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Abstract

Let G = (V, E) be a finite, simple and undirected graph. For S ⊆ V , let δ(S,G) = {(u, v) ∈ E : u ∈ S and v ∈ V − S}
be the edge boundary of S. Given an integer i , 1 ≤ i ≤ |V |, let the edge isoperimetric value of G at i be defined as
be(i,G) = minS⊆V ;|S|=i |δ(S,G)|. The edge isoperimetric peak of G is defined as be(G) = max1≤ j≤|V | be( j,G). Let bv(G)
denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex
isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex
boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi:10.1016/j.disc.2007.05.014)]. In this paper we provide
bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees.

The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show
that for a complete binary tree of depth d (denoted as T 2

d ), c1d ≤ be(T 2
d ) ≤ d and c2d ≤ bv(T 2

d ) ≤ d where c1, c2 are constants.
For a complete t-ary tree of depth d (denoted as T t

d ) and d ≥ c log t where c is a constant, we show that c1
√

td ≤ be(T t
d ) ≤ td

and c2
d√

t
≤ bv(T t

d ) ≤ d where c1, c2 are constants. At the heart of our proof we have the following theorem which works for an

arbitrary rooted tree and not just for a complete t-ary tree. Let T = (V, E, r) be a finite, connected and rooted tree — the root being
the vertex r . Define a weight function w : V → N where the weight w(u) of a vertex u is the number of its successors (including
itself) and let the weight index η(T ) be defined as the number of distinct weights in the tree, i.e η(T ) = |{w(u) : u ∈ V }|. For a

positive integer k, let `(k) = |{i ∈ N : 1 ≤ i ≤ |V |, be(i,G) ≤ k}|. We show that `(k) ≤ 2
(

2η+k
k

)
.

c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V, E) be a simple, finite, undirected graph.

Definition 1. For S ⊆ V , the edge boundary δ(S,G) is the set of edges of G with exactly one end point in S. In other
words,

δ(S,G) = {(u, v) ∈ E : u ∈ S and v ∈ V − S}.

∗ Corresponding author.
E-mail addresses: subramanya@csa.iisc.ernet.in (B.V. Subramanya Bharadwaj), sunil@csa.iisc.ernet.in (L. Sunil Chandran).

0012-365X/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.01.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82014611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
http://dx.doi.org/10.1016/j.disc.2007.05.014
mailto:subramanya@csa.iisc.ernet.in
mailto:sunil@csa.iisc.ernet.in
http://dx.doi.org/10.1016/j.disc.2008.01.021


B.V. Subramanya Bharadwaj, L. Sunil Chandran / Discrete Mathematics 309 (2009) 834–842 835

Definition 2. For S ⊆ V , the vertex boundary φ(S,G) is defined similarly.

φ(S,G) = {v ∈ V − S : ∃u ∈ S, such that (u, v) ∈ E}.

Definition 3. Let i be an integer where 1 ≤ i ≤ |V |. For each i define the edge isoperimetric value be(i,G) and the
vertex isoperimetric value bv(i,G) of G at i as follows

be(i,G) = min
S⊆V ;|S|=i

|δ(S,G)|

bv(i,G) = min
S⊆V ;|S|=i

|φ(S,G)|.

Definition 4. For any graph G define the edge and the vertex isoperimetric peaks be(G), bv(G) as,

be(G) = max
1≤i≤|V |

be(i,G)

bv(G) = max
1≤i≤|V |

bv(i,G).

The edge (vertex) isoperimetric problem for a graph G is to determine be(i,G) (bv(i,G)) respectively for each i ,
1 ≤ i ≤ |V |.

Discrete isoperimetric inequalities form a very useful and important subject in graph theory and Combinatorics.
See [6], Chapter 16 for a brief introduction on isoperimetric problems. For a detailed treatment see the book by
Harper [17]. See also the surveys by Leader [21] and by Bezrukov [3,2] for a comprehensive overview of work in
the area. The edge (vertex) problem is NP-hard for an arbitrary graph. The NP hardness of the edge version can be
seen by observing that if we know be(i,G) for all i , 1 ≤ i ≤ |V | we can easily find solutions to the bisection width
problem [13] and the sparsest cut problem [24]. Isoperimetric problems are typically studied for graphs with special
(usually symmetric) structure and the edge and vertex versions of the problem are considered separately as they require
different techniques. Probably the earliest example is Harper’s work [14]: He studied the edge isoperimetric problem
for d-dimensional hypercubes. Hart [18] also found the same result separately. Harper later worked on the vertex
version [15]. Simpler proofs were discovered for his result by Katona [20] and independently by Frankl and Füredi,
see [6], Chapter 16. The edge isoperimetric problem in the grid i.e. the cartesian product of paths was considered
by Bollabas and Leader [7]. Since then many authors have considered the isoperimetric problems in graph cartesian
products. See for example [11]. The isoperimetric problem for the cartesian product of two Markov chains is studied
in [19]. Recently Harper considered the isoperimetric problem in Hamming graphs [16].

