 cells) and cultured (4 days) f

(M) LAMTOR3 expression restores shPAF-induced ERK dephosphorylation. Pan

LAMTOR3, as shown by immunoblotting.

(N and O) ERK2-MEK1-LA rescues PAF depletion-induced growth inhibition. Pan

(N) Immunofluorescent staining.

(O) Quantification of Ki67-positive cells (n = 2).

(P) LAMTOR3 depletion inhibits Panc-1 cell proliferation. Panc-1 cells were trans

shRNAs [1–4] targeting LAMTOR3). LAMTOR3 depletion was validated by immun

proliferation analysis by cell counting (n = 3).

(Q) Illustration of PAF-induced MAPK signaling activation. In normal pancreas,

gulated by unknown factors transactivates LAMTOR3, which facilitates MEK-ER

ERK signaling induces pancreatic ductal epithelial cell hyperproliferation, which

might also activate mTOR signaling. Scale bar, 20 mm. Error bars indicate SD.

See also Figures S2 and S3.

C

2013a). Hence, we examinedwhether PAF hyperactivatesMAPK

signaling by transcriptional regulation ofMAPK signaling compo-

nents. To test this, we performed gene-expression analysis

of Ras/MAPK signaling components and regulators, including

LAMTOR3, kinase suppressor of Ras (KSR), protein kinase A

(PKA), and dual-specificity phosphatase 1/6 (DUSP1/6). Intrigu-

ingly, PAF-depleted Panc-1 cells (shPAF) exhibited specific

downregulation of LAMTOR3 transcription (Figures 4E and

4F). Moreover, immunostaining for LAMTOR3 showed that

LAMTOR3 protein was significantly upregulated in ductal epithe-

lial cells of PAF-induced neoplastic pancreatic lesions (Fig-

ure 4G). It has been shown that, as a scaffold protein, LAMTOR3

facilitates MEK-ERK interaction and hyperphosphorylates MEK

and ERK via complex formation with p14 and MEK1 (Schaeffer

et al., 1998; Wunderlich et al., 2001). Thus, our data suggest

that PAF-induced ERK activation might be mediated by

LAMTOR3. Next, we asked how PAF upregulates LAMTOR3

gene expression. Based on the recruitment of PAF to promoters

of Wnt targets, including c-Myc (Jung et al., 2013a), we tested

whether c-Myc or Wnt signaling activation mediates PAF-

induced LAMTOR3 upregulation. We found that c-Myc ectopic

expression or Wnt signaling activation did not transactivate

LAMTOR3 (Figure S3), suggesting that neither Wnt signaling

nor c-Myc expression is involved in PAF-mediated LAMTOR3

transactivation. Next, we tested whether LAMTOR3 is upregu-

lated in human pancreatic cancer. Immunostaining of a tissue

microarray showed that pancreatic adenocarcinoma cells ex-

hibited marked upregulation of LAMTOR3 in the perinucleus

and cytosol (15 out of 20 pancreatic adenocarcinoma samples;

Figure 4H), consistent with in silico analysis of microarray data

sets for LAMTOR3 expression of cDNA (Iacobuzio-Donahue

et al., 2003; Figure 4I).We also observed that PAF and LAMTOR3

were coexpressed in PAF-expressing cells of PAF-induced

pancreatic lesions (Figure 4J) and human pancreatic cancer cells

(Figure 4K). Next, we asked whether PAF-induced pancreatic

cell hyperproliferation is due to PAF-mediated transactivation

of LAMTOR3. Indeed, LAMTOR3 expression rescued PAF

depletion-induced growth arrest of Panc-1 shPAF cells (Fig-

ure 4L). Moreover, shPAF-induced hypophosphorylation of

ERK1/2 was also reverted by LAMTOR3 expression (Figure 4M).

