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This paper proceeds in two directions of attack for finding (iteratively) 

solutions for linear systems on Hilbert space. First, we consider scalar- 

dependent overrelaxation as a special case of operator-dependent overrelasa- 

tions. Secondly, we study “finer” splittings than the conventional two-part 

splittings and show where, in some cases, these new splittings can either 

accelerate convergence of approximating sequences derived from two-part 

splittings or else turn divergent sequences into convergent ones. 

1. INTR~DUCTJON 

Given the linear system 

where A is an invertible operator on Hilbert space 2 and J, is fixed in 2. 

To solve for x, we may split A into the two-part sum A = A, -+ iz, , where 

-4, is an invertible operator on 2, and define the sequence of vectors {s,J 

recursively by 

A&+1 + *&&l = yo , ?I? = 0, I, 2 ,.... V.2) 

Once we fix the initial vector x,, , the sequence (xJ is uniquely defined (owing 

to the invertibility of Al). We observe that if {x~} converges at all in X, its 

limit is necessarily the solution vector X, for the system (1.1). We note that 

the sum decomposition (1.2) embraces the classical Gauss-Seidel iterative 

scheme (-4 is an m x m matrix, A, is the upper triangular part of A), the 

successive overrelaxation (SOR) method (A is an m x m matrix, A, equals 

the lower triangular part of A plus or minus a certain fraction of the diagonal 

part of A), and the regular splittings of Varga [8, Section 3.6; 91 (A is an 

m x m matrix, Ayl and --4, are matrices with nonnegative entries). In all 

cases, convergence obtains for (xn} defined by ( 1.2) for all initial vectors 

x0 , if and only if the spectral radius of B = -L4;1A, is less than 1. 
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314 JOHN DE PILLIS 

In this paper, we consider /z-part splittings 

A = A, + ‘4, + .” + d, (1.3) 

for A given in (I. l), where -4, is required to be invertible. Accordingly, once 
we are given k - 1 initial vectors x”, .~t ,..., JC,~_~ , the sequence {xn) is 
uniquely defined (owing to the invertibility of 9,) by 

for n = 0, 1 7 , a,... . 
We find necessary and sufficient conditions for the k-part splitting (1.3) 

to guarantee convergence of the sequence {x~) defined by (1.4) for all sets of 
initial vectors {2c0 , x1 ,..., X&. 

After some preliminary definitions and theorems, Section 2 identifies 
convergence of a sequence {.Y.~} induced by a R-part splitting, with convergence 
of a related sequence {Z.J induced by a certain two-part splitting. This 
straightforward result appears as Proposition 2.4. 

Section 3 deals exclusively with four-part splittings 

for hermitian operator -4. II’e assume the coefficient matrices -Jr , -I,, -4, , 

-4, 7 are constrained in such a way that a certain operator-entried matrix is 
positive definite. (This does not necessarily imply that -4 must be positive 
definite.) Then a test matrix exists whose positive definiteness is equivalent 
to convergence of (r,} of (1.4) regardless of initial vectors {x0, .~r , .~a} 
(Theorem 3.2). \I’ith further constraints on the coefficient matrices, positive 
definiteness of our test matrix (hence, convergence of (xn)- to the solution 
vector .Y for ds = ~a) is equivalent to positive definiteness of rZ itself (Theo- 
rem 3.3). 

Section 4, concerning three-part splittings, reveals a necessary restriction 
on hermitian -4 = 9, + nl, + -4, . As in the case of four-part splittings, 
we assume the coefficient matrices -4, , d, , Zz, constrained so that a certain 
operator-entried matrix is positive definite. For these three-part splittings, 
convergence is equivalent to saying that r2 is positive definite (Theorem 4.2). 

Section 5 introduces the notion of an operator parameter successive over- 
relaxation @OR) decomposition (OPSORD ?) for three-part (hence, for 
two-part) splittings of hermitian operator ;2. We answer the question: 
Under what conditions will a family of these overrelaxation three-part 
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decompositions yield convergent sequences {x~) ? Theorem 5.2 is our most 
general result in this direction. A specialization of Theorem 5.3 is a recent 
theorem of Donelly [3, Theorem 2.11, which appears here as Theorem 5.4. 
In Donnelly’s paper, he studies positive definite iz and certain “periodic 
schemes,” embodied in three-part scalar-parameter overrelaxation decom- 
positions. Donnelly’s paper is, in turn, a generalization of certain results of 
Chazin and Miranker [I]. 

Section 6 deals with three-part splittings that improve convergence over 
corresponding two-part splittings, even when 9 is not hermitian. That is, if 
:x0 , .q’r . . . . xn’> arises from the splitting rl = J, -t &‘, and {x,, , xU , s2 ,..., 
x n ,...I ‘. arises from the splitting =1 = -4Lz1 + =2, + A, (invertible -4, is fixed in 
both splittings), can PI, be chosen so that {x~} converges faster than {x,‘> ? We 
answer the question affirmatively in Theorem 6.3, where we show that if the 
spectrum of A;lA, lies in the circle {z: 1 z - 1 / < 2) and {W~.TL’). diverges, 
then ~4, may be found so that C.r-1 converges (Case A). Also, the average 
reduction factor u’(m) for {.T,~‘}, after m iterations, has (generally) 
li(.-l;‘-a,‘),, /Irkmr as an upper bound. Theorem 6.3 also shows that if the real 
part of the spectrum of B;‘rl,’ 1s nonnegative, then the average reduction 
factor U(WZ), for the three-part splitting sequence {zc~), has an upper bound, 
which is about half that for u(m). 

Section 7 presents an example illustrating the techniques of Section 6. 

2. PRELIMINARIES AND DEFINITIONS 

Our linear system -4~ = y,, is defined for bounded linear operator =1 on 
Hilbert space 2. The algebra of all bounded linear A on L@ is denoted 
B(s). ,4 * denotes the adjoint of A as defined by the inner product ( , ) on 2. 
In the matrix case, if &4 = (Q), then A* = (gji), the conjugate transpose of -4. 
Those hermitian A (i.e., &4 =: A *) such that for some 6 > 0, (Ax, x) 3 6 for all 
unit vectors s E Z, are called positive definite. This is denoted by A > 0. 
Since A > 0 if and only if A = B*B for some invertible B EZ%~(%‘), A > 0 if 
and only if, for all X invertible in 9(Z), X*.4X > 0. The operator X*rlX 
is said to be hermitian conjugate to A as long as X is ivertible in g(Z). 
&(J + rl*) is called the real part of d and is denoted Re(A). For integer k, 
@“x denotes the direct sum of Hilbert space Z with itself k times, with 
induced inner product defined by ((x1 ,-.., .Tk), (y1 ,...,y,)) = z;=, <Xi 9 Yi> 
for all (xi ,..., x,), (yl ,..., yk) E 0” 2. 

