NUCLEI FOR TOTALLY POINT DETERMINING GRAPHS

Nennis P: GEOFFROY
University of South Carolina, Sumter, sC 29150, U.S.A.

Received 19 August 1976
Revised 9 April 1977

Abstract

The nucieus (edge nucleus) of a point determining graph is defined by Geoffroy and Sumner to be the set of all points (edges) whose removal leaves the graph point determining. It is the purpose of this paper to develop the analogous concepts for totally point determiring graphs, that is, graphs in which distinct points have distinct neighborhoods and closed neighborhoods.

1. Introduction

It will be assumed throughout this paper that all graphs are finite, undirected, and without loops or multiple edges. All undefined terminclogy shall conform to that of Behzad and Chartrand [1]. Huwever, we shall use the term "point" instead of "verrex".

In $[3,4,5,7,9,10]$, the idea of the nucleus and the edge nucleus of a point determining graph were introduced and subsequently developed. It is the purpose of this paper to develop the analogous conccpts for totally point determining graphs. The basic definitions follow.

Let G be a graph and S a subset of G. S is called a π-set ($\bar{\pi}$-set) of G if and only if $N(a)=N(b)(\bar{N}(a)=\bar{N}(b))$ for every pair of distinct points a and b in S and S is maximal with respect to this property. If a and b belong to the same π-set ($\bar{\pi}$-set), then we refer to $\{a, b\}$ as a π-pair ($\bar{\pi}$-pair).

A graph G is said to be point determining (totally point determining) if and only if G has no π-pairs (π or $\bar{\pi}$-pairs). Note that G is totaliy point determining is equivalent to the condition that G and \bar{G} are both point determining. For a totally point determining graph G, the total nucleus of G is the set G^{*} consisting of all the points v of G such that $G-v$ is a totally point dete:mining gra.ph.

The concept of the total nucleus of a totally point determining is analogous to that of the nucleus of a point determining graph. That is, if G is a point determining graph, then tie nucleus of G is the set G^{0} consisting of all the poirts v of G such that $G-v$ is oint determining. Note that x is not in G^{0} if and only if there exist a and b in G such that $N(a)=N(b)-x$.

If G is a totally point cetermining graph and v is in G, then v is in $G-G^{*}$ if and only if the:e exist $($ and b in $G-v$ such that in $G-v . N(a)=N(b)$ or $\bar{N}(a)=\bar{N}(b)$. We will adoot the convention that when we write " $N(x)=N(y)-z$ "
or " $\dot{N}(x)=\hat{N}(y)-z$ ", we mean to imply that x, y and z are distinct and y is adjacent to z; so with this understanding, v is in $G-G^{*}$ if and only if there exist a and b in $G-v$ such that $N(a)=N(b)-v$ or $\bar{N}(a)=\bar{N}(b)-v$. Also, instead of writing " x is adjacent to y ", we will simply write " $x \perp y$ ".

However, ualike G^{0}, G^{*} may be empty. For example, it is easy to see that the path on fout points has no totally removable points. Hence, we would like to establish necessary and sufficient conditions under which a connected totally point determining graph has a non-empty total nuc'eus. To do so we need to consider the following concept introduced by Sabidussi, (see [6]).
Let $\left\{G_{x}: x\right.$ in $\left.X\right\}$ be a family of graphs indexed by another gray \boldsymbol{X}. Let \# denote adjacency in X and for each x in X, let \perp_{x} denote adjacenc; in G_{x}. The X-join of this family of graphs is

$$
G=\bigcup_{x \operatorname{in} X}\left(G_{x} \times\{x\}\right)
$$

with adjacency relation \perp defined by the folloving:
For (a, r) and (b, s) in $G,(a, r) \perp(b, s)$ if and unly if either $r \# s$ or, $r=s$ and $a \perp, b$.
There is an alternate approach to the concept of X-join of a family of graphs.
Let G be a graph and K a subset of C Then K is said to be a partitive subset of G if and only if for every x in $G-K$ either $N(x) \cap K=\emptyset$, or K is contained in $N(x)$.

It is easy to see that G is the X-join of $\left\{G_{x}: x\right.$ in $\left.X\right\}$ if and only if the set of points of G can be partitioned by a family of partitive subsets $\left\{V_{x}: x\right.$ in $\left.X\right\}$ of G such that the graph induced by V_{x} is $G_{x},\left\langle V_{x}\right\rangle=G_{x}$, for each x in X.
The fohowing lemma gives us several basic tools to be used in discussing the removal of points and edges in a totally point determining graph.

Lemma 1.1. Let G be a totally point determining graph and let a, b, c, d and e be points of G with $\bar{N}(a)=\bar{N}(b)-c$.
(i) If $\bar{N}(d)=\bar{N}(c)-e$, then $b=e$.
(ii) If $\bar{N}(c)=\bar{N}(d)-e$, then $a=e$.
(iii) If $N(, \quad N(b)-e$, then $a=e$.
(iv) If $N(i \quad N(e)-a$, the $\mathfrak{b}=e$ or $c=d$.
(v) If $N(d) \quad V(e)-b$, then $a=e$ or $c=e$.

