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Abstract

Chaotic inflation on the brane is considered in the context of stochastic inflation. It is found that there is a re
which eternal inflation on the brane takes place. The corresponding probability distributions are found in certain cases. Th
stationary probability distribution over a comoving volume and the creation probability of a de Sitter braneworld yield th
exponential behaviour.
 2004 Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

The global structure of many four-dimensional
flationary universes is very rich [1,2]. Self-repr
duction of inflationary domains leads to a unive
consisting of many large domains. In each of th
domains there can be different realizations of the
flationary scenario. This property of standard infl
tion alleviates the problem of fine tuning in inflatio
The process of self-reproduction of inflationary d
mains leads globally to eternal inflation, namely, th
is at least one inflating region in the universe. Se
reproduction of inflationary domains can be und
stood as a branching diffusion process in the spac
field values of the inflaton. The probability distrib
tions found in such a way willgive the probabilities of
finding a certain field value at a certain point in spac
time.
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There is an interesting connection between the sto
chastic approach to inflation and quantum cosm
ogy. The probability of finding the universe in
state characterized by certain parameters assu
the Hartle–Hawking no-boundary condition yields t
same exponential behaviour as the stationary p
ability distribution in a comoving volume derive
from stochastic inflation. This is the case for stand
chaotic inflation. As it turns out this also holds f
chaotic inflation on the brane.

The idea that the universe is confined to a brane
bedded in a higher-dimensional bulk space–time ha
received much attention in recent years. In the
brane Randall–Sundrum scenario the brane is em
ded in a five-dimensional bulk space–time with ne
ative cosmological constantΛ5 [3,4]. Chaotic infla-
tion on the brane in this setting has been investiga
in [5–7]. The form of the spectrum of perturbatio
is modified due to the modified dynamics at high en
gies. Therefore, it seems to be interesting to investig
stochastic inflation on the brane.
se.
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2. Inflation on the brane

In a braneworld scenario 4D Einstein gravity
recovered on the brane with some corrections
high energies. Furthermore, there are corrections
to the gravitational interaction with the bulk space
time. Assuming a fine tuning between the bra
tension and the bulk cosmological constantΛ5 leads
to the vanishing of the 4D cosmological consta
on the brane. Neglecting contributions from the d
radiation term, this leads to the following Friedma
equation on the brane [5,6]

(2.1)H 2 = 8π

3M2
4

ρ

(
1+ ρ

2λ

)
,

where ρ is the energy density on the brane,λ the
(positive) brane tension andM4 the four-dimensiona
Planck mass. This is related to the five-dimensio
Planck massM5 by

(2.2)M4 =
√

3

4π

(
M2

5√
λ

)
M5.

Assuming that matter on the brane is dominated
a scalar fieldφ, confined to the brane, with potenti
V (φ), its equation of motion is given by

(2.3)φ̈ + 3Hφ̇ + V ′(φ) = 0.

In the slow roll approximation,

(2.4)H 2 � 8π

3M2
4

V

(
1+ V

2λ

)
,

(2.5)φ̇ � − V ′

3H
.

For λ → ∞ the usual Friedmann equation is reco
ered. ForV � λ brane effects dominate.

Inflation takes place if the Hubble parameter sa
fies |Ḣ | < H 2. In a braneworld with matter given by
scalar field the condition for inflation yields to [5]

(2.6)φ̇2 − V + φ̇2 + 2V

8λ

(
5φ̇2 − 2V

)
< 0.

In the following, the potential of the inflaton will b
taken to be of the form,

(2.7)V = 1

2
m2φ2.

Furthermore, for convenience, everything will be e
pressed in four-dimensional Planck units, hen
M4 ≡ 1.
3. Eternal inflation on the brane

The evolution of a scalar field in an inflationa
universe is determined by two contributions. On
one hand, there is the classical rolling down of
scalar field down its potential. On the other hand, th
are quantum fluctuations of the inflaton which beco
classical outside the horizon. This latter contribut
can have either positive or negative sign. The class
rolling down is given by,�φ � φ̇�t , where in the
slow roll approximationφ̇ is given byφ̇ � −V ′/3H .
The amplitude of a quantum fluctuation is giv
by δφ = H/2π . In a typical time intervalH−1,
e3 new domains appear eachcontaining an almos
homogeneous fieldφ −�φ +δφ [2]. There is a critical
valueφs for which for allφ � φs quantum fluctuations
dominate over the classical evolution towards sma
field values. This is the regime of self-reproduction
inflationary domains.φs is determined by [8]

(3.1)
2π

3

V ′

H 3

∣∣∣∣
φ=φs

= 1.