The isoperimetric properties of graphs with respect to eigen values of their adjacency or Laplacian matrices is
considered by many authors, for example see [1]. The isoperimetric properties of a graph is very closely related to its
expansion properties. A graph G is called an expander graph if for every positive integer i ≤ ε|V |, bv(i,G) ≥ ε′i ,
where ε and ε′ are predefined constants. A great deal of effort has gone into explicitly constructing expander graphs
— the first construction of an infinite family was due to Margulis [23]. See [26] for a recent construction.

The importance of isoperimetric inequalities lies in the fact that they can be used to give lower bounds for many
useful graph parameters. For example it can be shown that pathwidth(G) ≥ bv(G) [8], bandwidth(G) ≥ bv(G) [14]
and cutwidth(G) ≥ be(G) [4]. In [10], it is shown that given any j (where 1 ≤ j ≤ |V |), treewidth(G) ≥
min j/2≤i≤ j bv(i,G)− 1 and in [9] it is shown that carving-width(G) ≥ min j/2≤i≤ j bv(i,G), where 1 ≤ j ≤ |V | and

in [14] it is shown that wirelength(G) ≥
∑|V |

i=1 be(i,G).

2. Our results

Let T = (V, E, r) be a finite,connected rooted tree rooted at r . Consider the natural partial order �T induced by
the rooted tree on the vertices.

Definition 5. In a rooted tree T = (V, E, r) for any two vertices u, v, u�T v if and only if there is a path from the
root to v with u in the path. In particular u�T u for any vertex u.
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Definition 6. For a rooted tree T = (V, E, r) we define a weight function wT : V → 1, 2, . . . , |V | as follows:
wT (u) = |{v ∈ V : u � v}| (i.e. the number of successors of u, including u). Let us define the weight index of the
rooted tree T = (V, E, r) as η(T ) = |{wT (u) : u ∈ V }|. Note that this is the number of distinct weights. When there
is no confusion let η(T ) be abbreviated by η.

Definition 7. For any graph G let, `G(k) = |{i ∈ N : 1 ≤ i ≤ |V |, be(i,G) ≤ k}| where k is a positive integer.

In other words `G(k) is the number of integers i such that the edge isoperimetric value of G at i is at most k. The
main Theorem in this paper is as follows:

Theorem 1.

We use the above result to show the following interesting corollaries.

Corollary 1. Let T 2
d be the complete binary tree of depth d. Then c1d ≤ be(T 2

d ) ≤ d and c2d ≤ bv(T 2
d ) ≤ d where

c1 and c2 are constants.

Corollary 2. Let T t
d be the complete t-ary tree of depth d with t ≥ 2 and d ≥ c log t where c is a suitable chosen

constant. Then, c1
√

td ≤ be(T t
d ) ≤ (t − 1)d and c2

d
√

t
≤ bv(T t

d ) ≤ d where c1 and c2 are appropriate constants.

We would like to point that recently Otachi and Yamazaki have considered the problem of determining the vertex
isoperimetric peak in complete t-ary trees [25]. They prove that d ≥ bv(T t

d ) ≥
d log t−(t+6+2 log d)

(t+6+2 log d) . Asymptotically our

results are better as we prove bv(T t
d ) ≥ c2

d
√

t
where c2 is a constant. The best bound that can be obtained from their

result for the edge isoperimetric peak is be(T t
d ) ≥

d log t−(t+6+2 log d)
(t+6+2 log d) while we show that be(T t

d ) ≥ c1
√

td where c is a

constant. Similarly in the special case of a complete binary tree their result implies bv(T 2
d ) ≥

d log 2−(8+2 log d)
(8+2 log d) ≈

cd
log d

where c is a constant. In contrast we give a tight result showing that be(T 2
d ) ≥ c1d and bv(T 2

d ) ≥ c2d where c1 and c2
are constants. Moreover our proof techniques are such that the above results can be extended to arbitrary (rooted) trees.
The proofs in this paper are also comparatively simpler. As consequences of the above results we have the following
theorems. We just mention the theorems here. The necessary definitions and detailed discussions are available in the
corresponding sections (Sections 5.1 and 5.2)

Theorem 2. There exists an increasing function f such that for any graph G if pathwidth(G) ≥ k then there exists a
minor G ′ of G such that bv(G ′) ≥ f (k).