Proof. (i) Suppose $b \neq e$. Then $b \perp c$, so b is in $\bar{N}(d)$. But then a is in $\bar{N}(d)$, since $\bar{N}(a)=\bar{N}(b)-c$ and $d \neq c$. Thus a is a member of $\bar{N}(c)$ and we have a contradiction.
(ii) $b \perp c$, so b is in $\bar{N}(d)$. But then $a \perp d$ and a is not in $\bar{N}(c)$. Thus $a=e$.
(iii) $a \perp b$, so $u=e$ or $a \perp d$. If $a \perp d$, then d is in $\bar{N}(b)$ contradicts $N(d)=$ $N(b)-e$. Thus $a \approx e$.
(iv) $e \perp c$, so $e=b$ or $e \perp b$. If $e \neq b$, then $d \perp b$ sut d is not in $N(a)$. Therefore, $l=c$.
(v) $e \perp b$, so $e=c$ or e is in $\bar{N}(a)$. If $e \perp a$. then $d \perp a$. But then d is not in $N(b)$ is a contradiction. Thus $e=c$ or $e=a$.

2. Properties of the total nucleus

Before proceeding to characterize the connected totally point determining graphs with nonempty total nucleus, let us prove the following lemma which will facilitate the proof of the characterization. Note first that a book is simply the path on four points.

Lemma 2.1. Let G be a totally point determining graph. Let a be a point of G such that a belongs to some partitive hook K of G. If eitier
(i) $N(a)=N(b)-c$ for some b, c,
(ii) $\bar{N}(a)=\bar{N}(b)-c$ and $N(d)=N(c)-b$ for some b, c, d, or
(iii) $\bar{N}(a)=\bar{N}(b)-c$ and $\bar{N}(d)=\bar{N}(c)-b$ for some b, c, d,
then b is in K.

Proof. Suppose (i) holds. Let d be in $N(a) \cap K$. Then $d \perp b$, but $a \pm b$. Since K is r rtitive, then b is in K.
suppose (ii) holds and b is not in K. Then since $\bar{N}(a)=\bar{N}(b)-c, \operatorname{deg}_{k} a=2$ and c is in K. Since c is in K, we can choose f in $N(c) \cap K$. Now f is in $N(c)-b$, so $f \perp d$. Note that d is not in K since $d \pm b$. But $N(d) \cap K \neq \emptyset$, so $K \cap N(d)=K$. This, however, is a contradiction since $N(d)=N(c)-b$ implies $c \pm d$.

Suppose now that (iii) holds and b is not in $K . b \perp a$ so $N(b) \cap K=K$. As above, c is in $K . d$ is not in K since $d \pm b$. But then $d \perp a$, so $a \in \bar{N}(c)$. This, however, is a contradiction since $\bar{N}(a)=\bar{N}(b)-c$.

Theorem 2.2. Let G be a connected totally point determining graph. G^{*} :s empty if and only if G is an X-join of hooks.

Proof. If G is an X-join of hooks, then it is clear that $G^{*}=\emptyset$. Now suppose that $G^{*}=\emptyset$. Then if G is not an X-join of hooks, it follows that there is some x in G which does not lie in any partitive hook. Choose such an x so that deg x is as small as possible.

Suppose x is in G^{0}. Then since x is not in G^{*}, there exist p and q in G such that $\bar{N}(p)=\bar{N}(q)-x$. No \sim if q is not in G^{0}, then there exist u and v in G such that $N(u)=N(v)-q$. By Lemma $1.1(v)$, either $v=p$ or $v=x$. Suppose $v=p$. Then since $\bar{N}(p)=\bar{N}(q)-x$, we have $N(u)=N(p)-q=N(q)-\{p, x\}$. Now if p is not in G^{0}, then for some w in $G, N(w)=N(q)-p$. But then $N(u)=N(w)-x$, contrary to x belonging to G^{0}. Thus we may assume p is not in G^{0}. But p is in G^{*}, so by Lemma 1.1(ii), $\bar{N}(x)=\bar{N}(a)-p$ for some a in G. Thus a is in $N(p)$. Since u is not in $N(x)$, we must have $u \pm a$. But then a is not in $N(p)-q$, so $a=q$. Thus
$\bar{N}(x)=\bar{N}(q)-p$ Fron $\bar{N}(p)=\bar{N}(q)-x$, it foilows that $N(x)=N(p)$, a contradiction. Thus $v \neq p$. So $v=x$ and $N(u)=N(x)-q$. But now $\operatorname{deg} u<\operatorname{deg} x$, so u must belong to some partitive hook K. By Lemma 2.1, x is in K and we tave a contradiction.
Herice we may assume $q \in G^{0}$. Then since $\bar{N}(p)=\bar{N}(q)-x$, we have $\bar{N}(r)=$ $\overline{\mathrm{N}}(x)-q$ for some r in G. Thus deg $r<\operatorname{deg} x$, so r must belong to some partitive hook $\mathcal{K}^{\prime} \mathrm{o}^{\prime}$ G. By Lemma 2.1, x is in K since $\overline{\mathrm{N}}(r)=\bar{N}(x,-q$ and $\bar{N}(p)=\bar{N}(q)-x$. But this is a contradiction.
Thus it must be that x is not in G^{0}. Now there exist p and q in G such that $N(p)=N(q)-x$. If q is r.ot in G^{0}, then $N(r)=N(x)-q$ for some r in G. But then again by Lemma 2.1, we have a contradiction. Thus q is in $\boldsymbol{J}^{0}-G^{*}$, so $\overline{\mathrm{N}}(s)=\overline{\mathbf{N}}(r)-q$ for some r and s in G. Hence we may assume that $r \neq x$, else we again have a contradiction by Lemma 2.1. But then a routine argument will show that $N(p)=N(q)-x, \bar{N}(p)=\bar{N}(r)-q$ and $\bar{N}(x)=\bar{N}(q)-r$. However, these relations guarantee that $\langle\{p, q, r, x\}\rangle$ is a partitive hook of G. This contradicts the choice of x and hence completes the proof.