For field valuesφ � φs there will be domains in which
quantum jumps lead to an increase in the field valu
the inflaton. In a small percentage of domains this w
lead to the maximal field value at which inflation tak
place. The upper boundaryφ5D in this braneworld
model is determined by the five-dimensional Plan
boundary. For energies higher thanV (φ5D) = M4

5 the
scalar field becomes deconfined and flows off
brane into the bulk [6]. As in the four-dimensional ca
inflation will stop at this boundary. Here one mig
argue that inflation on the brane stops since the sc
field is flowing off the brane and thus four-dimension
inflation can no longer be sustained on the brane. T
the upper boundary is given by

(3.2)φ5D = √
2

(
4π

3

)1/3
λ1/3

m
.

In the low energy regime,V � λ the Friedmann
equation on the brane reduces to the standard one

(3.3)H 2 � 8π

3
V.

It will be assumed that the whole period of infl
tion takes place in the low energy regime. The e
of inflation φe is determined by the first two term
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in (2.6), φ̇2 = V , which yields,φe = 1/
√

6π . Fur-
thermore,φe < φ5D impliesλ > (12π)−3/2(3/4π)m3.
The lower boundary for self-reproductionφs is given
by

φs =
(

3

16π

)1/4

m−1/2.

The requirementV/2λ < 1 atφ5D impliesλ > 2π2/9.
Eternal inflation takes place ifφs < φ5D which yields
the condition,λ > (1/8)(3/4π)7/4m3/2. In the stan-
dard inflationary scenario observations require t
m � 10−13 GeV = 10−6M4. Thus for realistic values
of m eternal inflation takes place on the brane in
low energy regime, as long asλ > 2π2/9. However,
note that inflation as well as self-reproduction tak
place at field values larger than the four-dimensio
Planck scale.

In the high energy limit,V � λ, the quadratic term
in the Friedmann equation dominates,

(3.4)H 2 � 8π

3

V 2

2λ
.

Inflation is assumed only to take place in the h
energy regime. The end of inflation is determined
by the last two terms in the condition (2.6), 5φ̇2 =
2V , implying, φe = (5/3π)1/4λ1/4m−1/2. The lower
boundary for eternal inflationφs is given by

φs =
(

12

π

)1/10

λ3/10m−4/5.

Out of the two inequalitiesφe < φ5D andφs < φ5D it
is found that the first one provides the stronger bo
on the brane tensionλ, namely,λ > 8 × 10−6m6.
An upper bound onλ is found by requiring tha
V (φe)/2λ > 1, implyingλ < 3 × 10−3m2. As shown
in [5] in the limit of strong brane corrections th
COBE normalization of the curvature perturbatio
put a bound onm, which can be written in units o
M4 as,m ∼ 6× 10−5λ1/6. This impliesφe ∼ 102λ1/6,
φs ∼ 3× 103λ1/6, andφ5D ∼ 4× 104λ1/6. Thusφe <

φs < φ5D and eternal inflation takes place for values
m derived from observations. As already pointed
in [5], the 5D Planck boundaryφ5D is below the 4D
Planck scale,M4. Thus eternal inflation takes place
field values belowM4.

For a certain range of parameters eternal infla
takes place inside the low energy and inside the h
energy regime on the brane. In this case dom
reproduce themselves. Since it was assumed
the inflationary period is either in the low or
the high energy regime the dynamics of each
them will be determined by the characteristics of
regime that they are originating from. However,
could also be considered that a domain starts in
low energy regime and then due to the process
stochastic inflation, field values in successive doma
reach such high values that strong brane correct
become important. Thus, in this case the Friedm
equation on the brane changes from Eq. (3.3)
Eq. (3.4). In order for this to happen, one has
require that eternal inflation takes place in the l
energy regime. Furthermore, the 5D Planck bound
has to be in the high energy regime. This impl
that the brane tension has to satisfy,λ < 2π2/9.
In this case, out of a low energy domain, doma
with the low energy characteristics emerge as w
as those with the high energy dynamics. This pict
is similar to the model proposed in [9] where t
space–time dimension can change locally in chaotic
eternal inflation. In this case, on the brane there
regions in which the dynamics are determined by
high energy Friedmann equation (3.4) and there
domains in which the Friedmann equation is the l
energy one (3.3).