Theorem 3. For the complete binary tree on T 2
d on n vertices thinness(T 2

d ) = Ω(log n). This means that there exist
trees with arbitrarily large thinness.

3. Upper bounds on the isoperimetric peak of a tree

A depth first traversal is one in which all the subtrees of the given rooted tree are recursively visited before visiting
the root. Perform such a traversal of the tree and list the vertices in the order in which they appear in the traversal. This
gives an ordering of the vertices. Let us choose Si as the first i vertices as they appear in this ordering. It can be very
easily verified that be(i, T ) ≤ |δ(Si ,G)| ≤ (∆ − 1)d where d is the depth of the tree and ∆ is the maximum degree
of a vertex in T . Using the same technique we can prove that bv(T ) ≤ d . For a t-ary tree of depth d this implies
be(T t

d ) ≤ td and bv(T t
d ) ≤ d.

4. Lower bounds on the isoperimetric peak of a tree

Definition 8. Let T = (V, E, r) be a rooted tree with |V | = n and root r , and let S ⊆ V . Then we define the function
fS,T : E ∪ {r} → {wT (u) : u ∈ V } ∪ {0} as follows:

fS,T (r) = 0 if r ∈ V − S

= wT (r) = n if r ∈ S

fS,T (e) = 0 if e ∈ E − δ(S, T ).



B.V. Subramanya Bharadwaj, L. Sunil Chandran / Discrete Mathematics 309 (2009) 834–842 837

Finally if e = (u, v) ∈ δ(S, T ), without loss of generality assume that u is a child of v in T . Then,

fS,T (e) = fS,T (u, v) = wT (u) if u ∈ S

= −wT (u) if u ∈ V − S.

Lemma 1. Let T = (V, E, r) be a tree with root r and let S ⊆ V . Then, fS,T (r)+
∑

e∈E(T ) fS,T (e) = |S|.

Proof. We use induction on the number of vertices |V | = n. For a rooted tree T ′ = (V ′, E ′, r) with |V ′| = 1,
it is trivial to verify the Lemma. Let the Lemma be true for any rooted tree T ′ = (V ′′, E ′′, r ′′) on at most n − 1
vertices (where n ≥ 2) and for all possible subsets of V ′′. Let S be an arbitrary subset of V . Let v1, v2, . . . , vk
be the children of r in T . We denote by Ti = (Vi , Ei , vi ) the subtree of T rooted at vi . Let Si = S ∩ Vi for
1 ≤ i ≤ k. Also, let f denote the function fS,T : {r} ∪ E → {wT (u) : u ∈ V } ∪ {0}, let f i denote the function
fSi ,Ti : {vi } ∪ Ei → {wTi (u) : u ∈ Vi } ∪ {0}. By the induction assumption we have,

f i (vi )+
∑
e∈Ei

f i (e) = |Si | for 1 ≤ i ≤ k. (1)

Noting that for any edge e ∈ E(T ) ∩ E(Ti ), f (e) = f i (e) we have:∑
e∈E(T )

f (e) =
k∑

i=1

∑
e∈Ei

f i (e)+
k∑

i=1

f (r, vi )

=

k∑
i=1

|Si | − f i (vi )+

k∑
i=1

f (r, vi ). (2)

By the definitions of the functions f and f i (see Definition 8) we have:

f (r, vi )− f i (vi ) = 0 if r ∈ V − S (3)

f (r, vi )− f i (vi ) = −wTi (vi ) = −wT (vi ) if r ∈ S. (4)

Now substituting Eqs. (3) and (4) in Eq. (2), we get

f (r)+
∑
e∈E

f (e) =
k∑

i=1

|Si | = |S| if r ∈ V − S

and

f (r)+
∑
e∈E

f (e) =
∑
|Si | + wT (r)−

k∑
i=1

wT (vi )

=

k∑
i=1

|Si | + 1 = |S| if r ∈ S

as required. �

We need the following lemma to prove the corollaries of the next theorem.

