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The nucleus (edge nucleus) of a point deteymining graph is defined by Geoffroy and Sumner
to be the set of all points (edges) whose removal leaves the graph point determining. I¢ is the
purpose of this paper to develop the analogous concepts for totally point determiring graphs,
that is, graphs in which distinct points have distinct neighborhoods and closed neighborhoods.

1. Introduction

It will be assumed throughout this paper that all graphs are finite, undirected,
and wiihout loops or multipie =dges. All undefined terminciogy shall conform to
that of Behzad and Chartrand [1]. However, we shall use the term “point” instead
of “vertex”.

In [3,4,5,7,9,10], the idea of the nucleus and the edge nucleus of a point
determining graph were introduced and subsequently developed. It is the purpose
of this paper to develop the analogous conccpts for totally point determining
graphs. The basic definitions follow.

Let G be a graph and S a subset of G. S is called a w-set (#-set) of G if and
only if N(a)= N(b) (N(a)= N(b)) for every pair of distinct points a and b in S
and S is maximal with respect to this property. If a and b belong to the same
w-set (f-set), then we refer to {a, b} as a w-pair (7-pair).

A graph G is said to be point determining (totally point determining) if and only
if G has no w-pairs (w or #-pairs). Note that G is totaliy point determining is
equivalent to the condition that G and G are both point determining. For a
totally point determining graph G, the ‘otul nucleus of G is the set G* consisting
of all the points v of G such that G —v is a totally point determining graph.

The concept of the total aucleus of a totally point determining is analogous to
that of the nucleus of a point determining graph. That is, if G is a point
determining graph, thea t e nucleus of G is the set G° consisting of all the poirts
v of G such that G — v is )-oint determining. Note that x is not in G’ if and only if
there exist a and b in G such that N(a)= N(b)— x.

If G is a totally point ¢ etermining graph and v is in G, then v is in G~ G* if
and only if there exist ¢ and b in G—v such that in G —v. N(a)=N(b) or
N(a)= N(b). We will ado >t the convention that when we write **[i(x) = N(y)- z”
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y that x, y and z are dnstmct and y is
1nde rstandmg, v is in G - G* if and only if there exist
i N(a) N(b) . Also, instead of

le, it is easy tosee that:the

s. Hence, we would like to
ich a connected totally point

us. To do 50 we need to consider
OWir ept int ussi, (see [6]).

Let {Gx ¥ in X} be a tam ) f'}graphs indexed by another grarh X. Let #

denote adjacency in X and. f@r eac % in X, let 1, denote ad;acem' in G,. The

X-join of thxs famﬁy of gvaphs is

G= uk(axx {x}
with adjacency relation L defined by the folloving:
For (a,r) and (b, §) i in G, (a, r)_L(b 9) it and only if either r#s or, r=s and
al,b. :

There is an ajternate approach to the concept of X -join of a family of graphs.

Let G be a graph and K a subset of C Then K is said to be a partitive subset of
G if and only if for every x in G- K either N(x)NK =, or K is contained in
N(x).

It is easy to see that G is the X-join of {G,: x in X} if and only if the set of
points of G can be partitioned by a family of partitive subsets {V,: x in X} of G
such that the graph induced by V. is G,, (V,)= G,, for each x in X.

The folowing lemma gives us several basic tcols to be used in discussing the
removal of points and edges in a totally point determining graph.

Lemma 1.1. L¢t G be a totally point determining graph and let a, b, ¢, d, and e be
points of G with N{a)= N(b)~c.
(i) If N(d)= N(c)—e, then b=e.
(i) If N(c\ = ﬁ(d)— e, then a=e.
(iii) If N N(b)—e, then a=e.
(iv) If N N(e)—a, thendb=eorc=d.
(v) If N(d) N(e)—b, thena=ceorc=e.

Proof. (i) Suppose b# e. Then b L ¢, s0 b is in P“J(dl. But then a is in N(d), since
N(a}= N(b)~c and d# c. Thus a is a member of N(c) and we have a contradic-
tion.
(ii) b Lc, sobisin N(d). But then a L d and a is not in N(c). Thus a=e.
(iii) aL b so u=eorald I ald, then d is in N(b) contradicts N(d) =
N(b)—e. Thus a=e.