For any graph G and x in $G,\{x\}$ and G are clearly partitive subsets of G. By a non-trivial partitive subset of \boldsymbol{G}, we mean a partitive subset \boldsymbol{K} of \boldsymbol{G} such that K is neither a singleton nor the entire graph.
A graph G is said to be indecomposat $:$ if and only if G dows not contain any non-trivial partitive subsets. It is easy to see that a graph is totally point determinag if and only if it has no partitive subsets of order two. Thus every indecomposable graph is totally point determining. Since any component of a graph is a partitive subset, every indecomposable graph of order at least three is connected. Therefore, as an immediate consequence of Theorem 2.2 , we have the following result.

Corollary 2.3. If G is an indecomposable graph having at least five points, then $G^{*} \neq \emptyset$.

For $n \geq 1$, Sumner defined an ortho n-path to be K_{2} if $n=1$ and, otherwise, to be the graph consisting of the points $p_{1}, p_{2}, \ldots, p_{2 n}$ where the neighborhoods of the points are determined by

$$
N\left(p_{2 i-1}\right)=N\left(p_{2 i+1}\right)-P_{2 i+2}
$$

and

$$
N\left(p_{2 i+2}\right)=N\left(p_{2 i}\right)-p_{2 i-1},
$$

for $i=1,2, \ldots, n-1$.
In Fig. 1, we see the ortho 2-path and ortho 3 -path. The ortho 3-path shows that we cannot strengthen Corollary 2.3 to guarantee that an indecomposable graph must contain a point whose removal leaves the graph indecomposable. However, in [8], Sumner has shown that the folle wing is true.

ortho 2-path

ortho 3-path
Fig. 1.
Theorem 2.4. Every indecomposable graph contains either a point or an edge whose removal leaves the graph indecomposable.

Further scrutiny of ortho n-paths establishes that every such graph is connected, point determining and bipartite. By the following resalt, also in [8], every ortho n-path is indecomposable.

Theorem 2.5. For a bipartite graph G, G is inde, omposable if and only if G is connected and point determining.

By definition of the ortho n-path, p_{2} and $p_{2 n-1}$ are the only points in G^{*}. Hence they are the only candidates for points whose removal leaves the graph indecomposable. But $G-p_{2}$ and $G-p_{2 n-1}$ are not connected and thus, not indecomposable. Furthermore, we are willing to make the following conjecture.

Conjecture 2.6. The only critical indecomposable graphs are the ortho n-paths.

Unlike the nucleus of a point determining graph, there exists an infinite number of connected, totally point determining gıaphs G witt: $\left|G^{*}\right|=1$. For example, the graphs in Fig. 2 all have exactly one totaly removable point and the graph in (b) yields such a graph for each value of n. However, we can show the following.

Theorem 2.7. If G is an indecomposable graph, then $\left|G^{*}\right|=1$ if and only if G is the graph in Fig. 2(a).

We shall omit the redious but routine proof of Theorem 2.7.

Fig. 2.

3. Possible total nuclel for connected totally point determining graphs

As in $[10]$, we would like to consider the problem of which graphs may be the total nucleus of some totally point determining graph. To establish our results, we make only slight modifications to the technique developed there to answer the analogous question for the nucleus of a point determining graph.

Lemma 3.1. Let H be a ε aph that is not totally point determining. Then there exists a graph H_{1} such that
(i) $H_{1}{ }_{1}$ is totally poir: cetermining,
(ii) H^{\prime} is an induced subgraph of H_{1} and
(iii) H_{1}^{*} is contained in H.

Moreover, if H is connected, then H_{1} may be chosen to be connected.
Proof. We may obtain H_{1} from H by adjoining a single endpcint to all but one element of each π-set of H and all but one element of each $\bar{\pi}$-set of H.

Lemma 3.2. If H is a, y graph and G_{1} is a totally point determining graph with $G_{1}^{*} \subseteq H \subseteq G_{1}$, then tht., e exists a totally point determining granh G with $G^{*}=H$.

