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Abstract

Chaotic inflation on the brane is considered in the context of stochastic inflation. It is found that there is a regime in
which eternal inflation on the brane &#place. The correspondingopability distributions a& found in certain cases. The
stationary probability distribution over a comoving volume and the creation probability of a de Sitter braneworld yield the same

exponential behaviour.

0 2004 Published by Elsevier B.¥pen access under CC BY license,

1. Introduction

The global structure of many four-dimensional in-
flationary universes is very rich [1,2]. Self-repro-
duction of inflationary domains leads to a universe
consisting of many large domains. In each of these
domains there can be different realizations of the in-
flationary scenario. This property of standard infla-
tion alleviates the problem of fine tuning in inflation.
The process of self-reproduction of inflationary do-
mains leads globally to eternal inflation, namely, there
is at least one inflating region in the universe. Self-
reproduction of inflationary domains can be under-

There is an interesting coantion between the sto-
chastic approach to inflation and quantum cosmol-
ogy. The probability of finding the universe in a
state characterized by certain parameters assuming
the Hartle—Hawking no-boundary condition yields the
same exponential behaviour as the stationary prob-
ability distribution in a comoving volume derived
from stochastic inflation. This is the case for standard
chaotic inflation. As it turns out this also holds for
chaaotic inflation on the brane.

The idea that the universe is confined to a brane em-
bedded in a higher-dimeiomal bulk space—time has
received much attention in recent years. In the one

stood as a branching diffusion process in the space of brane Randall-Sundrum scenario the brane is embed-

field values of the inflaton. The probability distribu-
tions found in such a way wiljive the pobabilities of
finding a certain field value at a certain point in space—
time.

E-mail addresses: kkunze @majestix.physik.uni-freiburg.de,
kerstin.kunze@physik.uni-freiburg.de (K.E. Kunze).

ded in a five-dimensional bulk space—time with neg-
ative cosmological constams [3,4]. Chaotic infla-
tion on the brane in this setting has been investigated
in [5=7]. The form of the spectrum of perturbations
is modified due to the modified dynamics at high ener-
gies. Therefore, it seems to be interesting to investigate
stochastic inflation on the brane.
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2. Inflation on the brane

In a braneworld scenario 4D Einstein gravity is

3. Eternal inflation on the brane

The evolution of a scalar field in an inflationary

recovered on the brane with some corrections at universe is determined by two contributions. On the
high energies. Furthermore, there are corrections duepne hand, there is the classical rolling down of the

to the gravitational intexction with the bulk space—
time. Assuming a fine tuning between the brane
tension and the bulk cosmological constati leads

to the vanishing of the 4D cosmological constant
on the brane. Neglecting contributions from the dark
radiation term, this leads to the following Friedmann
equation on the brane [5,6]
8 0
3M§p (1+ 2A>’
where p is the energy density on the brane,the
(positive) brane tension andy the four-dimensional
Planck mass. This is related to the five-dimensional
Planck mas3/s5 by

(D)

4

Assuming that matter on the brane is dominated by
a scalar fieldp, confined to the brane, with potential
V(¢), its equation of motion is given by

H?= (2.1)

Mgy = (2.2)

¢+3HG+V'($)=0 (2.3)

In the slow roll approximation,
8 Vv

H?~—v(1+—), 2.4
3M2 ( +2,\) (2:4)
V/

~——, 25

T (25)

For A — oo the usual Friedmann equation is recov-
ered. ForV > A brane effects dominate.

Inflation takes place if the Hubble parameter satis-
fies|H| < H2. In a braneworld with matter given by a
scalar field the condition for inflation yields to [5]

% +2v

g (-

In the following, the potential of the inflaton will be
taken to be of the form,

-V 4+ — 2V) <0. (2.6)

m2¢2.
Furthermore, for convenience, everything will be ex-

pressed in four-dimensional Planck units, hence
My=1.

2.7)

scalar field down its potential. On the other hand, there
are quantum fluctuations of the inflaton which become
classical outside the horizon. This latter contribution
can have either positive or negative sign. The classical
rolling down is given by,A¢ ~ $At, where in the
slow roll approximationp is given by¢ ~ —V’/3H.