{iviele,soe=borelb If e#b, thendLb »utd isnotin N(a). Therefore,
= (.“
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(v) eLb,soe=coreisin N(a). If e L a. then d 1 a. But then d is not in N(b)
is a contradiction. Thus e=c or e=a.

2. Properties of the total nucleus

Before proceeding to characterize the connected totally point determining
graphs with nonempty total nucleus, let us prove the following lemma which will
facilitate the proof of the characterization. Note first that a book is simply the
path on four points.

Lemma 2.1. Let G be a totally point determining graph. Let a be a point of G such
that a belongs to some partitive hook K of G. If eitier
(i) IY(a)= I\_J(b)—- ¢ for some b, c,

(ii) 1‘_I(a)= I‘_{(b)—-c and N(d)=1‘:_l(c)-b for some b, c, d, or

(iii) N(a)= N(b)—c and N(d)= N(c)—b for some b, c, d,
then b is in K.

Proof. Suppose (i) holds. Let d be in N(a)N K. Then d L b, but a+ b. Since K is
r ctitive, then b is in K.

sappose (ii) holds and b is not in K. Then since N(a)= N(b)—c, deg, a =2 and
¢ is in K. Since c is in K, we can choose f in N(c)N K. Now f is in N(c)~ b, so
fLld. Note that d is not in K since d+b. But N(d)NK#§, so KNN(d)=K.
This, however, is a contradiction since N(d)= N(c)— b implies c+ d.

Suppose now that (iii) holds and b is not in K. b La so N(h)NK=K. As
above, ¢ is in K. d is not in K since d+ b. But then d L a, so a € N(c). This,
however, is a contradiction since N(a)= N(b)-c.

Theorem 2.2. Let G be a connected totally point determining graph. G* is empty if
and only if G is an X-join of hooks.

Proof. If G is an X-join of hooks, then it is clear that G* =@. Now suppose that
G*=. Then if G is not an X-join of hooks, it follows that there is some x in G
which does not lie in any partitive hook. Choose such an x so that deg x is as
small as possible.

Suppose x is in G”. Then since x is not in G*, there exist p and g in G such
that N(p)= N(q)— x. Now if q is not in G°, then there exist u and v in G such
that N(u) = N(v)—q. By Lemma 1.1{v), either v = p or v = x. Suppose v = p. Then
since N(p)= N(g)— x, we have N(u)= N(p)—q = N(q)- {p, x}. Mow if p is not in
G?, then for some w in G, N(w)= N(q)—p. But then N(u)= N(w)— x, contrary
to x belonging to G°. Thus we may assume p is ot in G°. But p is ia G¥, so by
Lemma 1.1(i}), N(x) = I\_I'(a)—p for some a in G. Thus a is in N{p). Since u is not
in N(x), we must have u+a. But then a is not in N(p)—gq, so u=gq. Thus



“must belong to some pamtxve"'
: ,\ﬁ(xrq andN(p) N(q) X.

f;agam by"Lemma 21 we have a contradl” txon Thus q 1s in ’"‘°-—G*

" N(s)= N(1)~q tor some r and s in G. Hence we may assume. that r#x, else we
again have a contradiction by Lemama 2.1. But then a routme argument will show
that N(p)= N(q)—x, N(p)= N(r)— G and N(x)= N(q) . However, these rela-
tions guarantee that ({p, q,r.x}) is a partmve hoek of G Thls ‘contradicts the
choice of x and hence ;ampl tes the proof ~

~For any grapn G and x in G {x} and G are clearly partmve subsets of G. By a
non-trivial partitive subset of G, we mean a partitive subset K of G such that K is
neither ‘2’ smgleton nor the entire graph. -

A graph G is said to be mdecomposqb ¢ if and only if G dovs not contain any
non-trivial _partitive subsets; It is easy to see that a graph is totally point
determin:ag if and only if it has no partitive subsets of order two. Thus every
indecomposable graph is totally point determining. Since any component of a
graph is a partitive subset, every indecomposable graph of order at least three is
connected. Therefore, as an immediate consequence of Theorem 2.2, we have the
following result.

Corollary 2.3. If G is an indecomposable graph having at least five points, then
G*#0.