Moreover, if G_{1} is cinnected, then G may be chosen to be connected als,
Proof. Let G_{1} be a to ally point determining graph with $G_{1}^{*} \subseteq H \subseteq G_{1}$ chosen so that $\left|H-G_{1}^{*}\right|$ is as $s m \omega l i$ as possible. Suppuse $G_{1}^{*} \neq H$ and let x be in $H-G_{1}^{*}$. Form a new graph G_{2} roin G_{1} by adjoining a path on four points with each point on this path also adjacent to each point of $N(x)$ in G_{1}. It is easy to check that G_{2} is totally point determining and that $G_{2}^{*}=G_{1}^{*} \cup\{x\} \subseteq H \subseteq G_{2}$. But this is a eontradiction.

As an immediate consequence of Lerımas 3.1 and 3.2 , for any graph H there exists a totally point tetermining graph G with $G^{*}=H$. Moreover, G may be chosen to be connected if H is connected.

It has been shown in [10] that not every graph is the nucleus of some connected point determining graph. However, for totally point determining graphs the result is all inclusive.

Theorem 3.3. For any' graph H, there exists a conr cted totally point determining graph G with $G^{*}=H$.

As noted above, wi only need to consider the case where H is not connected. Hence the following observation togerher with the next three lemmas, 3.4, 3.5, and 3.6, constitute a proof of Theorem 3.3.

If \boldsymbol{H} consists solely of isolated points, then the graphs in Fig. 3 (where the

$n=1$
(a)

Fig. 3.
totally removable points are the shaded points in each graph) show that Theorem 3.3 is satisfied in this case.

Lemmn 3.4. If H is any graph without isolated points, then there exists a connected totally point deternining graph G with $G^{*}=H$.

Proof. Suppose that H consists of the non-trivial components $C_{0}, C_{1}, \ldots, C_{n}$. As noted above we may assume $n \geq 1$. We form the graph G_{1} as follows. For each $i=0,1, \ldots, n$, let x_{i} be an element of C_{i}. Adjoin the new points a_{i} and b_{i} for $i=1,2, \ldots, n$, where the point a_{i} is adjacent to all of the points in $N\left(x_{0}\right) \cup\left\{b_{i}\right\}$, and b_{i} is adjacent to all of the points in $N\left(x_{i}\right) \cup\left\{a_{i}\right\}$ (see Fig. 4).

Fig. 4.
If the graph thus far obtained is not totally point determining, then any π-set or $\bar{\pi}$-set is contained in some C_{i}. Her $\mathcal{c e}$, by adjoining an end-point to all but one point of each such set, we obtain a connected totally point determining graph G_{1} such that $G_{1}^{*} \subseteq H \subseteq G_{1}$. Thus by Lemma 3.2 , there exists a connected totally point determining graph G with $G^{*}=H$.

Lemma 3.5. If H is a graph w th exactly one isolated point, then there exists a connected totally point determinirg graph G with $G^{*}=H$.

Proof. Suppose first that H has only one non-tivial component C. We form G_{1} as follows. Choose x in C. Adjoin the new points y, y_{1}, y_{2}, y_{3}, and y_{4} so that the graph induced by $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ is a hook; the cilly points of C adjacent to y_{i} for $i=1,2,3,4$ are precisely the points in $N(x)$; and y is adjacent to only y_{1}, y_{2}, y_{3}, and y_{4} (see Fig. 5).

Fig. 5.
If the graph thus far obtained is not totally point determining, then any π-set or $\bar{\pi}$-set belongs to C. Adjoin an endpoint to all but one point of each such set. Then $C \cup\{y\}$ is a copy of H and, hence we obtain a connected totally point determining graph G_{1} with $G_{1}^{*} \subseteq H \subseteq G_{1}$. Thus by Lemma 3.2 , the theorem follows in this case.

Suppose now that H has at least 2 non-trivial components. Let $C_{0}, C_{1}, \ldots, C_{n}$ be these non-trivial components where $n \geq 2$. Let \mathcal{F}_{0} be the graph formed in the proof of Lemma 3.4 and pictured in Fig. 4. We form G_{1} from G_{0} as follows. Adjoin the new points y, y_{1}, y_{2}, y_{3} and y_{1} ss, that the graph induced by $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ is a hook; the only points of $\left\lfloor_{i-0}^{r} C_{i}\right.$ adjacent o y_{j} for $j=1,2,3,4$ are the points in $\bigcup_{i=0}^{n} N\left(x_{i}\right)$; and y is adjace ut to only y_{1}, y_{i}, y_{3} and y_{4} (see Fig. 6). Any π-set or $\bar{\pi}$-set must lie in some C_{i}. Hence we obtair a connected totally point determining graph G_{1} from G_{0} as before by adjoining endpoints to all but one point of each such set. Thus $\left(\bigcup_{i=0}^{n} C_{i}\right) \cup\{y\}$ constitutes a copy of H in G_{1} so $G_{1}^{*} \subseteq H \subseteq G_{1}$. By Lemma 3.2, this completes the proo:.