4. Stochastic description

The stochastic nature of the effect of the co
petition between the classical rolling down and
quantum perturbations is captured by a Fokker–Pla
equation [10]. The (classical) fieldφ is performing
a Brownian motion described by a Langevin eq
tion, [1,2]

(4.1)
d

dt
φ = − V ′(φ)

3H(φ)
+ H 3/2(φ)

2π
ξ(t),

where ξ(t) describes the white noise due to t
quantum fluctuations, which causes the Brown
motion of the classical fieldφ.

The probability distributionPc(φ, t) determines the
probability to find a given value of the fieldφ at a
given time at a given point. This is the probabil
distribution over a comoving coordinate volume, i.
over a physical volume at some initial moment
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inflation.Pc(φ, t) is determined by the equation [2],

∂Pc

∂t
= ∂

∂φ

[
H 3(1−β)(φ)

8π2

∂

∂φ

(
H 3β(φ)Pc

)
(4.2)+ V ′

3H(φ)
Pc

]
.

The parameterβ encodes an ambiguity in the deriv
tion of this equation for systems for which the diff
sion coefficient depends onφ. β = 1 corresponds to
the Itô version of stochastic analysis andβ = 1/2 to
the Stratonovich version [10]. An exact stationary
lution, for which ∂Pc/∂t = 0, can be found for the
Hubble parameter given by Eq. (2.4), namely,

Pc(φ) =
(

8π

3

)−3β/2

V −3β/2
[
1+ V

2λ

]−3β/2

(4.3)×
[
1+ 2λ

V

]−3/8λ

exp

[
3

8V

1+ V
λ

1+ V
2λ

]
.

In the low energy regime,V � λ, this reduces to the
well-known expression [2]

(4.4)Pc ∼ V −3β/2(φ)exp

(
3

8V (φ)

)
.

Considering the high energy regime,V � λ, the
stationary distributionPc(φ) approaches,

(4.5)Pc(φ) �
(

4π

3

)−3β/2(
V 2

λ

)−3β/2

exp

[
λ2

2V 3

]
.

It is interesting to compare the expression for the
tionary probability distribution (4.3) with the probab
ity for creation of a braneworld from nothing. This
described by the de Sitter brane instanton [11]. T
probability for creation of a universe in the Hartle
Hawking no-boundary proposal [12] is given by,P ∼
exp(−SE), with SE the Euclidean action. In the cas
of the creation of a braneworld containing just one
Sitter brane in an AdS bulk, the Euclidean action,
the notation used here, is given by [11],

(4.6)SE = − π

H 2

(
1+ V

λ

)
.

Using the expression for the Hubble parameter on
brane (2.4) the nucleation probability of a de Sit
braneworld is given by

(4.7)P ∼ exp

(
3

8V

1+ V
λ

1+ V

)
.

2λ
Thus comparing the exponentials in the station
probability distributionPc (4.3) and in the probability
distributionP (4.7) it is found that they are exactly th
same. Therefore, the same coincidence between t
two probability distributions appears as is the case
standard four-dimensional inflation [2].

Pc(φ, t) is the probability distribution in a comov
ing volume, neglecting the expansion of the univer
The probability distributionPp(φ, t) in a proper vol-
ume takes into account that during a small time in
val dt the total number of points associated with t
field φ is additionally increased by a factor 3H(φ)dt .
Thus this leads to the following equation [1,8]

∂Pp

∂t

= ∂

∂φ

[
H 3(1−β)(φ)

8π2

∂

∂φ

(
H 3β(φ)Pp

) + V ′

3H(φ)
Pp

]
(4.8)+ 3H(φ)Pp(φ, t).

In order to solve this equation it is convenient to ma
the ansatz [2]

(4.9)

Pp(φ, t) =
∞∑

s=1

eλstπs(φ) ∼ eλ1tπ1(φ) for t → ∞.

For large timest → ∞ only the largest eigenvalu
is kept. In the high energy regime brane effe
are dominant and the deviations from standard
inflation are the largest. Therefore, in the followin
the probability distributionPp will be discussed for an
inflationary period entirely in the high energy regim
Thus the Hubble parameter is given by (3.4). Toget
with this and (4.9) equation (4.8) yields to

π ′′
1 +

[
9

φ
+ 24

λ2

m6

1

φ7

]
π ′

1

(4.10)

+
[

15

φ2
+ 72π

λ

m4

1

φ4
− 8π2

(
π

3

)−3/2

λ1
λ3/2

m6

1

φ6

− 24
λ2

m6

1

φ8

]
π1 = 0,

whereβ = 1/2. The boundary conditions onPp are
equivalent to those in the standard four-dimensio
case [2]. There is no diffusion below the end
inflation, which implies