For n=1, Sumner defined an ortho n-path to be K, if n =1 und, otherwise, to
b= the graph consisting of the points p,, p,, ..., p,, Where the neighborhoods of

the points are determined by
N(p2i-1) = N(p2i+1) = Pyisr

and

N(Pzwz) N(Pz:) Pai-15
for i=1,2,...,n-1.

In Fig. 1, we see the ortho 2-path and ortho 3-path. The ortho 3-path shows
that we cannot strengthen Corollary 2.3 to guarantee that an indecomposable
graph must contain a point whose removal leaves the graph indecomposable.
However, in [8], Sumner has shown that the follc wing is true.
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Theorem 2.4. Every indecomposable graph contains either a point or an edge whose
removal leaves the graph indecomposable.

Further scrutiny of ortho n-paths establishes that every such graph is con-
nected, point determining and bipartite. By the following resuit, also in [8], every
ortho n-path is indecomposable.

Theorem 2.5. For a bipartite graph G, G is inde.omposable if and only if G is
connected and point determining.

By definition of the ortho n-path, p, and p,,_, are the only points in G*.
Hence they are the only candidates for points whose removal leaves the graph
indecomposable. But G—p, and G—p,,., are not connected and thus, not
indecomposable. Furthermore, we are willing to make the following conjecture.

Conjecture 2.6. The only critical indecomposable graphs are the ortho r.-paths.

Unlike the nucleus of a point determining graph, there exists an infinite number
of connected, totally point determining graphs G witl: |G*| = 1. For example, the
graphs in Fig. 2 all have exactly one total'y removable point and the graph in ()
yields such a graph for each value of n. However, we can show the following.

Theorem 2.7. If G is an indecomposable graph, then |G*|= 1 if and only if G is the
graph in Fig. 2(a).
We shall omit the tedious but routine proof of Theorem 2.7.
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Fig. 2.

3. «Pmihl'e 'total{ nnclei for connec!ed totally point deterﬁining graphs

As in [lﬂ] we would I ke to consider the problem of whlch graphs may be the
total nucleus of some totully point determining graph. To establish our results, we
make only shght modifications to the technique developed there to answer the
analogous question for thie nucleus of a point determining graph.

Lemma 3.1. Let H be a ¢aph that is not totally point determining. Then there exists
a graph H, such that
(i) F'y is totally poir: Jetermining,
(ii) E is an induced subgraph of H, and
(iii) HY is contained in H.

Moreover, if H is connected, then H; may be chosen to be connected.

Proof. We may obtain H, from H by adjoining a single endpcint to all but one
element of each w-set of H and all but one :lement of each #-se: of H.
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Lemma 3.2. If H is a.iy graph and G, s a totally point determining graph with
GTc Hc G,, then th-.e exists a totally point determining graph G with G*=H.
~ Moreover, if G, is ¢ nnected, then G may be chosen to be connected alsc,

Proof. Let G, be a to-ally point determining graph with G*¥ < H< G, chosen so
that |[H— G?| is as sm.li as possible. Suppose GT# H and let x be in H-G¥.
Form a new graph G, !romn G, by adjoining a path on four points with each point
on this path also adjac:nt to each point of N(x) in G,. It is easy to check that G,
is totally point determining and that G3=GYU{x}c Hc G,. But this is a
contradiction.

As an immediate consequence of Lenimas 3.1 and 3.2, for any graph H there
exists a totally point etermining graph G with G*= H. Moreover, G may be
chosen to be connected if H is connected.

It has been shown ir. [10] that not every graph is the nucleus of some connected
point determining graph. However, for totally point determining graphs the result
is all inclusive.

Theorem 3.3. For an) graph H, there exists a conr cted totally point determining
graph G with G*=H.

As noted above, wc only need to consider the case where H is not connected.
Hence the following observation togerher with the next three lemmas, 3.4, 3.5,
and 3.6, constitute a proof of Theorem 3.3.

If H consists solely of isolated points, then the graphs in Fig. 3 (where tae

4 O
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Fig. 3.



i=0, 1 M, let x; be an element of C. Ad]om the new pomts a; and b, for
i=1,2,...,n where the point g; is ‘adjacent to all of the points in N(xo)U{b;},
and b; is ad;acent to all of the pomts in N(x,)U{a} (see Fig. 4).

Fig. 4.