For convenience, we state those results that we will use later. The first of 
these was proven by Stein for matrices [7]. 
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THEOREM 2.1 (Stein [7]; see also [2, Theorem 2.1; 5, Theorem 3. I]). Let 
‘4 = *4* and B belong to 9(X). Suppose that 

T(A) = A - B*AB > 0. 

Then ad > 0 if and only if p(B), the spectral radius of B, is less than one. 

Since positive definiteness is preserved under hermitian conjugacy, a 
useful result will be the following. 

THkOREnI 2.2 (de pilhs [?, proposition 4.1)]. Let .-J = A* == il, + A,, 
-4, A, , A, E&~(X). Let B -= --.4;lAJ2 Then T(A) = rl - B*AB is hermi- 
tian conjugate to Al* - -& = 2Ke(A,) - =2. 

\Ye conclude this section with the identification between two-part split- 
tings on the direct sum 2 EI X 8 ... @S = Gkml ST, R-part splittings 
on 2. 

For the k-part splitting d = A1 + -4, T ... + --I,, define the induced 
linear operator C? on Elk-l 2 by the matrix 

where --I1 , --Jri are linear operators on 2, C is an invertible linear operator on 
@j1.m2 X, and B, , B, are linear maps sending @“ma 2 to X, whose sum is 
the matrix 

B, + B, = [&I, ... A,_,], 

where B, + B, is the transformation 

k-1 
[.4,-d, ... A,-,]: (.Yn-l , .Y,-% )...) .q--k+2) --+ 1 Aj.v,-f+l 

id2 

(2.2) 

Remark. It is important to note that (2.1) yields noncorresponding 
partitioning. By way of illustration, let .4 be an n K n matrix (so that the 
dimension of H is n). The induced 02 of (2.1) acts on the (k - 1) . (n)- 
dimensional vector space @“p’ GZ?. But note that A, and A, are each n x n 
matrices, while B, and Bz are both n x (k - 2) n matrices. Accordingly, 
(2.2) is that n i< (k - 2) . n matrix constructed by a “side-by-side union” of 
the k - 2 matrices A, , A, ,..., L 4 _ 1. i , each of which is n y: n. 

Remark. As the referee has observed, methods based on k-part splittings, 
or “linear stationary methods of kth degree,” can be found in [4, p. 214; 
10, Chap. 16; 8, p. 1541. In fact, in [8] a reduction from k = 3 to k = 2 is 
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established. Our method differs from each of these in that we are not neces- 
sarily restricted to those tools peculiar to the finite-dimensional workshop, 
e.g., the Jordan normal form and the determinant. In fact, we may note, as 
the referee has pointed out, that convergence obtains for our k-part splittings 
in finite dimensions if and only if the solutions of 

det(PlA, + P2A, + ... + &) = 0 

all lie inside the unit circle of the complex plane, but this fact does not serve 
us for infinite dimensions. 

Remark. For typographical reasons, vectors of ok‘* X are written 
horizontally, e.g., as x = (~,-i, x,-a ,..., .v+& following (2.2). To be 
consistent with more standardized notation of finite dimensions, we may think 
of these horizontal displays as vertical, or column vectors X; thus the notation 
Ax may be viewed as matrix multiplication of matrix A with column vector x. 

With the terminology of (2.1) and (2.2) in hand, we immediately obtain 
the proposition that establishes the imbedding of k-part splittings into a 
two-part split system. 

PROPOSITION 2.3. Suppose invertible linear operator 

A = A, + A, + ... + A, ) 

where =1, is invertible. Given k - 1 initial vectors x,, , x1 ,..., xLe2 , k > 2, 
and its induced sequence {x~} defined by (1.4), i.e., xF=, Ali~+~+~ -= yO , 
n = k - 1, k, k + I ,.... Then 

(2.3) 

where 

zvl = (x,+.+-2, %+s-3 ,.a., &a), 71 = 0, 1, 2 ).... 

1; = (Yo > 0,-v 0) are vectors in ok-’ x. Accordingly, given an arbitrary 
initial (column) vector Z, = (xkm2 , xx--S ,..., x0) E @“-’ s?, (Z,}: is that 
unique sequence generated by Z,, relative to the two-part splitting (2.3) of linear 
operator Gsl acting on @-l SF. 

Proof. Verification. 
An immediate consequence is 

PROPOSITION 2.4. The sequence {Z,, 1 in @“-‘% dejned by the two-part 
splitting (2.3) of the operator 02 converges to the solution X of the linear system 

ax = Y. 
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for all initial (column) vectors 2, = (xlim2 , xkp3 ,..., x0) if and only if the 
sequence {JE,} in x dejined by the k-part splitting (1.4) of operator d converges to 
the solution vector x of the linear system 

Ax=yO 

for all initial vectors x0 , x1 ,..., sILp2 in 2. 

Proof. Immediate from Proposition 2.1. 
The following conjugacy result will prove useful. 

PROPOSITION 2.5. Given 

A = [; ;I) 

representing an operator on Hilbert space Xx 0 Z2 , where M Ed?, 
N E 9Y(S2), and R is bounded linear sending Z1 to x2 . Suppose M is invertible 
and M and N are hermitian (so that A is hermitian). Then A is hermitian 
conjugate to the operator 

0 
B = [“b N _ R&--lR* 1 = diag[M, N - Ril/l-lR*]. 

Proof. B = X*‘4X for 

x = I, -A-‘R* 
0 1 I3 ’ 

where II , I2 are the identities on Zr and He, respectively. 
We shall have need of order-isomorphisms. That is, 4 is an order isomor- 

phism if 4: 9(Z) + @A?) is an invertible linear map on g(S) that sends 
positive semidefinite operators and only positive semidefinite operators to 
positive semidefinite opektors. We remark that since the cone of positive 
semidefinite operators has nonempty interior, 4 is automatically continuous in 
the uniform norm topology (see [6, p. 2281). 

3. FOUR-PART SPLITTINGS 

We consider the situation A = A, + A, + A4, + A, ES?(S). In this 
case, the two-part splitting of G? in (2.1) assumes the form 

.,y” y’1 + [$ ;; “I) (3.1) 

al a2 
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where X, I’, a, 6, c, and d belong to B(S). These operator-parameters can 
be suitably chosen so that Gpl is hermitian on QJ3 Z, whenever our four- 
splitting allows that Al* - A, - A, - A, is hermitian on SF. In fact, write 
hermitian A,* - A, - A, - A, as a sum of hermitian operators Hr , Ha, 
and H3. That is, 

HI + H, + H3 = A,* - A, - A, - -4,. (3.2) 

Replace X, Y, a, b, c, d of (3.1) by requiring 

S = A,* - HI, 

Y = A,* - A, - HI - Hz + b, 

a = Hz - b*, 

b = b, 

c = H3 + b*, 

d = H3. 