Also, using constitutively active ERK mutant (ERK2-MEK1-LA)

(Robinson et al., 1998), we tested whether ERK activation re-

stores PAF depletion-induced growth inhibition of Panc-1 cells.
nhibition. Panc-1 cells (shGFP or shPAF) were transduced with retroviruses

or cell counting (n = 3).

c-1 cells (shGFP or shPAF) were stably transduced with retrovirus encoding

c-1 cells (shGFP or shPAF) were transfected with ERK2-MEK1-LA.

duced with lentiviruses encoding shGFP or shLAMTOR3 (total of four different

oblot (upper panel). Then, each group of cells was plated (83 105 cells) for cell

PAF is not expressed. However, during pancreatic tumorigenesis, PAF upre-

K assembly and phosphorylates MEK-ERK. Subsequently, hyperactivation of

may contribute to pancreatic cancer development. PAF-induced LAMTOR3
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Given that ERK2-MEK1-LA mutant is a fusion protein of MEK1

and ERK2 (Robinson et al., 1998), ERK2-MEK1-LA mutant

does not need a scaffolding protein such as LAMTOR3 for signal

transduction. Indeed, the ERK2-MEK1-LA mutant rescued PAF

depletion-induced cell growth arrest in Panc-1 cells (Figures

4N and 4O). Additionally, we observed that LAMTOR3-depleted

Panc-1 cells displayed decreased cell proliferation (Figure 4P).

These results strongly suggest that PAF activates MAPK

signaling via LAMTOR3 transactivation, which may contribute

to pancreatic cancer cell proliferation (Figure 4Q).

DISCUSSION

The prevailing view of pancreatic cancer models is that the

constitutive activation of K-Ras/MAPK signaling leads to the hy-

perproliferation and transformation of pancreatic ductal epithe-

lial cells (Aguirre et al., 2003; Hingorani et al., 2003). Nonetheless,

the etiology of pancreatic cancer that does not carry genetic

mutations in K-Ras or Raf has remained elusive. In our pancre-

atic cancer model, PAF induces hyperproliferation of pancreatic

ductal epithelial cells independently of Ras or Raf oncogenic

mutations. Ras-independent MAPK activation is due to the

PAF-induced transactivation of LAMTOR3, a scaffolding protein

for ERK andMEK.Our results reveal an unsuspectedmechanism

of Ras-independent MAPK activation in pancreatic cancer.

In the setting of PAF conditional expression, we observed an

overall induction of pancreatic CSCmarkers (Figure 3) in pancre-

atic ductal epithelial cells. However, we detected Ki67-positive

cells in only a small portion of neoplastic cells. This discrepancy

might be explained by the differential effects of PAF on cell pro-

liferation and cell-fate properties. For example, in intestine, Ki67

marks only transit-amplifying cells located at the crypt-

villi boundary, whereas CD44, a b-catenin target gene, is

expressed in most intestinal epithelial cells of the crypt base

(Wielenga et al., 1999). Alternatively, differences in expression

pattern between pancreatic CSC markers and Ki67 might be

due to additional intrinsic or extrinsic factors that are required

only for PAF-induced cell proliferation. Although here we

focused on the role of PAF in regulating cell proliferation, PAF-

induced pancreatic CSC marker expression implies that in

addition to its mitogenic role, PAF may also play a role in modu-

lating epithelial cell plasticity, which should be addressed in

future studies.

We observed that PAF induces LAMTOR3 transcriptional

activation. Although we recently found that the PAF-b-catenin-

EZH2 transcriptional complex hyperactivates Wnt target genes

in colon cancer (Jung et al., 2013a), here we found that in

pancreatic cancer cells, Wnt signaling did not transactivate

LAMTOR3 (Figure S3). This shows that PAF serves different

functions in regulating MAPK signaling in pancreatic and

colorectal cancers. Thus, it is necessary to understand the

detailed molecular mechanism of PAF-induced LAMTOR3

transactivation.