Lemma 2. For any graph G = (V, E), be(G) ≥ bv(G) ≥
be(G)
∆ .

Proof. The first part of the inequality is obvious. Let the edge isoperimetric peak occur at i and the vertex isoperimetric
peak at j . Since ∆ is the maximum degree, ∆bv(i,G) ≥ be(i,G) = be(G) (Every vertex can have atmost ∆ edges
incident on it). But bv(G) = bv( j,G) > bv(i,G). Therefore ∆bv(G) = ∆bv( j,G) ≥ be(G). �

Theorem 1. For any rooted tree T = (V, E, r), with weight index η, `T (k) ≤ 2
(

2η+k
k

)
.
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Proof. Let i ≤ |V | be a positive integer such that be(i, T ) = k′ ≤ k. Then there exists a subset Si ⊆ V such that
|δ(Si , T )| = k′ and |Si | = i . Let δ(Si , T ) = {e1, e2, . . . , ek′}. We define k + 1 variables t0, t1, . . . , tk as follows. Let
t0 = fSi ,T (r) and let ti = fSi ,T (ei ) for 1 ≤ i ≤ k′. If k′ < k, then let ti = 0 for k′ < i ≤ k. By Lemma 1, we have∑

e∈E fSi ,T (e) = |Si | = i . Recalling Definition 8, for an edge e, fSi ,T (e) 6= 0 only when e ∈ δ(Si , T ). Thus we have:

t0 + t1 + · · · + tk = i.

How many distinct positive integers can be expressed as
∑k

i=0 ti ? This will clearly give an upper bound for `(k). Let
W = {w1, . . . , wη} where η is the weight index of the tree, denote the set of distinct weights. Then ti can take the
values 0 or ±w j , 1 ≤ j ≤ η. Considering the k variables ti (1 ≤ i ≤ k) as k unlabeled balls and imagining the 2η+ 1
distinct possible values they can take as 2η + 1 labeled boxes, it is easy to see that the number of distinct integers
expressible as

∑k
i=1 ti is bounded above by the number of ways of arranging k unlabeled balls in 2η+1 labeled boxes,

i.e.
(

2η+k
k

)
. Recalling that t0 can take only two possible values, we get:

`T (k) ≤ 2
(

2η + k

k

)
. �

Definition 9. For any graph G with weight index η, define p as the minimum value of k such that 2
(

2η+k
k

)
≥ n.

Lemma 3. For any rooted tree T = (V, E, r), be(G) ≥ p.

Proof. Assume be(G) < p. Let be(G) = q. Then by the definition of p we have 2
(

2η+q
q

)
< n. But by Definition 7

`T (q) = n a contradiction. �

Corollary 1. Let T 2
d be the complete binary tree of depth d. Then c1d ≤ be(T 2

d ) ≤ d and c2d ≤ bv(T 2
d ) ≤ d where

c1 and c2 are constants.

Proof. Let the number of vertices in T 2
d be denoted by n. We need only prove that be(T 2

d ) ≥ c1d for some constant

c1 as the upper bound follows from Section 3. Note that η(T 2
d ) = d so, `(k) ≤ 2

(
2d+k

k

)
where k is a positive integer.

Now let k = b d
5 c = b0.2dc. Then we have (discarding the floor symbol),

2
(

2d + k

k

)
= 2

(
2.2d

0.2d

)
=

2(2.2d)!

0.2d!2d!

=
c
√

d

(
(2.2)2.2

(0.2)0.222

)d

≤
c′
√

d
(1.96)d .

Here we have used Stirling’s approximation, c′′
√

2πnnne−n
≤ n! ≤ c′′′

√
2πnnne−n . This means that for a sufficiently

large value of d , `(k) < n when k = d
5 which implies that be(T 2

d ) ≥ c1d where c1 is a constant. Again this implies
bv(T 2

d ) ≥ c2d where c2 is a constant, as ∆ = 3 for a complete binary tree. �

The reader may note that the above proof shows that for almost all integers i , 1 ≤ i ≤ kbe(i, T 2
d ) ≥ .2d. More

precisely limd→∞

`
T 2

d
( d

5 )

n → 0.