(3.3) 

With new hermitian parameters HI , Hz, H3 (constrained by (3.2)) and b 
(arbitrary), the two-part splitting of I% = a, + ua given in (3.1) is written as 
follows: 

I 

;;1, --;4,* + A, + HI --A, - H3 - b 
a= 0 Hz - b” b 

0 H, + b* H3 I 
al 

A,* - A, - HI - Hz + b -4, 
(3.4) 

-b 0 . 
-H3 0 1 a2 

In adding the terms a, and a2 of (3.4), we reveal 6F! in its hermitian form 

2 Re (A,) - HI 

i 

-H,+b -H3-b 
CZ= -H2 + b* H,-2Re(b) b 1 , (35) 

-H, - b* b* H3 

where 2 Re (B) = B + B*, twice the real part of operator B. 
Since ais hermitian and has a well-defined two-part splitting (3.4) (induced 

by the four-part splitting A = A, + A, + -4, + A& we are in a position 
to apply Theorem 2.2, which in our case reduces to 
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PROPOSITION 3.1. Giwn GE E 9 (0” SF) with the two-part splitting 
6Y = a, + a2 of (3.4), then T(02) = GY - (a;la2)* ed(a;‘a,) is hermitian 
conjugate to aI* - a2 . More specificalL,!, 

T(a)- -A, 

[ 

ffl 
$ A,* + HI + H, - b* 

414* - -- 

--A,* + d, + HI + Hz - 6 -A( 
X HZ H,+b . (3.6) 

H3 +b* H3 1 
We consider situations where T(a) is positive definite. A consequence of 

the Stein theorem, Theorem 2.1, is that convergence of {ZJ of (2.3) is 
equivalent to positive definiteness of a. But convergence of sequence (2,) is, 
in turn, equivalent to convergence of the sequence {x~) defined by the four- 
part splitting 

L&“Y,+3 + A2X,+P + =13.v,+1 + &x, ==‘!” (Proposition 2.4). 

The result of these observations is the following theorem. 

THEOREM 3.2. Given the four-part splitting -4 = d, + ,4, + A, + A, 
and the sequence {x,J defmed iteratively by 

-4,&+3 + A*x,+” + A3S,+1 + &xn =y” , n - 0, I , 2 ,... , (3.7) 

suppose 
A,” - A, - A, - d, = HI + Hz + H3 (3.8) 

for certain hermitian operators HI , Hz , H3 E g(Z). Suppose an operator 
b ~a(%) e.xists such that 

i 

Hl -A4,* + A3 + HI + Hz - b --A, 
-A, + A,* + HI + Hz - b* HZ H3 + b 

-A -14* ff3 +b* H3 1 >o (3.9) 

as an operator on X @ Z 0%. Then for any initial triple {x,, , x1 , x2), 
the sequence {xn> defined by (3.7) converges to the solution wector x for the system 

-4x = y. , A = Al + 4 + A3 + A%, 

if and only zf 

I 

2 Re (A,) - HI --H,+b -H3-b 
-H, + b* -Hz - 2 Re (b) b 

I 
> 0 (3.10) 

-H3 - b* b* H3 

as an operator on X @ SF @ X. 
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Proof. Hypothesis (3.8) (which agrees with (3.2)) tells us that the four- 
part splitting of A = A, + ,4, + A, + A, induces the two-part splitting of 
6~7 = a, + a4 (cf. (3.4)) on X @L%? @ 3. As we have seen, C%’ of (3.4) 
reduces (see (3.5)) to form (3.10). Proposition 3.1 tells us that 

T(a?) = a - (u;‘uz)” a(u;la,) 

is hermetian conjugate to (3.9) and is positive definite. Given I’,, = (y,, , 0,O) 
in J? (3 X @ %, the sequence {Z,), Z, = (x,+.. , x,,+~, x,), defined by 

4-iZ+1 + a*z, = 16 

converges to the solution vector S for the system 

a(x) = (a, + a,) A- = k, 

if and only if p(u;‘u,), the spectral radius of $‘a,, is less than one. Since 
II’(QZ) > 0, Stein’s result (Theorem 2.1) applies, so that Z, -+ X if and only if 
r% > 0. Z, --f X if and only if {xn} of (3.7) is such that x, -+ x, where Ax = ye 
(Proposition 2.4). That is, x, - x if and only if @ > 0. Since 0! appears in the 
statement (3.10), our theorem is proved. 

Under more restrictive conditions, our testing matrices become much more 
tractable. As an example, we present 

THEOREM 3.3. Given the four-part splitting A = A, f -4, f -4, f -4, 
for hermitiun A Ed, and the sequence {xn} dejned iteratively by 

A1x,+3 + -Q,+* + &x,+1 + J*x, = 3’0 I n = 1, 2, 3 ,.... (3.11) 

Suppose the operators A 1 , -4s , A, , A, are constrained us follows: 

(i) A,* - 9 e = HI + H, for certain positive definite HI , Hz E W(X). 

(ii) “IS + -4, = -Ha for positive de$nite H3 ESY(Z). 

(iii) Relative to the positive de$nite HI , H, , H3 above, 

I 
Hz - H3H;lHx H,H,-lA, 

A4*H;lH3 H, - .4,*H;‘A, 1 
is positive definite as an operator on X @ Z. Then for any initial triple 

{x0 P Xl ? xs} C SF, the sequence {xJ defined by (3.11) converges to the solution 
vector s for the system -4x = y. , if and only if A is positive de$nite. 

Proof. Once we choose b = -H3 , (3.9) reduces to the form 

(3.12) 
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With M = HI, R* = [Hz - A,], N = diag[Ha , HJ in Proposition 2.5, 
we see that (3.12) is hermitian conjugate to 

which is positive definite on Z’ 0 S I&, A? due to hypothesis (i) and (iii). 
We are assured, then, that the sequence {se> converges if and only if (3.10) 
is positive definite. But with b == -H3 , along with hypotheses (i) and (ii), 
(3.10) assumes the form 

2 Re (A,) -- HI -H2 - H3 0 

c == -HP-H3 H,+2H, -H3 . 

0 -4 Hs 1 
For the identity operator 1 on 2, define nonsingular 

s == i 
100 
1 1 0 

1 1 1 I 
as an operator on S? EI 3Ec 0%. Compute X*CX to obtain 

2 Re (.4,) - HI - Hz -~ Hz 0 0 
s*cx = 0 H, i-H, 0 1 . 

0 0 Hz 

Now, 

2 Re (A,) - (H, + Ht + H3) q = A, + A,* - (ill* - -4, - A, - A4) 

== A, + A, + A3 + A, 
= A, 

so that X*CX is the direct sum of the operators A, Hz + H3, and H, . 
Hence, 

A > 0 * X”CS > 0 

ec>o 

* (Xn ) converges to solution vector x (Theorem 3.2). 