Lemma 3.6. If H is a graph with $n \geq 2$ isolated points, then th re exists a connected totally point determining graph G with $G^{*}=H$.

Proof. Let $C_{1}, C_{2}, \ldots, C_{k}$ be the non-1-ivial components of H for $k \geq 1$ and let x_{i} be in C_{i} for $i=1,2, \ldots, k$. Form the graph G_{0} as fol. ows:

Adjoin the new points $\bigcup_{i=1}^{k}\left\{a_{i}, b_{i}\right\}$, where for each $i=1,2, \ldots, k$, the poin. a_{i} is adjacent to all of the points in $N\left(x_{1}\right) \cup\left\{b_{i}\right\}$; and for $i=1,2, \ldots, k-1, b$ is adjacent to all of the poinis in $N\left(x_{i+1}\right) \cup\left\{a_{i}\right\}$ and b_{k} is adjacent to only a_{k} (see Fig. 7).

Fig. 6.
Let H_{0} be the graph in Fig. 8. Attach H_{0} to G_{0} via the edge $b_{k} y$ to obtain the graph in Fig. 9. Now $\left(\bigcup_{i=1}^{k} C_{i}\right) \cup\left\{y_{1}, y_{2} \ldots, y_{n}\right\}$ is a copy of H. If the graph obtained thus far is no totally point determining, we derive a totally point determining graph from it as before by attaching appropriate endpoints Trus we obtain a connected totally point determining graph G_{1} such that $G_{1}^{*} \subseteq H \subseteq G_{1}$. By iemma 32 this completes the proof.

Fig. 7.

Fin

Fig. 9.

4. The total edge mucleus

In [5], we considered the problem of edge removal in a point determining graph via the edge nucleus. That is for a point determining graph G, we investigated the properties of the edge nucleus of $G, E^{0}(G)$, consisting of ail the edges e of G such that $G-e$ is point determining. Let us now consider the problem of edge removal in totally point determining graphs through a similar set of edges of the graph.

For a totally point determining graph G, the otai dige nucleus of G is the set $E^{*}(G)$ consisting of all those edges e of G such $G-e$ is a totally point determining graph. We shall let $E^{*}(G)$ also represent the graph formed by the edges in $E^{*}(G)$ and we shall use $V\left(E^{*}(G)\right)$ to denote the set of points in this graph.

Vis that if G i; a totally point determining f aph and $x y$ s in $E(G)-I^{*}(G)$. then there exists z in G such that either $V^{\prime}(z)=N(x)-y, N(z)=N(y)-x$, $\bar{N}(z)=\bar{N}(x)-y$ or $\bar{N}(z)=\bar{N}(y)-x$.

Similar to the result in [5] relating the intersection of the nucleus and the points in the edge nucleus, we have the following.

Theorem 4.1. If G is a connected totally point determining graph such that G is not an X-join of hooks and G is different from the graph in Fig. 2(a), then $G^{*} \cap$ $V\left(E^{*}(G)\right) \neq \emptyset$.

Proof. Choose x in G^{*} such that deg x is minimal. Suppose x is not in $V\left(E^{*}(G)\right)$. Let y be an element of $N(x)$ such that deg y is as small as possible. Since $x y$ is not in $E^{*}(\mathcal{G})$ and x is in G^{*}, there exists z in G such that $N(z)=N(x)-y$ or $\bar{N}(z)=\bar{N}(x)-y$.

Suppose $\bar{N}(z)=\bar{N}(x)-y$. Then $z x$ is not in $E^{*}(G)$, so $\bar{N}(y)=\bar{N}(x)-z$ or there exists w in G such that $N\left(x^{\cdot}\right)=N(x)-z$. But $\bar{H}(y)=\bar{N}(x)-z$ implies $N(y)=$ $N(z)$, so $N(w)=N(x)-z$. By the minimality of det! x, w is not in G^{*}. Thus there exist u and v in G such that $\bar{N}(u)=\bar{N}(v)-w$ or $N(z)=N(u)-w$. In the latter case, $u \perp x$ but u is not in $N(z)$, so $u=y$. But this contradicts the minimality of deg y. Hence, we may assume $\bar{N}(u)=\bar{N}(v)-w$. Now $v \perp x$ a $a d v \neq z$. Sirce $v x$ is not in $E^{*}(G)$, there exists t in G such that $N(t)=N(x)-v$ or $\bar{N}(t)=\bar{N}(x)-v$. Bui $N(t)=N(x)-v$ is a contradiction, since $t \perp z$ and $;$ is not in $\bar{N}(x)$. Also from $\bar{N}(t)=\bar{N}(x)-v$, we must have $x=w$, s:nce $\bar{N}(u)=\bar{N}(v)-w$. But this impossible since $N(w)=N(x)-z$.

Therefore, we may assume that $N(z)=N(x)-y$. By the minimality of $\operatorname{deg} x, z$ is in G^{*}. Thus there exist v and w such that $\bar{N}(v)=\bar{N}(w)-z$ or $N^{\prime}(y)=N(w)-\alpha$.