The amplitude of a quantum fluctuation is given
by 8¢ = H/2x. In a typical time intervalH 1

¢3 new domains appear eadontaining an almost
homogeneousfield — A¢ + 8¢ [2]. There is a critical
valueg; for which for all¢ > ¢, quantum fluctuations
dominate over the classical evolution towards smaller
field values. This is the regime of self-reproduction of
inflationary domainsg, is determined by [8]

2 V'’

sy -1
. .
3 H3|y—p,

(3.1)

For field valuesp > ¢, there will be domains in which
guantum jumps lead to an increase in the field value of
the inflaton. In a small percentage of domains this will
lead to the maximal field value at which inflation takes
place. The upper boundagysp in this braneworld
model is determined by the five-dimensional Planck
boundary. For energies higher th¥ltigsp) = Mé the
scalar field becomes deconfined and flows off the
brane into the bulk [6]. As in the four-dimensional case
inflation will stop at this boundary. Here one might
argue that inflation on the brane stops since the scalar
field is flowing off the brane and thus four-dimensional
inflation can no longer be sustained on the brane. Thus
the upper boundary is given by

¢s5D = «/5(4—” (3.2)

3

In the low energy regimey « A the Friedmann
equation on the brane reduces to the standard one,

8
-3

It will be assumed that the whole period of infla-
tion takes place in the low energy regime. The end
of inflation ¢, is determined by the first two terms

>1/3 51/3

m

H?~—V. (3.3)
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in (2.6), $2 = V, which yields, ¢, = 1/+/67. Fur-
thermoreg, < ¢sp impliesi > (127)~%/2(3/4m)m3.
The lower boundary for self-reproductign is given

by
3\
167 ’

The requiremenV /2x < 1 at¢sp impliesi > 272/9.
Eternal inflation takes place i, < ¢sp which yields
the condition,x > (1/8)(3/47)"/*m®2. In the stan-
dard inflationary scenario observations require that
m ~ 10~13 GeV = 10-6M4. Thus for realistic values
of m eternal inflation takes place on the brane in the
low energy regime, as long as> 272/9. However,
note that inflation as well as self-reproduction takes
place at field values larger than the four-dimensional
Planck scale.

In the high energy limity > A, the quadratic term
in the Friedmann equation dominates,

bs

2. 87 V2
T3
Inflation is assumed only to take place in the high
energy regime. The end offlation is determined
by the last two terms in the condition (2.6)p5=
2V, implying, ¢. = (5/37)Y*1Y4m=1/2, The lower
boundary for eternal inflatiog is given by

12\ 1/10
(_) 33/10,,-4/5
T

(3.4)

b5

Out of the two inequalitie®, < ¢sp andes < ¢sp it
is found that the first one provides the stronger bound
on the brane tensioi, namely,» > 8 x 10~ %m5.
An upper bound om is found by requiring that
V(pe)/21 > 1, implying » < 3 x 10-3m2. As shown
in [5] in the limit of strong brane corrections the
COBE normalization of the curvature perturbations
put a bound onn, which can be written in units of
My as,m ~ 6 x 10~°11/6_ This implies¢p, ~ 10°11/6,
¢s ~ 3 x 10°AY/®, andgsp ~ 4 x 10*AY/®. Thusg, <
¢s < ¢sp and eternal inflation takes place for values of
m derived from observations. As already pointed out
in [5], the 5D Planck boundargsp is below the 4D
Planck scaleM4. Thus eternal inflation takes place at
field values below,.

For a certain range of parameters eternal inflation

energy regime on the brane. In this case domains
reproduce themselves. Since it was assumed that
the inflationary period is either in the low or in
the high energy regime the dynamics of each of
them will be determined by the characteristics of the
regime that they are originating from. However, it
could also be considered that a domain starts in the
low energy regime and then due to the process of
stochastic inflation, field values in successive domains
reach such high values that strong brane corrections
become important. Thus, in this case the Friedmann
equation on the brane changes from Eqg. (3.3) to
Eq. (3.4). In order for this to happen, one has to
require that eternal inflation takes place in the low
energy regime. Furthermore, the 5D Planck boundary
has to be in the high energy regime. This implies
that the brane tension has to satisfy,< 272/9.

In this case, out of a low energy domain, domains
with the low energy characteristics emerge as well
as those with the high energy dynamics. This picture
is similar to the model proposed in [9] where the
space—time dimension canaige locally in chaotic
eternal inflation. In this case, on the brane there are
regions in which the dynamics are determined by the
high energy Friedmann equation (3.4) and there are
domains in which the Friedmann equation is the low
energy one (3.3).

