Type: Poster Presentation

Final Abstract Number: 59.010
Session: Diagnosis
Date: Saturday, April 5, 2014
Time: 12:45-14:15
Room: Ballroom

Toward a rapid and accurate point-of-care test for active pulmonary tuberculosis: Multiplexed proteomic assay (SOMAscan™) of human serum for microbial and host markers


Somalogic, Boulder, USA

Background: A rapid, accurate, and inexpensive tuberculosis (TB) diagnostic test would allow earlier treatment and reduce transmission.

Methods & Materials: We used slow off-rate modified aptamers (SOMAmers) in a highly multiplexed proteomic assay (SOMAscan™) to measure 1129 human proteins and 16 Mtbo proteins in serum samples provided by the Foundation for Innovative New Diagnostics (FIND).

Results: Among the top host serum biomarkers distinguishing TB from non-TB regardless of the HIV status were kallistatin, TSP4, gelsolin, and CDON, which were lower in TB compared to non-TB, and LBP, ITI heavy chain H4, NPS-PLA2, and IP-10, which were higher in TB.

A 9-marker model performed well in a training set of 173 TB vs. 160 non-TB samples (sens 89% / spec 88%, AUC = 0.94), which was confirmed in a blinded verification set of 132 TB vs. 118 non-TB (sens 80% / spec 84%, AUC = 0.88). Mtbo pathogen-specific SOMAmers showed non-specific background in serum and are pending analytical optimization to improve performance. Additional work to improve sensitivity of the host markers is ongoing.

Conclusion: The discovery of robust, quantitative, non-culture based diagnostic biomarkers of active pulmonary TB has great potential to facilitate the rapid and accurate diagnosis of TB disease. Our goal is that a combined host and microbial point-of-care diagnostic test could ultimately be tested and applied in peripheral microscopy centers or in primary care clinics.

http://dx.doi.org/10.1016/j.ijid.2014.03.1172

Type: Poster Presentation

Final Abstract Number: 59.012
Session: Diagnosis
Date: Saturday, April 5, 2014
Time: 12:45-14:15
Room: Ballroom

Rapid detection of ESBL-producing Enterobacteriaceae from blood cultures: A prospective study

P. Nordmann1, L. Poirel1, L. Dortet2

1 University of Fribourg, Fribourg, Switzerland
2 Hopital de Bicetre, Kremlin-Bicetre, France

Background: Enterobacterial strains producing clavulanic-acid inhibited extended-spectrum beta-lactamases (ESBLs) are increasingly reported worldwide. The rapid detection of ESBL-producing Enterobacteriaceae responsible for bacteremia is of utmost importance since their successful treatment depends on prompt administration of the appropriate antimicrobial agents. The ESBL NDP test has been evaluated here prospectively to detect ESBL-producing Enterobacteriaceae directly from blood cultures.

Methods & Materials: From November 2012 to May 2013, the ESBL NDP test, a rapid chromogenic test based on detection of cefotaxime hydrolysis, was performed with 96 blood cultures positive for Gram negatives. Results of the ESBL NDP test, obtained in less than 30 min, were compared to those obtained with the double disk diffusion technique. All ESBLs were then characterized at the molecular level. Identification of the Gram-negative bacteria was also performed directly on positive blood cultures using MALDI-TOF technology, and confirmed by a biochemical identification.

Results: Eighteen blood cultures infected with ESBL-producing Enterobacteriaceae (15 CTX-M producing E. coli and 3 CTX-M producing K. pneumoniae) were correctly detected, whereas 78...