Suppose $N(y)=N(w)-z . w x$ is not in $E^{*}(G)$, so there exists u in G such that $N(u)=N(x)-w$ or $\bar{N}(u)=\bar{N}(x)-w$. But if $N(u)=N(x)-w$, then $x=z$, which is a contradiction. Hence, $\bar{N}(u)=\bar{N}(x)-w$. But then $u=\jmath$, otherwise, since u is in $N(x)-y=N(z)$, we would have z in $\bar{N}(u) \subseteq \bar{N}(x)$. Since G is connecied and $|G| \geq 5$, we may choose a in $G-\{w, x, y, z\}$ such that $N(a) \cap\{x, y, w, z\} \neq \emptyset$. But then $a \perp x$ and $a x$ is not in $E^{*}(G)$. Hence, there exists b in G such that $N(b)=N(x)-a$ or $\bar{N}(b)=\bar{N}(x)-a$. In the first case, $b \perp y$ and b is not in $\bar{N}(x)$ is a contradiction to $\bar{N}(y)=\bar{N}(x)-w$. In the latter, $b \perp x$ and $b \neq y$ since $a \neq w$. But tinen $b \perp z$ so that z is in $\bar{N}(x)$, again a contradiction.

Suppose $\bar{N}(v)=\bar{N}(w)-z$. Since $N(z)=N(x)-y, w \perp x$. $w x$ is no: in $E^{*}(G)$ so there exists u in G such that $\bar{N}(u)=\bar{N}(x)-w$ or $N(u)=N(x) \cdots w$. The former implies $x=z$, so $N(u)=N(x)-w$. If $v \neq x$, then $v \perp x$ and $v \neq w$. Fut then from $v \perp u$, it follows that u is in $\bar{N}(w)$, which is a c. ntradiction. Therefore, $v=x$ and $\bar{N}(x)=\bar{N}(w)-z$. Since $N(u)=N(x)-v$, it follows from the minimality of deg x that u is not in G^{*}. Thus there exist s and t in G such that $\bar{N}(s)=\bar{N}(t)-u$ or $N(w)=N(s)-u$. But $N\left(w^{\prime}\right)=N(s)-u$ implies $s \perp x$ and s is not in $\bar{N}(w)$, contrary to $\bar{N}(x)=\bar{N}(w)-z$. Hence $\bar{N}(s)=\bar{N}(t)-u$. We claim $s=x$. If $s \neq x$, then it would follow from $i \perp x$ that $s \perp x$. But $s \pm u$ so $s=w$. By the minimality of deg \mathfrak{l}. and since $s \perp x$ and $\operatorname{deg} s \ll \operatorname{deg} t$, we have $t \neq y$. Note $x t$ is not in $E^{*}(G)$. So there exists r in G such that $N(r)=N(x)-t$ or $\bar{N}(r)=\bar{N}(x)-t$. In the letter case we
have $x=u$, which is a contradiction. If $N(r)=N(x)-i$, then since I i w and $r \pm x$, we have $r=$. But then from $N(z)=N(x)-l$ and $N(z)=N(x)-y$, we obtain $t=y$. But this is a contradiction.
Theretorits x and $\tilde{N}(x)-\tilde{N}(\theta)-u$ If \boldsymbol{f}, then $1 z$ and z is not in $\bar{N}(x)$ so $a=z$. Now $N(z)=N(x)-w$. But this is inpossible, since it follows from $N(x)=$ F $(w)-z$ that $w+2$. Thus $t=y$ and $N(x)=N(y)-u$. Thus we have the induced subgaph in Tig. 10. Stine G is connected and this subgruph is properly contained

Fig. 10.
in G, we may choose a in $G-\{u, w, x, y, z\}$ such that $N(a) \cap\{u, w, x, y, z\} \neq \emptyset$. But then $a \perp x$, so there exists b in G such that $N(b)=N(x)-a$ or $\bar{N}(b)=$ $\bar{N}(x)-a$. If $N(b)=N(x)-a$, then $b \perp w$. Hence, since b is not in $\bar{N}(x)$, we have $b=z$. But then $N(z)=N(x)-a$ and $N(z)=N(x)-y$ yields $y=a$, a contradiction. Since $\bar{N}(b)=\bar{N}(x)-a$ and $\operatorname{deg} b<\operatorname{deg} x<\operatorname{deg} y$, we have $b \neq y$. But then $b \perp z$, and hence z is in $N(x)$. This is impossible since $N(z)=N(x)-y$.

As a consequence of Theorem 4.1, we see ihat if G is a connected totally point determining graph and is not an X-join of hooks, then $E^{*}(G) \neq \emptyset$. However, with the next two results, Entringer and Gassman in [2] have supphed necessary and sufficient conditions for the total edge nucleus to be nonempty.

Theorem 4.2. If G is a connected totally point determining graph, then $E^{*}(G)=\emptyset$ if and only if G is the path on four points.