In addition to its function in activating MEK-ERK (Schaeffer

et al., 1998), LAMTOR3was shown to be a regulator of mamma-

lian target of rapamycin (mTOR) signaling (Sancak et al., 2010).

mTOR signaling regulates cell growth by upstream stimuli, in-

cluding growth factors, oxygen levels, intracellular energy levels,
320 Cell Reports 5, 314–322, October 31, 2013 ª2013 The Authors
and amino acids (Zoncu et al., 2011). As a component of the

trimeric protein complex (LAMTOR3, ROBLD3, and C11orf59),

LAMTOR3 recruits mTORC1 to Rheb, a Ras-related GTP-bind-

ing protein, and activates mTORC1 (Sancak et al., 2010). Thus,

it is likely that both MAPK and mTOR signaling pathways

are activated by PAF-induced LAMTOR3. We observed that

PAF ectopic expression indeed hyperphosphorylated p70 S6

kinase, a downstream effector of mTOR, in BxPC-3 cells (data

not shown). Thus, it will be interesting to study the convergent

roles of PAF in regulating both MAPK and mTOR signaling

pathways. Additionally, it is necessary to determine whether

genetic ablation of PAF suppresses pancreatic tumorigenesis

using PAF conditional knockout mice, which would further

validate our gain-of-function mouse model results. Taken

together, our results reveal an unsuspected function of PAF in

activating the MAPK signaling pathway, and suggest that PAF

overexpression contributes to pancreatic tumorigenesis via

LAMTOR3 transactivation.

EXPERIMENTAL PROCEDURES

Mouse Models

iPAF (Jung et al., 2013a):Rosa26-rtTA (Jackson Laboratory) mice were treated

with doxy (2 mg/ml in 5% sucrose drinking water). All mice were maintained

according to institutional guidelines and Association for Assessment and

Accreditation of Laboratory Animal Care International standards.

Mammalian Cell Culture

Panc-1 and BxPC-3 cells were maintained in Dulbecco’s modified Eagle’s

medium containing 10% fetal bovine serum. Lentiviruses encoding shRNAs

for PAF and LAMTOR3 (Sigma-Aldrich) were stably transduced into target

cells using puromycin selection (2 mg/ml). shRNAs and mammalian expres-

sion plasmids were transfected with the use of polyethyleneimine reagent as

previously described (Jung et al., 2013b).

Constructs

Wild-type, nt-PAF, and mutPIP-PAF constructs were generated via PCR from

cDNA as previously described (Jung et al., 2013a). The ERK2-MEK1-

LA construct was kindly provided by Melanie Cobb (University of Texas

Southwestern).

Gene-Expression Analysis

Gene-expression analysis was performed as previously performed (Park et al.,

2009).

Immunoblotting

Immunoblotting was performed as previously described (Jung et al., 2013b).

Immunohistochemistry

Mouse pancreatic tissues were collected and fixedwith 10% formalin and pro-

cessed for paraffin embedding. The sectioned samples were immunostained

according to standard protocols. Pancreatic cancer tissue microarray slides

were purchased from Biomax (PA242a). Immunostained samples were

analyzed with the use of an Observer.Z1m microscope (Zeiss) and Axiovision

software (Zeiss).

Alcian Blue Staining

Deparaffinized slideswere stained in 1% (w/v) Alcian blue 8GX dissolved in 3%

acetic acid for 30 min and then washed with distilled water.

ALDH Activity Quantification

The Aldefluor assay (StemCell Technologies) was carried out according to the

manufacturer’s guidelines.



Ras activity assay

Ras activity was measured using a Ras Activation Assay Kit (Millipore).

Statistical Analysis

For comparison of two samples, we employed Student’s t test. The calculation

was performed from at least three biological replicates. A p value < 0.05 was

considered significant. Error bars indicate SD.

Full details regarding the materials and methods used in this work are avail-

able in the Supplemental Experimental Procedures.
SUPPLEMENTAL INFORMATION
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and three figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2013.09.026.
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