∂

∂φ

(
H 3/2(φ)Pp

)
φe

= 0,
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Fig. 1. (a) shows the numerical solution forπ1(φ) for λ = 10−8, m = 1.9×10−2, λ1 = 0.417. (b) showsπ1(φ) for λ = 10−8, m = 3.4×10−2,
λ1 = 0.316. (c) showsπ1(φ) for λ = 2× 10−7, m = 3.4× 10−2, λ1 = 0.666.
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and inflation stops at the (5D) Planck boundary, th
Pp(φ5D) = 0. This imposes the following condition
onπ1(φ),

(4.11)π ′
1(φe) = − 3

φe

π1(φe), π1(φ5D) = 0.

Numerical solutions have been plotted in Fig. 1.
Fig. 1, the probability distribution shows a maximu
in all cases. For larger values ofm at constant bran
tension λ it is shifted towards smaller field value
φ. For larger values ofλ at constantm it is shifted
towards higher field valuesφ, concentrated very clos
to the 5D Planck boundary. The eigenvalueλ1 can
be related to the fractal dimension of the univer
dfr , defined asdfr = λ1/Hmax [2,13], whereHmax is
the maximal Hubble parameter at the five-dimensio
Planck boundary. The fractal dimension is motiva
by the observation that at the Planck boundary the t
volume of inflationary domains does not grow ase3

during a time intervalH−1
max but only as exp(λ1/Hmax).

Some domains will reach energies beyond the Pla
scale and thus drop out of the total volume. On
brane in the high energy regime the maximal Hub
parameter at the 5D Planck boundary is given by

Hmax=
(

4π

3

)7/6

λ1/6.

Thus the numerical examples in Fig. 1 have frac
dimensions much below 3.

Before closing this section some comments
possible non-perturbative effects in eternal inflat
will be made. Linde et al. argued in [8] that
eternal inflation fluctuations with amplitudesδφ much
larger thanH/2π could occur. They calculated th
probability distribution forδφ using proper time a
time coordinate and found that a typical fluctuati
could have an amplitude much larger than the stand
value ofH/2π .

However, as was pointed out by Vilenkin [14] (s
also [15]) this result depends critically on the cho
of time parametrization, namely, on the use of pro
time. Using the scale factor as time parameter le
to the standard result. In this case the probab
distribution forδφ yields a nonzero mean value〈δφ〉
which is much smaller thanH/2π .

In the case of eternal inflation on the brane o
is faced with the same problem of choice of tim
parametrization. As can be shown easily calcula
the probability distribution forδφ using proper time
as time coordinate following [8] favours an amplitu
δφ much larger thanH/2π .

However, calculating the probability distributio
with the scale factor as time coordinate following [1
leads to〈δφ〉/σ � 1, with σ = H/2π , as is the case
in standard 4D eternal inflation.

5. Conclusions

The stochastic approach to standard 4D inflat
and its variations opened the way to a rich glo
structure of an inflating universe. Here the stocha
approach to inflation has been applied to a branewor
model, namely, to chaotic inflation on the brane
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has been shown that eternal inflation takes place f
certain range of parameters, and in particular, for th
satisfying observational bounds.

The competition between the evolution towar
smaller field values due to classical dynamics and
evolution towards either even smaller or higher fi
values can be described as a Brownian motion. Th
exists a well defined procedure to obtain a Fokk
Planck equation determining the probability distr
ution to find a certain value of the scalar field a
given point in space–time. Furthermore, there are
types of probability distributions. Firstly, the probab
ity distributionPc in a given comoving volume. Sec
ondly, the probability distributionPp in a given phys-
ical volume, which takes into account the expans
of the universe. In standard 4D chaotic inflation, ap
from some prefactors, the dominant behaviour is
termined by an exponential function, which is exac
the square of the Hartle–Hawking no-boundary wa
function of the universe. In the braneworld scena
discussed here, a similar result was found. Com
ing the expression forPc found in the stochastic ap
proach to chaotic inflation on the brane with the
Sitter brane instanton for a one brane system as
culated in [11], apart from some prefactors, the sa
exponential function was found in the two cases.

The probability distribution in a given physic
volume,Pp , was calculated numerically in the hig
energy regime where brane effects dominate.
results are similar to the ones in standard 4D inflat
with the distribution concentrated near the 5D Plan
boundary.

Finally, possible non-perturbativeeffects and the
sue of determining probability distributions in etern
inflation on the brane were briefly discussed.
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