A tail of length n in a graph G is an induced subgraph T with vertex se: $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ satisfying $N\left(t_{1}\right)=\left\{t_{2}\right\}, N\left(t_{i}\right)=\left\{t_{i-1}, t_{i+1}\right\}$ for $2 \leq i \leq n-2$, and $N\left(t_{n}\right)=-$ $\left\{t_{n-1}, a\right\}$ where a is some point of G. We say that the tail T is adjoi red at the point a to G.
Let G be a totally point determining graph such that $E^{*}(G)=\emptyset$. If there exists a component C of G such that $E^{*}(C) \neq \emptyset$, then G must have an isolated point. Since G cannot contain more than one isolated point, the next theorem completes the characterization of the totally point determin ng graphs G for which $E^{*}(G)=$ ø.

Theorem 4.3. If \boldsymbol{G} is a graph with exactly one isolated point, then G is totally point deternining and $E^{*}(G)=\emptyset$ if and only if each component C of G consists of a connicted bipartite graph B whose vertex set $B_{1} \cup B_{2}$, with $B_{1} \cap B_{2}=\emptyset \neq B_{2}$, satistes (i), (ii), and (iii) together with tails adjoined at the points of B_{2} so that (iv), (v) and (vi) are satisfied.
(i) B_{1} and B_{2} are both independent subsets of B.
(ii) Distinct points of B_{1} have distinct neighborhoods.
(iii) Each non-empty subset of the neighborhood of a point of B_{1} is the neighborhood of some point of B_{1}.
(iv) If $B_{2}=\left\{b_{2}\right\}$ and $B_{1}=\emptyset$, then b_{2} has one tail of length 3 or at least two tails each of length 2 or 3 adjoired.
(v) If $B_{2}=\left\{b_{2}\right\}$ and $B_{1} \neq \emptyset$, then b_{2} has at least one tail of length 2 or 3 adjoined.
(vi) If B_{2} is not a singeton, then each point of B_{2} has an arbitrary number (possibly zero) of tails of length 2 or 3 adjoined.

When comparing $E\left(G^{0}\right)$ and $E^{0}(G)$ for a connected, non-complete, point determining graph G, we could only guarantee that $E\left(G^{0}\right) \cap E^{0}(G) \neq \emptyset$, provided G^{0} has no isolated points (see [5]). However, for totally point determining graphs we obtain a much stronger relationship.

Theorem 4.4. If G is a totally point determining graph, then $E\left(G^{*}\right) \subseteq E^{*}(G)$.
The proof of Theorem 4.4 is trivial and hence is omitted.
Concerning the removal of edges in cycles of a totally point determining graph, in [5] we showed the following.

Theorem 4.5. If G is a totally point determining graph and C is an odd cycle of G, then there exists an edge of C that is also in $E^{0}(G)$.

The graph in Fig. 11 shows that we cannot extend Theorem 4.5 to $E^{*}(G)$ since the spanning cycle of this graph contains no totally removable edge. However, wc can show the iollowing.

Fig. 11.

Thidrom 46. If C is a totally point determining graph, then every triangle contains a totally remopible edge of G.

Proof. Consider the triangle induced by (x, y, z). By Theorem 4.5 , we may assume without loss of generality that xy is in $E^{\circ}(G)$. Supposn sy is not in $E^{*}(G)$. Then we may assume there exists w in G such that $\bar{N}(w)=\bar{N}(x)-y, w \neq z$ since $w \pm y$. Now if $x z$ is not in $E^{*}(G)$, then there exists u in G such that $\bar{N}(u)=$ $\bar{N}(x)-z, \bar{N}(u)=\hat{N}(z)-x, N(u)=N(x)-z$ or $N(u)=N(z)-x . N(u)=\bar{N}(z)-x$ is impossible since $\bar{N}(w)=\bar{N}(x)-y$ and $y \neq z$. Both $N(u)=N(z)-x$ aad $N(u)=$ $N(x)-\varepsilon$ contradict $\bar{N}(w)=\bar{N}(x)-y$, since in either case u is in $\bar{N}(\cdot v)-\bar{N}(x)$. Therefore, $N(u)=N(x)-z$, Consider $y z$. If $y z$ is not $\operatorname{ni} E^{*}(G)$, then there exists v in G such that $\bar{N}(v)=\bar{N}(y)-z, \bar{N}(v)=\bar{N}(z)-y, N(v)=N(y)-z$ or $N(v)=$ $N(z)-y$. Since $\bar{N}(w)=\bar{N}(x)-y$ and $z \neq x$, we cannot have $\bar{N}(v)=\bar{N}(y)-z$. Similarly, from $\bar{N}(u)=\bar{N}(x)-z$, we cannot have $N(v)=N(z)-y$. If $N(v)=$ $N(y)-2$, then $\varepsilon \leq x$ but $y \pm w$. But hen $v=w$ and since $w \perp z$, we have a contradiction. Thus $N(v)=N(z)-y$. Fom $v \perp x$ we see that v is in $N(u)$. But $v \pm u$, sinse $z \perp u$, and hence $v=u$. But this is impossible since $u \perp y$. Therefore, one of $x y, s z$ and $y z$ is a totally removable edge.

It can be sh wn that if G is a connecte J totally point determining graph with $|G| \geq 5$, then $L(G)$ is totally point determining (see [5]). Thus we have the following result relating $(L(G))^{*}$ and $E^{*}(G)$.