The theorem is proved. 
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4. THREE-PART SPLITTINGS 

We assume A is hermitian on 2 and enjoys the splitting 

A = A, + A, + A,. 

The two-part splitting of f3 in (2.1) is of the form 

(4.1) 

where X and 6 are operators on 2. In order that Cpc = CZ* on # @ #, it is 
necessary and sufficient that 6 = 6* on Z, and X = A, + -3, + 6. In other 
words, we consider a on Z @ &+ in (4.1) in the form 

-A, - 6 A, + A, + 6 A 
a=[“,l 6 I+[ -6 0’1 

aI 

[ 
A+6 -6 E 

I -6 6 ’ 

a, 
(4.2) 

Note that a,* - us, the hermitian conjugate to Z’(a) (cf. Theorem 2.2), is 
written 

a1 
*- a, = 

[ 
A, - A,* - A,* - 6 -A, 

--A,* b 1 
(4.3) 

=[ 2 Re (A,) - A - b -A, 
--A,* 1 b * 

Since convergence of iteration schemes will depend on positive definiteness 
of G7 in (4.2), we present 

LEMMA 4.1. Given b = b* E B(S). Then 

6qy-” ,“I>0 

onX@S’ifandonlyifA>Oandb>OonZ’. 

Proof. Let nonsingular 

I 0 
x=1 I’ [ I 
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where I is the identity on X. Then 

which is positive definite if and only if =2 and b are. 
We state a general theorem for three-part splittings of hermitian systems 

ax = y. . 

THEOREM 4.2. Given the three-part splitting -1 q = A, + A, + A,, A;l 
exists in $?(A?), A = A* in X. Let the sequence (xn} be deBned inductive4 by 

--k,+2 + =&Jc,+1 + &k = yo I n = 0, I, 2 ,.... (4.4) 

Suppose positire dejnite b E 9(z) exists such that 

2 Re (A,) - d - b -A, 
--A,* b I 

> o 

as an operator on X @ X. Then for any initial couple {x0 , xl> C 2, the 
sequence {x,) dejined by (4.4) converges to the solution vector .r for the system 

.4x = y. ) -4 = a, + A, + a, ) 

if and only if A is positive dejnite on X. 

The positive definite operator (4.5) is exactly al* - up of (4.3), which, in 
turn, is hermitian conjugate to T(a) in Theorem 2.2. That is, (4.5) tells us 
that T(B) > 0, so that convergence of Z,, to X, GGY = Y. , where 

alzn+l + a&L = Y. , is equivalent to GZ > 0 (Theorem 2.1). Thus, 

(xJ of (4.4), converges 

23 {Z,} of alZ,+, + aeZ, := 16 converges (Proposition 2.4), 

*Gsd=a,+a,>O (Theorem 2. l), 

=A>0 (Lemma 4.1). 

This proves the theorem. 

5. OPERATOR-PARAMETER PARTITIONS 

Our operator A EA?(.Z) will be given a four-part partitioning, which will 
induce a family of three-part partitionings (definition follows). In this section, 
we give conditions for which each splitting in this family results in a con- 
vergent iterative sequence. 
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DEFINITION 5.1. Given A = D + S, + S, + S,, E%(X). Let 
qSw: 29(3EG) + ~(~) b e a family of order isomorphisms where w belongs to 
some index set 9. Then the operator-parameter-successive-overrelaxation- 
decomposition is the w-dependent three-part decomposition 

A = K’(D) + &I + [D - L’(D) + %I + [&I 
z [-4(w)] + [4(w)] + [&I. 

Our next theorem shows that in the event that the order isomorphisms are 
“small enough,” convergence of the sequence {x~} given by 

-4(w) 5l+2 + -Uw) .%+1 + 4% = z’o 

to the solution vector s for 9x == y. is equivalent to A > 0. 

THEOREM 5.2. Let A = A* belong to B(Z), and suppose 

B = D + S, + S, + S, . 

Let -[c&,}, w E Q, $w: &Y(Z) -+ B(X) be a family of order isomorphisms, each 
of which induces the generalized overrelaxation decomposition 

where 

-4 = K’(D) + &I + ID - A?(D) + &I + [%I 
= A,(w) + 4(W) + 4, 

4(w) =4,‘(D) + S, is invertible 

A,(w) = D - d;‘(D) + s, , and A, = s, , 

Suppose Q(D) E~(.Z’), where @: a(.%?) -+ a(.%) is continuous in the operator 
norm, such that 

a(D) + S,* - S, - S, > 0. (5.1) 

Suppose, too, we can find operator P > 0 in 99(X) such that the matrix 

$a- p 
[ 

s3 
S,* Q(D) + &* - S, - S, - P 1 >’ 

as an operator on Z @ #. Then for all y. E X, and all order isomorphisms 
su$iciently small, i.e., those order isomorphisms +“, , w E Sz, such that 

hJW9 + 4w(D) < D + D*, (5.2) 
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the sequence {x~} defined by 

Cs62P) + 41 -%+2 + [D - 434 + &I "%+1 + L&l % = Yo 

conaerges to the solution eector .r of the system 

As = y. 

(5.3) 

for every initial couple {x0 , x,}, if and only if A > 0. 

Proof. Let us set 

A,(w) = #G’(D) + Sl , 

-4,(w) = D - &l(D) + S, , 

A, = s, . 

For our positive definite b in (4.5), choose (5.1), diminished by sufficiently 
small P > 0, i.e., 

b = Q(D) + S,” - S, - S, - P > 0. 

Theorem 4.2 applies. With the quantities --I,, A,, A,, b thus defined, our 
test matrix (4.5) of Theorem 4.2 assumes the form 

[ 
Al*(w) - T&.(W) - A, - b --A, 

-_ 4,* b I 

= 
[ 
K’(D + D*> - D - Q(D) + P -4 

-s,* @(D) + S,* - S, - S, 

[ 
P zz --s, 

-s,* @(D) + S,* - S, - S, - P I 

P 1 
(5.4) 

+ [&‘(D + D*) - D - @(D) 
0 

81 

= d + [di’(D + D*) - D - Q’(D) 
0 

;I . 

Now, 

since & is an order isomorphism z D + D* > c,&,(@(D)) + b,(D). This 
last assertion is assumed for the class & , w E Q, as hypothesis (5.2). kr’e are 
therefore assured that the operator 

1 
&‘(D + D*) - D - @(D) 0 

0 0 I 
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is positive semidefinite on X @A?. Since 9 > 0, it follows that our test 
matrix (4.5) is positive definite on Z @H. From Theorem (4.2), this 
positive definiteness (a consequence of our hypotheses) equates the equiva- 
lence of the convergence of the sequence (x,J (defined by (5.3) to the solution 
vector x, where ,4x = (D + S, f S, + S,) x = J+,) with positive definiteness 
of =1. This ends the proof. 

For the order isomorphisms, ,-I + W*AW, the following obtains. 