4. Stochastic description

The stochastic nature of the effect of the com-
petition between the classical rolling down and the
guantum perturbations is captured by a Fokker—Planck
equation [10]. The (classical) field is performing
a Brownian motion described by a Langevin equa-
tion, [1,2]

1 3/2
dy_ V@  HY@)
dt 3H () 2
where &(¢) describes the white noise due to the
quantum fluctuations, which causes the Brownian
motion of the classical fielg.

The probability distributiorP, (¢, ) determines the
probability to find a given value of the field at a
given time at a given point. This is the probability
distribution over a comoving coordinate volume, i.e.,

£(1), (4.1)

takes place inside the low energy and inside the high over a physical volume at some initial moment of
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inflation. P.(¢, t) is determined by the equation [2],

P 3 [H3IP(p) 0, s

e e g wr)
—_p| 4.2
" 30 ] (+2)

The parameteg encodes an ambiguity in the deriva-
tion of this equation for systems for which the diffu-
sion coefficient depends af. 8 = 1 corresponds to
the Itd version of stochastic analysis afid= 1/2 to
the Stratonovich version [10]. An exact stationary so-
lution, for which d P./d¢r = 0, can be found for the
Hubble parameter given by Eq. (2.4), namely,

g7\ ~3/2 v 1-38/2
PC(¢)=<?> 14 35/2[1+5]

20"/ 31+%
1+ = exp| — . (43
x [ + v] P gy 1+ (4-3)
In the low energy regimey « A, this reduces to the
well-known expression [2]

P~ V=2 (g) exp( (4.4)

@)
8V (¢)
Considering the high energy regim&, > A, the
stationary distributiorP.(¢) approaches,

A\ -BI2 2\ <32 [ 52
PC<¢):(?”) (7) exp|:2—V3}. (4.5)

It is interesting to compare the expression for the sta-
tionary probability distribution (4.3) with the probabil-
ity for creation of a braneworld from nothing. This is
described by the de Sitter brane instanton [11]. The
probability for creation of a universe in the Hartle—
Hawking no-boundary proposal [12] is given 13y,~
exp(—Sg), with Sg the Euclidean action. In the case
of the creation of a braneworld containing just one de
Sitter brane in an AdS bulk, the Euclidean action, in
the notation used here, is given by [11],

(1+7).

A

T

Se=——> (4.6)

Thus comparing the exponentials in the stationary
probability distributionP, (4.3) and in the probability
distribution’P (4.7) itis found that they are exactly the
same. Therefore, the same coincidence between these
two probability distributions appears as is the case in
standard four-dimensional inflation [2].

P.(¢, ) is the probability distribution in a comov-
ing volume, neglecting the expansion of the universe.
The probability distributionP, (¢, ¢) in a proper vol-
ume takes into account that during a small time inter-
val dt the total number of points associated with the
field ¢ is additionally increased by a factoH3¢) d:.
Thus this leads to the following equation [1,8]

P,
o1
o [H3P(P) 0 s 14
a¢[Ta¢<H @Pr)+ 3H<¢>P”]
+3H(¢) Pp(. 1). (4.8)

In order to solve this equation it is convenient to make
the ansatz [2]

o0
Py(¢. 1) = eM'my(¢) ~ Mmi(¢) fort — oo.

s=1 (4.9)
For large timest — oo only the largest eigenvalue
is kept. In the high energy regime brane effects
are dominant and the deviations from standard 4D
inflation are the largest. Therefore, in the following,
the probability distributionP, will be discussed for an
inflationary period entirely in the high energy regime.
Thus the Hubble parameter is given by (3.4). Together
with this and (4.9) equation (4.8) yields to

9 221
”“[¢+24 6¢7] /
15 N il =32 5324
221
Y g]’” —o, (4.10)

whereg = 1/2. The boundary conditions oA, are

Using the expression for the Hubble parameter on the equivalent to those in the standard four-dimensional

brane (2.4) the nucleation probability of a de Sitter
braneworld is given by

)

3 1+
~ ex
" p(8V1+2A

4.7

case [2]. There is no diffusion below the end of
inflation, which implies

H¥?(¢)Py), =0,

a¢>(
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(2) (b)
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Fig. 1. (a) shows the numerical solution foy(¢) for A = 1078, m = 1.9x 1072, A1 = 0.417. (b) showsrq(¢) for A = 1078, m =3.4x 1072,
A1 = 0.316. (c) showsry(¢) for A =2 x 10~7, m = 3.4 x 1072, A1 = 0.666.