Corollary 2. Let T t
d be the complete t-ary tree of depth d with t ≥ 2 and d ≥ c log t where c is a suitable chosen

constant. Then, c1
√

td ≤ be(T t
d ) ≤ td and c2d d

√
t
≤ bv(T t

d ) ≤ d where c1 and c2 are constants.
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Proof. The upper bound follows from Section 3. We will assume that t ≥ 9 initially and d ≥ 30. Note that for a t-ary
tree of depth d , η(T t

d ) = d . For a positive integer k, by Theorem 1 we have

`(k) ≤ 2
(

2d + k

k

)
.

Now let k = bm
√

tdc where 0 < m < 2( 1
e −

1
3 ) is a constant. Then we have (discarding the floor symbol),

2
(

2d + k

k

)
= 2

(
(2+ m

√
t)d

m
√

td

)
=

2((2+ m
√

t)d)!

(m
√

td)!(2d)!

≤
c′
√
(2+ m

√
t)d

√
2d
√

m
√

td

(
(2+ m

√
t)2+m

√
t

(m
√

t)m
√

t 22

)d

≤ c′′
(
(2+ m

√
t)2+m

√
t

(m
√

t)m
√

t 22

)d

(5)

as
√
(2+m

√
t)d

√
2d
√

m
√

td
< 1 for d ≥ 30 and t ≥ 9 with m being chosen appropriately. Now consider,

c′′
(
(2+ m

√
t)2+m

√
t

(m
√

t)m
√

t 22

)d

= c′′
(
(2+ m

√
t)m
√

t

(m
√

t)m
√

t

(2+ m
√

t)2

22

)d

= c′′


(1+

2

m
√

t

)m
√

t
2

2
(2+ m

√
t)2

22


d

≤ c′′
(

e2 (2+ m
√

t)2

22

)d

. (6)

Here we have used the fact that (1 + x)
1
x ≤ e for x > 0. Let the number of nodes in T t

d be n = (td
−1)

(t−1) ≥ t (d−1).
Therefore from Eqs. (5) and (6) we have

2
(

2d+k
k

)
n

≤

2
(

2d+k
k

)
t (d−1)

≤

c′′
(

e2 (2+m
√

t)2

22

)d

t (d−1)

≤ c′′t

(
e2
(

1
√

t
+

m

2

)2
)d

= S (say).

Clearly for large enough d i.e d ≥ c log t , S < 1 as e2( 1
√

t
+

m
2 )

2 < 1 for the chosen value of m. This means that for

large enough d,
(

2d+k
k

)
< n which implies be(T t

d ) ≥ p ≥ k ≥ m
√

td . In our proof we have assumed that t ≥ 9. This

assumption can be removed by noting that for all values of t < 9 we can prove be(T t
d ) > c′′′d for some constant c′′′

using the same techniques as in the proof for the binary tree. So we can show be(T t
d ) ≥ c′′′′

√
td by taking c′′′′ = c′′′

3
since in this case

√
t < 3. This completes the proof that be(T t

d ) ≥ c1
√

td for all t ≥ 2 where c1 is an appropriately

chosen constant. ∆ = (t + 1) in T t
d . Therefore bv(T t

d ) ≥
bv(T t

d )

(t+1) ≥
c1
√

td
(t+1) ≥

c2d
√

t
. �
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These results can be generalized to an arbitrary tree.

Corollary 3. Let T = (V, E, r) be a rooted tree with |V | = n and weight index η and p ≥ 2. Then, be(T ) ≥

c1η(n
( 1

2η ) − c2) and bv(T ) ≥
c1η(n

( 1
2η )−c2)
∆ where c1 and c2 are constants.

Proof. We have, n ≤
(

2η+p
p

)
. Let p = ωη. Then,

n ≤ 2
(

2η + ωη
ωη

)
= 2

(
(2+ ω)η
ωη

)
n ≤

2c
√

2π(2+ ω)η((2+ ω)η)(2+ω)ηe−(2+ω)η

(c′
√

2πωη(ωη)ωηe−ωη)(c′
√

4πη(2η)2ηe−2η)

≤
c′′((2+ ω)η)(2+ω)η

((ωη)ωη)((2η)2η)

≤ c′′′
(

1+
2
ω

)ωη (ω
2
+ 1

)2η

where c, c′, c′′ and c′′′ are suitably chosen constants. We have used the fact that 2η+ωη ≤ 2ηωη (which follows from
the fact that 2η ≥ 2 and p = ωη ≥ 2). Simplifying this yields,

n
1

2η ≤ c′′′′
(

1+
2
ω

) ω
2 (ω

2
+ 1

)
.