Theorem 4.7. Let G be a connected totally point determining graph. If G is not the path on five points, the $E^{*}(G) \cap(L(G))^{*} \neq \emptyset$.

Proof. Let $e=x y$ be in $E^{*}(G)$ and assume e is chosen so that $\operatorname{deg} x+\operatorname{deg} y$ is minimal. Suppose e is not in $(L(G))^{*}$. Then there exist a and b in $L(G)$ such that $\bar{N}(a)=\bar{N}(b)-e$ or $N(a)=N(b)-e$.

Suppose $\bar{N}(a)=\bar{N}(b)-e$. Then $b=x z$, since $b \perp e$. Also, since $a \perp b$ and $a \pm e$, we have $a=z u$ for some u in $G-\{x, y\}$. In addition $N(u)-z \subseteq\{x\}$ and $N(x)-\{y, z\}=\{u\}$. Thus $N(u)=N(x)-y$ or $\bar{N}(u)=\bar{N}(x)-y$; but this contradicts $x y$ being in $E^{*}(G)$.

Suppose $N(a)=N(b)-e$. Then $b \perp e$ so that $b=x z$. Also since $a \pm b$ and $a \pm e$, $a=u v$ for some u and v in $G-\{x, y, z\}$. Also, $N(a)=N(b)-e$ implies

$$
\begin{aligned}
& N(u)-v \subseteq\{x, z\}, \\
& N(v)-u \subseteq\{x, z\}, \\
& N(z)-x \subseteq\{u, v\}, \\
& N(x)-\{y, z\} \subseteq\{u, v\} .
\end{aligned}
$$

Suppose neither u nor v is adjacent to z. Then $N(z)=\{x\}$. Since G is point determining, $\operatorname{deg} y>\operatorname{deg} z$. Then by the minimality of $\operatorname{deg} x+\operatorname{deg} y, x z$ is not in
$E^{*}(C)$. Thus there exists w in G such that $N(w)=N(x)-2$ or $\bar{N}(w)=\bar{N}(x)-z$. Since G is connected we may assume without loss of generality that $u \perp \ldots$. If $N(w)=N(x)-z$, then $w \perp u$ implies $w=v$; but this is impossible since $v \pm y$. If $\bar{N}(w)=\bar{N}(x)-z, w \neq y$ since $y \pm u$. But then $w \perp x$ and w is not y or z, so $w=u$ or $w=v$. In either case, $\bar{N}(u)=\bar{N}(v)$ and we have a contradiction.

Hence, we may assume without loss of gene ality that $u \perp z$. Also $v \pm x$, for otherwise, $N(u)=N(x)-y$ or $\bar{N}(u)=\bar{N}(x)-y$, and either of these contradicts $x y$ being in $E^{*}(G)$. If $v \perp$. , then $u \perp x$ since $\bar{N}(v) \neq \bar{N}(u)$; but then $\bar{N}(u)=\bar{N}(z)$. Therefore, $N(v)=\{u\}$.

If $u \perp x$, then $\bar{N}(z)=\bar{N}(x)-y$, contrary to $x y$ being in $E^{*}(G)$. Thus $N(u)=$ $\{v, z\}$ and G is the graph in Fig. 12. Since G is not the path on five points, deg $y \geqslant 2$. But then by the minimality of $\operatorname{deg} x+\operatorname{deg} y, u v$ is not in $E^{*}(G)$. But this is impossible.

7ig. 12.
In a sense, Theorem 4.7 is hest possible. For the example in Fig. $13, E^{*}(G)=$ $\{3,4,7\}$ and $(L(G))^{*}=\{2,3,6,7\}$. Therefore, in general we do not have either $E^{*}(G) \subseteq(L(G))^{*}$ or $(L(G))^{*} \subseteq E^{*}(G)$.

G $=$

$L(G)=$

Fig. 13.
[1] M. nehzad and G. Enartrand, Introduction to the Theory of Graphs (Allyn-Bacon, Bostof, 197).
[2] R Entringer and L. Gassman, Line-critical point determining and point distinguishing graphs, Discrete Math 10 (1974) 43-55.
[3] D.P. Geoffroy, Bonids or the cardinality of the edge nucleus (to be submitted).
[4] DP, Genftoy On 1 fiacturs of point determining graphs (submitted).
[5] D.P. Gedifoy and D. S Sumier, The edge nucleus of a point determinitg graph, I. Combinatortid Theory Ser, B (to appear).
[6] ©. Sabidussi, Graph De tivatives, Math 2.76 (1961) 385-401.
[7] D.R. Sumner, Poin detemination in graphs, Discrete Math. 5 (1973) 179-187.
[8] D.P. Sumner, Graph in tecomposable with respect to the X-join, Discrete Math. 6 (1973) $281-292$.
[9] L.P. Sumne, 14cetors of point determining graphs, S. Combinatorial Theory 16 (B) (197.) 35-41.
[10] D.P. Sumner, The nucleus of a point determining grapin, Discrete Math. 14 (1976) 91-97.