THEOREM 5.3. Gizjen ,4 = A* and D > 0 in B(Z), where 

-4 = D + S, + S, + S, , 

let nl be decomposed as a three-part splitting in operator-parameter ozlerrelasation 

f orm 

A = [W*DW + S,] + [D - W*DW + S,] + [S,] 

= .4J W) + d*(W) + A3 , 
(5.5) 

where W is insertible. Given X = X* E .8(s) such that 

XD + S,* - S, - S, > 0. (5.6) 

We suppose that the operator-parameter W and the hermitian operator X 
commute. If P > 0 in B(s) can be found such that 

P S3 
S,* XD+S1*-S.7-S3-P >’ 1 (5.7) 

as an operator on % @ 2, then for all splittings (5.5) where W is constrained 
relatizve to hermitian X in the operator norm by the condition 

II H-1 II2 II I + x II < 2, (5.8) 

the sequence (x,,> defined b> 

[W*DW + S,] x,+~ + [D - W*DW + S,] s,+~ + [S,] .x% = y,, (5.9) 

conzjerges to the solution eector x of the system 

Ax = y. 

for eeery initial couple {x,, , xl) if and on@ if -4 > 0. 

Proof. In the statement of Theorem 5.2, choose 4,(B) = (W-l)* BTV-l, 
so that $;l(B) = IY*BW for all B l g(%‘). Set @(D) = XD. Theorem 5.2 



328 JOHN DE PILLIS 

reduces to Theorem 5.3 once we show that (5.8) implies hypothesis (5.2) of 
Theorem 5.2. To see this we observe that 

I( w-1 112 11 I + X/I < 2 e ll( w-l)* w1 1, . 11 I $- XI/ < 2 
operator norm 

property of 

St I;( w-l)* w--y1 + X)11 < 2 

z? 2 . I - (Iv)* W-1(1 + A-) > 0 

since (W-r)* W’(I + S) is hermitian, 

2 20 - (I%-‘)* W1(l + X) D > 0 

since D > 0 commutes with U’, X, 

*4w(@(D)) + A@) < 20 = D + D*, 

since &,,( ) = ( W’)* ( ) Wr, and @( ) = S( ). 
The reduction of Theorem 5.2 to Theorem 5.3 is established, thus com- 

pleting the proof. 
Donnelly’s result follows directly. To reproduce his statement, we assume 

--I > 0 at the outset. Accordingly, we have 

THEOREM 5.4 (Donnelly [3, Theorem 2.11). Given the positizle de$nite 
operators A and D ES(Z), with the splitting depending on the scalar W, 

wA-[D-mwF-uG]+[(w-l)D-c@+E*+F*)]+[--wG*] 

~- CIA,* + wA2* + WA,‘. - (5.10) 

Let the sequence {xn} be dejked iteratively by 

Apn+g + A2xn+1 + A$, = ?‘o ) n = 0, 1, 2 ,.... (5.11) 

The following constraint is assumed. There exists positive dejkite operator P on 
X and a scalar m > -I such that 

[ 
P G 

G* ciD+E+E*-P I 
>o 

as an operator on SF @ Z. Then for all W, 

0 < w < 2/( 1 + (Y), (5.13) 

and for any initial couple {x,, , x,}, the sequence {x,J dejned by (5.11) converges 
to the solution vector for the system .4.x = yu . 

Proof. Condition (5.10) is equivalent to 

A = [(l/w) D - (F + G)] + [D - (l/w) D - (E + E* + F*)] + [-G*]. 
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Comparison of this decomposition with (5.5) leads us to define 

w = w-1’21, w > 0, (i.e.,&l(D) = W*DW = (l/w) D) (5.14) 

and 

A- = Ld, a> 1, (i.e., Q(D) = cQ). 

We also define 

S, = -(F + G), 

S, = -(E + E* +F*), (5.15) 

S, = -G*. 

Thus, condition (5.12) for A > 0 is equivalent to (5.7) of Theorem 5.3. 
Observe that constraint (5.12) implies that the lower right-hand corner, 
CID + 2) + E* - P, is positive definite. That is, 

O<oJ)+E+E*-P+O<aD+E+E* since P > 0, 

~0 <A-D + S,* - S, - S, from (5.14) and 

(5.15)) 

so that condition (5.6) obtains. Condition (5.7) also obtains, since the matrices 
of (5.7) and (5.12) agree. The constraint given in (5.8) for II/--l = wlP1, 
w > 0 and X = cJ, 01 > I easily reduces to Donnelly’s hypothesis (5.13) 
that 0 < w < 2/(1 + a). Since all the hypotheses of Theorem 5.3 obtain in 
the statement of Donnelly’s theorem, the proof is done. 

6. THREE-PART SPLITTINGS THAT IMPROVE CONVERGENCE 

In the last two sections, we dealt with three-part splittings 

A = A, + A, + A, 

and identified convergence of the sequence {x,}, where 

with positive definiteness of the test operator T(a). With this strategy, 
however, we were constrained to consider only those bounded linear operators 
that were self-adjoint. The present section abandons the coupling of con- 
vergence and positive definiteness and considers arbitrary bounded, linear 
operators A. 
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In measuring “improvement of convergence” offered by a three-part 
splitting -4 = .41 -+ -4, + A,, over a conventional two-part splitting 
A = =1,’ + A,‘, we shall mean that the aoerage reduction factor per iteration 
(cf. [S, p. 621) of the three-part sequence {s,}, A,s,+? + &J,+~ + =I,.r, = J,,, 
is, in a sense, “better than,” or less than, that of the induced two-part 
sequence -(xn}, A1’.‘c:l+l + -42’.t^,’ = yu . (Specific definitions follow.) 

A major point in resorting to iteration via splittings is that the operator -4, 
not easily invertible, at least yields an additive piece, -4, , that is easy to 
invert. \Ve therefore assume that A, remains invariant in construction of the 
two-part splitting =2 = z41 + =1,’ and in all the three-part splittings 
A ==: -4, + A, + &&; that is, -4,’ = A, + A4,. Although A41 is fixed in all 
our constructions, the degree of freedom we have in choosing -4,) with 
three-part splittings, proves sufficient to improve the convergence rate of a 
convergent sequence {.Yn’>, i.e., certain three-part sequences {x~} formed bJ 
the splittings A = A, + -4, + A, converge faster than the two-part sequence 
(sn’> formed from the splitting -4 = A, + A,‘. -4s a further bonus, however, 
by selecting A, judiciously (Al is fixed), we can always construct a convergent 
three-part sequence, {.x0 , s0 , .v’., ,... , x, ,... >, when the corresponding two- 
part sequence, (*vO , .rl’, sz’,.. . , s,‘,...) IS nonconvergent and the spectrum 
of ,1;1.4,’ lies in the disk (z: 1 2 - 1 1 < 2) (Theorem 6.3). 