Since (1+ x)
1
x ≤ e for x > 0,

c1n
1

2η − 2 ≤ ω.

Since be(T ) ≥ p, be(T ) ≥ c1η(n
( 1

2η ) − c2) where c1 and c2 are suitably chosen constants. Therefore bv(T ) ≥

c1η(n
( 1

2η )−c2)
∆ and the corollary follows. �

Comment: It is interesting to study for what values of η the above result would be useful. A simple observation is that

n(
1

2η ) > c2. An analysis of the proof for the above result shows that c1 ≥
1
e and thus c2 ≤ 2e. We note that n = elog n .

For a tree T with η ≤ log n
4 we would have be(T ) ≥ cη and bv(T ) ≥

cη
∆ for a constant c. Similarly for a tree T with

η = k a constant we have be(T ) ≥ c′n
1

2k and bv(T ) ≥ c′n
1

2k

∆ for a constant c′.

5. Applications

5.1. Pathwidth

Pathwidth and Path decomposition are important concepts in graph theory and computer science. For the definition
and several applications see [5]. It is not difficult to show that pathwidth(G) ≥ bv(G) (see [8]). An obvious question is
whether the reason for the high pathwidth of a graph G, is the “good” isoperimetric property of an induced subgraph
or minor of G. More precisely if pathwidth(G) ≥ k is it possible to find an induced subgraph or minor G ′ of G
such that bv(G ′) ≥ f (k) for some function f , where f (k) increases with k. Let us first consider whether such an
induced subgraph always exists. The answer is negative: Given any integer k, it is possible to demonstrate a graph G
(on arbitrarily large number of vertices) such that pathwidth(G) ≥ k, but bv(G ′) for any induced subgraph of G is
bounded above by a constant. For example, one can start with a complete binary tree of sufficiently large depth. The
pathwidth of such a tree is Ω(d), where d is the depth. Now we can replace each edge of the binary tree with a path of
appropriately chosen length, to make sure that for any induced subgraph T ′ of the resulting tree bv(T ′) ≤ c, where c is
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some constant. On the other hand, reader can easily verify that by replacing an edge with a path (i.e. by subdividing an
edge) we can not decrease the pathwidth of the original graph. Thus the resulting tree will have pathwidth as much as
that of the original. (We leave the rigorous proof of the above as an exercise to the reader.) But when we ask the same
question with respect to minors, the answer is positive. Robertson and Seymour proved the following result. (See [12],
Chapter 12.) If pathwidth(G) ≥ k, then there exists a function g such that every tree on at most g(k) vertices is a
minor of G. Then clearly there exists a minor of G which is isomorphic to a complete binary tree T on at least g(k)

2
vertices. By our result (Corollary 1) bv(T ) ≥ c log n = c′ log(g(k)) where c and c′ are appropriate constants. Thus
we have the following result:

There exists a function f such that if the pathwidth of a graph G is at least k, then there exists a minor G ′ of G
such that bv(G ′) ≥ f (k).

5.2. Thinness

A new graph parameter thinness, is defined in [22] which attempts to generalize certain properties of interval
graphs. The thinness of a graph G = (V, E) is the minimum positive integer k such that there exists an ordering
v1, v2, . . . , vn (where n = |V |) of the vertices of G and a partition V1, V2, . . . , Vk of V into k disjoint sets, satisfying
the following condition: For any triple (r, s, t) where r < s < t , if vr and vs belong to the same set Vi and if vt is
adjacent to vr then vt is adjacent to vs also. The motivation for studying this parameter was the observation that the
maximum independent set problem can be solved in polynomial time, if a family of graphs has bounded thinness.
The applications of thinness for the Frequency Assignment Problems in GSM networks are explained in [22]. One
interesting aspect of thinness is that for a graph G, thinness(G) ≤ pathwidth(G). A natural question which arose in
connection with our study of thinness was the following: Are trees of bounded thinness? In other words, is there a
family of trees for which the thinness grows with the number of vertices? It is proved in a later paper by the authors
of [22] that for any graph G, thinness(G) ≥ bv(G)

∆ where ∆ is the maximum degree of G. Combining this lower bound
with our earlier observations, we can infer that the thinness of a complete binary tree on n vertices is Ω(log n).
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