and inflation stops at the (5D) Planck boundary, thus
P,(¢sp) = 0. This imposes the following conditions

onmi(e),

m1(¢sp) = 0. (4.11)

—iﬂ (¢e)
¢e 1 e/s

Numerical solutions have been plotted in Fig. 1. In
Fig. 1, the probability distribution shows a maximum
in all cases. For larger values ef at constant brane
tension A it is shifted towards smaller field values
¢. For larger values of. at constantx it is shifted
towards higher field valueg, concentrated very close
to the 5D Planck boundary. The eigenvalug can

be related to the fractal dimension of the universe,
dir, defined asfy = A1/ Hmax [2,13], where Hmax is

the maximal Hubble parameter at the five-dimensional
Planck boundary. The fractal dimension is motivated
by the observation that at the Planck boundary the total
volume of inflationary domains does not grow &5
during a time interval; 1 but only as exph1/ Hmax)-

71 (¢e) =

eternal inflation fluctuations with amplitudég much
larger thanH /27 could occur. They calculated the
probability distribution foré¢ using proper time as
time coordinate and found that a typical fluctuation
could have an amplitude much larger than the standard
value of H /27 .

However, as was pointed out by Vilenkin [14] (see
also [15]) this result depends critically on the choice
of time parametrization, namely, on the use of proper
time. Using the scale factor as time parameter leads
to the standard result. In this case the probability
distribution for§¢ yields a nonzero mean valyégp)
which is much smaller thai /2.

In the case of eternal inflation on the brane one
is faced with the same problem of choice of time
parametrization. As can be shown easily calculating
the probability distribution fos¢ using proper time
as time coordinate following [8] favours an amplitude
3¢ much larger tharH /27 .

However, calculating the probability distribution

Some domains will reach energies beyond the Planck with the scale factor as time coordinate following [14]

scale and thus drop out of the total volume. On the
brane in the high energy regime the maximal Hubble
parameter at the 5D Planck boundary is given by

7/6

Thus the numerical examples in Fig. 1 have fractal
dimensions much below 3.

Before closing this section some comments on
possible non-perturbative effects in eternal inflation
will be made. Linde et al. argued in [8] that in

leads to(8¢) /o « 1, witho = H/2m, as is the case
in standard 4D eternal inflation.

5. Conclusions

The stochastic approach to standard 4D inflation
and its variations opened the way to a rich global
structure of an inflating universe. Here the stochastic
approach to inflation hasslen applied to a braneworld
model, namely, to chaotic inflation on the brane. It
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smaller field values due to classical dynamics and the
evolution towards either even smaller or higher field

values can be described as a Brownian motion. There Refer ences

exists a well defined procedure to obtain a Fokker—
Planck equation determining the probability distrib-
ution to find a certain value of the scalar field at a
given point in space—time. Furthermore, there are two
types of probability distributions. Firstly, the probabil-
ity distribution P, in a given comoving volume. Sec-
ondly, the probability distributior®, in a given phys-
ical volume, which takes into account the expansion
of the universe. In standard 4D chaotic inflation, apart
from some prefactors, the dominant behaviour is de-
termined by an exponential function, which is exactly
the square of the Hartle—Hawking no-boundary wave-
function of the universe. In the braneworld scenario
discussed here, a similar result was found. Compar-
ing the expression foP, found in the stochastic ap-
proach to chaotic inflation on the brane with the de
Sitter brane instanton for a one brane system as cal-
culated in [11], apart from some prefactors, the same
exponential function was found in the two cases.

The probability distribution in a given physical
volume, P,, was calculated numerically in the high
energy regime where brane effects dominate. The
results are similar to the ones in standard 4D inflation

. L [12] J.B. Hartle, S.W. Hawking,
with the distribution concentrated near the 5D Planck [13] M. Aryal, A. Vilenkin, Phys. Lett. B 199 (1987) 351.

[14] A. Vilenkin, Phys. Rev. D 52 (1995) 3365;

boundary.

Finally, possible non-perturbative effects and the is-
sue of determining probability distributions in eternal
inflation on the brane were briefly discussed.
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