We split A E.%?(J?) by -4 = A, + il, + A, . In this case, the associated 
operator G’ of (2.1), in B(G’F 0 %), has the following family of two-part 
splittings: 

= al + a2 , 

where D, C E$(%), C-l exists in &?(A?), are arbitrary. Recall that for the 
system 02X = 1; = (y,, , 0) and for initial vector 2, = (x1 , so) E A? @ 2, 
the two-part splitting @ = a, + a2 induces the sequence 

which converges to the solution vector X = (x, x) if and only if (.vn} C &’ 
defined by the three-part splitting 

A = A, + A, + A, 

(i.e., A1xa+2 + ~~2~,~+1 + L43.~n -3~~) converges to the solution vector x of 
the linear system Ax = y,, for initial vectors .r,-, , .rl in GV (Proposition 2.4). 
Now convergence of the sequence {Z,) is equivalent to the operator A? = a;‘a2 



k-PART SPLITTINGS 331 

having spectral radius less than 1. Computation reveals that for all C, D 
of (6.1), 

9 = $a2 = 
[ 
A;l(A - A, - A,) ApA, 

-. I 0 I 

=[ 
(AT1 - I) - (A;%,) A;lB, 

-I 0 1 
=[ B-T T 1 -I 0’ 

(6.2) 

where 

B = ,4;lA - I, T = A;‘A, . 

For completeness we offer the following definition. 

DEFINITION 6.1. Given the linear system Ax = y,, , ~4, A-l E&J(X), 
where rl has k-part splitting A == A, + A, + ... + A, , 4, f 0. Given the 
sequence {x-} defined by ili~,+~,i + APxn+,,+ + ... + A~x, = J’,, with 
initial vectors x0 = xi = ... = xp-i . If x is the solution vector for the 
system, then the average reduction factor per iteration, after m iterations, 
denoted by o(m), is the quantity 

( 

II %I - x I/ 1/nt 

a(m) = 11 x0 - XII 1 ’ 

where II II is any norm on vector space Hr that is compatible with the (fixed) 
norm on the operators (or matrices) A on X. That is. for all x E J? and all 
operators A on X, we have /I A(x)11 < 11 A II . /I x // . 

Remark. Compatibility implies that lim,,, 11 A” Illln = p(-4), the spectral 
radius of A. For two-part splittings, x,,, - x = (-A;lAJm (x,, - x), so 
that u(m) is bounded by the operator norm of --A;lA2 as follows, for large 
enough m: 

u(m) < II(A;‘A,)“’ Ijl’m. 

The following proposition considers the sequence {xn} induced by the 
three-part splitting A = A, + A, + A, and shows how the average reduc- 
tion factor u(m) is bounded in terms of l/&W II , the norm of @, where 
d = a;‘a, is the operator of (6.2). 

PROPOSITION 6.2. Given B, A-l E&?(S) where A = A, + -4, + A, , 
A,, A;l, A,, A, E S?(S). Let {x} be defined by 

-%QZ+2 + 4x,+1 + 4x, =yo , n = 0, 1, 2 ,... , 
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with equal irzitial electors x0 = s, . Then U(M), the average reduction factor 
per iteration, after m iterations, is such that 

where s is the solution rector for the system -4.~ = yO , d = a;‘at as defined in 
(6.2). 

Proof. Since we have chosen equal initial vectors x0 = x1 , the initial 
vector of our associated two-part splitting (cf. Proposition 2.4) is Z,, = (2~s , x0). 
Recall that if N is the solution to the system d.r = me , necessarily, S = (x, x) 
is the solution (column) vector of the two-part system QLY = (yO, 0). Since 
L$? = a, - op , we have that 

(-9)” (x0 - x, so - s) = (-a,‘uJ” (X” - s, x0 - x) 

= ( 
(6.3) 

-v,,+1 - s, x,,, - X). 

Consider the projection operator 3(u, y) = (0, ~7) on z @ X, which applied 
to both sides of (6.3), yields 

9 . (43)“’ (x0 - s, X” - 9) = (0, x,,, - x). 

Allowing that X @ 2 is normed by setting ill(u, y)lls’ = ;I u lie + /j y I12 for 
U, y E Y, the last equality implies 

That is, 

u(m) = 
( 

!!?m - x 11 1’t’L < (@j 11 @l’ 1pnr ) I/“% - .r//’ 
I 

proving the proposition. 

Remark. Suppose that relative to the system -1.~ = y0 , the three-part 
splitting ,4 = A, + A, + A,, with initial vectors x0 = x1 , induces the 
sequence {s,:. Suppose the two-part splitting A = d, + AZ’, d,’ = A, + -4,) 
with the same initial vector x0 , induces the sequence {x~‘}. We already know 
that for {x,,‘), 

II %n’ - XI/ Ii”’ 
u’(m) = 11 x0 - .x 11 ) -I< il( -;4;l, A,l)m I]“‘“‘, 

while Proposition 6.2 tells us that for {x,}, 

( 
11 x,, - s 11 lb 

u(m) = II X‘, - s I/ 
) “-> ,/2’ “I1 jl(-a;la,)“’ j~linr, 
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We are ready to state our comparison theorem, which states in what sense 
(in terms of the average reduction factors, u(m) and a’(m)) three-part split- 
tings can be made better than the two-part splitting. 

THEOREM 6.3. Consider A invertible in 28(Z) and the linear system 
Ax = y,, . Given invertible A, E S?(&‘) and xo E S, which are$xed throughout, 
so that we have the splittings 

A = A, + A, + A,, inducing sequence (x,, , x0 , x2 , . . . , 5, ) . . . 17 

-4 = 8, + AZ’, inducing the sequence (x,, , x1’, x2’ ,..., x,‘,... 1. 

Then, 

Case A. If (xn’} is divergent, (&Q1A2’) > l), at least for the cuse where 
a(A;lA,‘), the spectrum of ATLAS, lies in the open disk {z: 1 z - 1 1 < 2}, 
then A, may be chosen so that lx,,} is convergent, that is, so that p(a;‘a,) < 1. 

Case B. If {xn’} is convergent and if a(Ay1A2’) lies in the right half of the 
open unit disk, {z: 1 z 1 < 1 and z + .% > 0}, then A, may be chosen so that 
a(m), for {x,}, has about one-half the upper bound that u’(m) has for {xn’}. That 
is, zf u’(m) < (1 Bm Illlm, f or all tn, then A, may be chosen so that given E > 0, 
then for all integers m, sn@&nt~ large, 

where B = A;lA,‘. 

44 -=c b(B) + c, 

In both cases A, may be chosen in the form 

(*) 4 = A,W) (I + 4(B))-l (B - 4(B)). 

For Case A, 4(B) = plB - pJ, for certain scalars p1 , p, which meet the 
conditions that p, > p, > 0 and p1 + p, = 1. For Case B, 4(B) = &B. 

Proof. Let us consider the matrix operator of (6.2), 

9 = aT1ae = [ 
B - A;lA, A;lA, 

-I 1 0 ’ (6.4) 

whose spectral radius, p(a), depends on B = AylAa’ (which derives from 
the two-part splitting A = -4, + AZ’), and on our choice of A,. 

Let #( ) be any complex analytic function on C(p(B)) = {z: 1 z / < p(B)}, 
the smallest closed disk centered at the origin, containing the spectrum of B. 
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We further assume that for all z E C@(B)), 4(z) # - 1. This allows us to 
define the operators U, V, and A, as follows. 

If- = (I + 9(B)y (B - 4(B)), (6.5) 
A, = A,CV, 

where +( ) is the corresponding operator-valued analytic function, induced 
by $( ), whose domain therefore includes any operator whose spectrum is 
contained in C(p(B)). 

The definitions (6.5) imply that 

B=U+VfUV, 

so that (6.4) rewrites itself as 

gg= utv [ 
uv 1 -I 0’ (6.6) 

It will now follow that ~(a), the spectrum of ~2, is just u(U) u u(V), 

the union of the spectrums of U and V. To see this, use the fact that 
CT(a) = u( w-%W) f or any invertible WE B(X 0 X); then choose W to be 
the matrix-operator 

so that 

%--law’ = [TI ;] . (6.7) 

Thus, the operator W-SW of (6.7) (hence, operator 39 of (6.6) has spectral 
radius 

p(B) = maxb( U), P( VII. (6.8) 

Given (6.8), the question before us now is whether we can choose analytic 
$( ), which defines U, V and, hence, A, == A,UV, so that for Case A, 

{XL> diverges, #@;‘A,‘) > 1, u(A;lAz’) C(z: 1 z - 1 ) < 21, 

and 

max{p(V, f(V)) < 1. (6.9) 
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By the spectral mapping theorem and from (6.3, condition (6.9) obtains 
if for some analytic function #J( ) whose domain of definition contains 
D(~Z;~A,‘), if and only if (Case A) {x~‘} diverges, 

&PA,‘) > 1, a(A;lA,‘) c (2: 1 z - 1 I < 2}, 

and for all z E ~(tz;~~4~‘), 

and 
I cc4 < 1 (6.lOa) 

I &4 - 2 I < I $w + 1 I . (6. lob) 

To establish Case A of our theorem, it suffices to establish the conditions 
(6.10a), (6.10b). 

Let us consider (6.10a) and (6.10b) g eometrically. Let x be complex, and 
let H, be the closed half-plane of all complex eu that are at least as near to z 
as they are to -1. That is, 

H, = {w: I w - .z 1 < ) w + 1 I}. 

If we denote by Ho, the set of all closed half-planes H, that do not intersect 
the closed unit disk, then the union of all H, E Ho is the “outside” comple- 
ment of the cardioid 

C = {2z(l + Re(z)) - 1: z = eie}. (6.11) 

This means that should any point .zo of the spectrum of B = A;‘A,’ lie 
outside the cardioid %‘, then for all functions + (analytic or not) taking the 
complex plane to itself, if +(zo) lies inside the unit circle ((6.10a) obtains), then, 
necessarily, / +(x0) - z. / > 1 $(a,) + 1 ( ((6.10b) does not obtain). Thus, 
we have shown: 

If a complex valued (analytic) function $( ) de$ned on the 
set u(A;~A,‘), say, enjoys properties (6.10a) and (6.10b) 
for all z E u(A;~A~‘), then, necessarily, CJ(A;~A~‘) lies in 

(6.12) 

the interior of the cardiod V of (6.11). 

Note that, consistent with constraint (6.12) on the position of o(A;~A,‘), 
Case A in the statement of our theorem carries the assumption that 

a(A;‘A,‘) c {z: 1 z - 1 I < 2) c V’. 

Under this assumption, an analytic +( ) on a(JiA,‘) satisfying (6.10a) and 
(6.10b) is easy to find. In fact, choose +( ) to be that function that pulls z back 
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to (almost) the midpoint between z itself and the fixed point - 1. That is, 
subject to (6.10a), set 

4(4 = PI2 = P, , (6.13) 

where pi > pa > 0 and p, + pa = 1. Intuitively, in (6.13), we pull the 
disk{z: 1 a - 1 j < 2) back toward the point -1 so that it covers the closed 
unit disk: we make the fit close enough (choose p, close enough to 6) so that 
a(A;lAa’) is carried to the interior of the unit disk, thus satisfying (6.1Oa). 
Since p, > pa , (6.10b) will also be satisfied, as is easily verified. We have 
thus settled Case A, having converted the divergent sequence {x,, , .vi’, ~a’,..., 
X%‘,...}, resulting from the splitting A = d, + .%a’, to a convergent sequence 

&I , Xl , x2 , . . . , xa , . . . ), resulting from the splitting 

where B = .~T~A,’ and #( ) is proscribed in (6.13). Of course, once 

4 = 44(B) (I+ WY (B - 4(B)) 

is fixed, il, of (6.14) is uniquely determined. 
To establish Case B, we need only exhibit complex valued +( ), analytic 

on {z: 1 a / < 1 and Re(a) > 0} such that 

and 
(6.15a) 

Such a 4 is 

I(&) - ~M4 + 111 < tbw47. 

gz) = gz. 

(6.15b) 

Conditions (6.15a) and (6.15b) together allow that 

&;‘a,) = &p(A;L4,‘) (cf. (6.8)). (6.16) 

We use the fact that for all rn sufficiently large, and for any LI Ed, 
11 Jfn Illkrn converges (eventually downward) to p(A), the spectral radius of A. 
Thus, 

U(m) = i 

11 x, - x1( 
) 

lb 

/I x0 - x 11. 
< ((2)ija II( Il)l’m Proposition 6.2, 

-+ p(a;la,), as m -+ co since /I /I is compatible, 

= &l;lA,,) from (6.16). 
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That is, for any E > 0, there is an N, > 0, such that for all integers m > -WC , 
with B = -4;lA,', 

44 -c MB) + E, 

proving the theorem. 

7. AN EXAMPLE 

In Theorem 6.3, Case B, we specify a three-part splitting that reduces the 
spectral radius by a factor of almost two. But we may pay the price of increased 
efficiency in the computation of the operator (I + 4(B))-l in the construction 
of A, given in (*) and (5.14). In the following class of operators, this presents 
no problem. 

Let us consider the 2n x 2n matrix 

(7.1) 

where ul , ua are scalars. We assume that F-l is easy to find, and 

a(F*F) = {A, , A, )..., A& 

the spectrum of F*F relates to scalars ul and u2 as follows: for each 
i = 1, 2,..., 71, AJu~u~ lies in the right-half interior of the unit circle of the 
complex plane centered at z = 2. More precisely, for all i = 1,2,..., n, if 
&E u(F*F), then 

LE{x: Is-21 <l,andz+%>4}. 
f4lU2 

(7.2) 

We now choose to provide A with the a-splitting introduced in [2, Sec- 
tion 31, with 01 = -1. That is, set 

From this representation, we compute B = A;lA,' as 

(7.3) 

B := A;1A2r = 0 UpF 
0 -2If (u1u2)-lF*F 1 ' 
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which implies that a(B), the spectrum of B, equals 

o(B) = (0, (u~z+-~ u(F*F) - 2). (7.4) 

From the placement of u(F*F) in (7.2), condition (7.4) is equivalent to 
saying that 

u(B) C {a: 1 z 1 < 1 and a + z 3 0). 

This last condition allows us to employ Case B of Theorem 6.3. Accordingly, 
for qb(B) = +B, we have 

which has the tractable inverse 

since F-l is presumed easy to find. Following (*) (or (6.14)) we compute the 
three-part splitting 

=[ 
$I 0 
F* --u,I I [ + 

0 +F + z&F*)-~ 
0 u2 + ~u,u,~(F*F)-' I [ + 

0 $F - u~u~(F*)-~ 
0 u2 - ~u,u,~(F*F)-~ I 

= A, + A, + A,. (7.5) 

Now with the two-part or-splitting of (7.3) with the constraints on the 
scalars z+ 9 u2 and u(F*F) as given in (7.2), we have a convergence rate p(B) 
equal to 

max{j h,(ulu2)-’ - 2 I} < I. (7.6) 

But the three-part splitting of (7.5) gives us a convergence rate equal to 
one-half of (7.6). 

Now let us consider the particular family of six-by-six matrices A(a), 
depending on real parameter n, of (7. I), where scalars ur = u2 = 1, and 

[ 1 2 -2 
F(u) = T 2 1 2 1 . 

-22 I 
(7.7) 
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Note that U = F(a)/a is an orthogonal idempotent matrix (U = CTt = U-l) 
with eigenvalues equal to *l. Effect the or-splitting (a = - 1) for A(a) 
according to (7.3) so that the (family of) B(a) = A;lA,’ has the form 

B(a) = [; (I u ,,” 31 1 ’ (7.8) 

so that 
a(B(u)) = (0, / a I2 - 2). 

We now tabulate some comparative readings of sequences {x,‘} and {x,}, 
induced by the two-part splitting of (7.3) and the three-part splitting of 
(7.5), respectively, with various values of the parameter a. Let us choose the 
linear system A(u) x = 0 with initial vector of each of the sequences {x~‘>, 
(xn} equal to 3~s = co1(8,4, -5,4,2,0), taking 

where I is the 3 x 3 identity matrix and the (family of) 3 x 3 matrices F(u) 
are given in (7.7). Along with the values of the Euclidean norms of xa’ and 

xn 3 we list (Definition 6.1) their respective average reduction factors per 
iteration after n iterations, a’(n) and u(n). Now, 

[ &) T1] x6+1 + [; yy’] 2 = 0, 

IF;) :j Xn+z+ [: $Jy] x,+1 
+ 0 (p&(u) 
i 1 0 (1 -$)I xn=o. 

Initial x,, = x1 = x,’ = co1(8,4, -5,4,2,0). 
In summary, 

w = [,:,, 011-l [; y] 9 

p(B) = I a2 - 2 I , 

(cf. (7.8)), and 4(B) = hB, implying (Theorem 6.3, Case B) that u(n), the 
average reduction factor after rr iterations on the three-part sequence, is 
about half of that for the two-part sequence, when IZ, the number of iterations, 
is large enough. 



340 JOHN DE PILLIS 

APPENDIX 

TABLE I 

a = 1.33... p@(u)) = 0.22... 

n II X” II/II “%I II II xn’ II/II x0 II 44 Qn) 

1 1.000000 0.608 276 1.000 0.608 
2 0.608 276 0.152 069 0.779 0.389 

3 0.109 827 0.038 017 0.478 0.336 

4 0.017 483 0.009 504 0.363 0.312 

5 0.002 602 0.002 376 0.304 0.298 

6 0300 371 o.ooo 594 0.268 0.289 

10 o.ooo ooo o.ooo 002 0.203 0.273 

11 o.ooo ooo o.ooo ooo 0.195 0.271 

18 o.ooo ooo o.ooo ooo 0.166 0.262 

0(18)/0’(18) = 0.633 

T.%BLE II 

n 

n = 1.71 p@(a)) = 0.9241 
(x,’ barely converges, X, converges twice as fast) 

II X” II/II Jio II II x,I II/II .%I II o(n) o’(n) 

1 1.000 000 0.777 489 1.000 0.777 

2 0.777 489 0.718 471 0.881 0.847 

3 0.482 093 0.663 945 0.784 0.872 

4 0.261 576 0.613 551 0.715 0.885 

5 0.133 131 0.566 983 0.668 0.892 

10 0.003 279 0.382 089 0.564 0.908 

20 o.ooo 001 0.173 522 0.511 0.916 

21 o.ooo 000 0.160 351 0.508 0.916 

50 o.ooo 000 0.016 252 0.48 1 0.920 

78 o.ooo 000 0.001 782 0.474 0.922 

0(78)/0’(78) = 0.514 
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TABLE III 

1 1.000000 

2 0.800 987 

3 0.535 601 

4 0.313 375 

5 0.172 134 

10 0.006 289 

22 o.ooo 001 

23 o.ooo 001 

43 o.ooo 001 

a = 1.733 ,@(a)) = 1.003289 
(x. converges, but x,’ diverges) 

II x.“’ II/II x0 II o(n) u’(n) 

0.800 987 1.000 0.801 

0.803 621 0.895 0.896 

0.806 264 0.812 0.930 

0.808 916 0.748 0.948 

0.811 577 0.703 0.959 

0.825 011 0.602 0.981 

0.858 168 0.546 0.993 

0.860 991 0.544 0.994 

0.919 432 0.524 0.998 

0(43)/0’(43) = 0.525 

TABLE IV 

a = 1.95 @(a)) = 1.8025 
(x, converges, x,’ diverges strongly) 

II xn II/II x0 II II .1c”’ II/II %l I! 4n) o’(11) 

1 1.000000 1.062 1.000 1.062 

2 1.062 186 1.9 1.031 1.384 

3 1.209 050 3.4 1.065 1.511 

4 1.208 995 6.2 1.049 1.579 

5 1.146 177 11.2 1.028 1.621 

6 1.059 808 20.2 1.010 1.650 

7 0.967 864 36.4 0.995 1.671 

10 0.717 339 213.3 0.967 1.710 

20 0.254 146 J 0.933 1.755 

40 0.031 768 s 0.917 1.778 

63 0.002 907 $ 0.912 1.787 

0(63)/0’(63) = 0.5 11 
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