If the graph thus far obtained is not totally point determining. then any m-set or
#-set is contained in some (. Her ce, by adjoining an end-point to all but one
point of each such set, we obtain a connected totally point determining graph G,
such that G¥ < H< G,. Thus by Lemma 3.2, there exists a connected totally point
determining graph G with G* = H.

Lemmaa 3.5. If H is a graph w th exactly one isolated point, then tnere exists a
connected totally point determinirg graph G with G* = H.

Froof. Suppose first that Fl has onlv one non-t.ivial component C. We form G,
as follows. Choose x in C. Adjoin the new poinis y, vy, y,, y3, and y, so that the
graph induced by {y,, y,, y3, y4} is a hook; the ¢nly points of C adjacent to y; for
i=1,2,3,4 are precisely the poiats in N(x); an:i y is adjacent to only y,, y,, V3,
and v, (see Fig. 5).
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Fig. 5.

If the graph thus far obtained is not totally point determining, then any 7-set or
ar-set belongs to C. Adjoin an endpoint to all but one point of each such set. Thea
CU({y} is a copy of H and, hence we obtain a connected totally point determining
graph G, with Gi< H< G,. Thus by Lemma 3.2, the theorem foilows in this
case.

Suppose now that H hos at least 2 non-trivial components. Let G, G, ..., C,
be these non-trivial components where n = 2. Let 75, be the graph formed in the
proof of Lemma 3.4 and pictured in Fig. 4. We form G, from G, as follows.
Adjoin the new points y,y;,y,, y3 and y, so that the graph induced by
{¥1> ¥2» ¥3, Y4} is a hook; the only points of |![_, C; adjacent o y, for j=1,2,3,4
are the points in |J.o N(x;); and y is adjaceut o only vy, y-, y; and y, (see Fig.
6). Any ar-set or 7r-set must lie in some (. Hence we obtair a connected totally
point determining graph G, from G, as before by adjoining endpoints to all but
one point of each such set. Thus ({J7., C;)U{y} constitutes a copy of H in G, so0
G¥< Hg G,. By Lemma 3.2, this completes the proo:.

Lemma 3.6. If H is a graph with n =2 isolated points, then th>re exists a connected
totally point determining graph G with G*= H.

Proof. Let C,, C.. ..., be the non-t-ivial compenents of if for k = 1 and let x;
be in C, for i=1,2,..., k. Form the graph G, as fol.ows:

Adjoin the new points -, {a;, b;}, where for each i =1,2,... k, the poin. g
is adjacent to all of the points in N(x,)U{h}; and for i=1,2,..., k—1, b is
adjacent to all of the poimis in N(x;,,)U{a;} and b, is adjacent to only q, (see Fig.
7.



Fig. 6.

Let H, be the graph in Fig. 8. Attach H, to G, via the edgc b,y to obt:in the
graph in Fig. 9. Now (Uf, ChU{y. vz ..., Yo} is a copy of H. If the graph
obtained thus far is no: totally point determining, we derive a totally point
determining graph from it as before by attaching appropriate endpoints Thus we
obtain a connected totally point determining graph G, such that G¥< He G,. By
t.emma 3 2 this completes the proof.
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4. The total edge nucleus

In [S], we considered the problem of edge removal in a point determining graph
via the edge nucleus. That is. for a point determining graph G, we investigated the
properties of the edge nucleus of G, E°(G), consisting of ail the edgss e of G such
that G — e is point determining. Let us now consider the problem of edge removal
in totally point determining graphs through a similar set of edges of the graph.

For a totally point determining graph G, the .ota! 2dge nucleus of G is the set
E*(G) consisting of all those edges ¢ of G such G-e is a totally point
determining graph. We shall let E¥*(G) also represent the graph formed by the
edges in E*(G) and we shall use V(E*(G)) to dencte the set of points in this
graph.

Noie thauif G i a totally point determining graph and xv s in F(G)Y - FX(G),
then ihere exists z in G such that either N{z]=N@x)—y, N(z)=N(y)—x,
N{z)y=N(x)~y or N(z)=N(y) ~ x.
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Similac to the result in [5] relating the intersection of the nucleus and the points
in the edge nucleus, we have the following.

Theorem 4.1. If G is a connected totally point determining graph such that G is not
an X-join of hooks and G is different from the graph in Fig. 2(a), then G*N
V(E*(G))#§.

Proof. Choose x in G* such that deg x is minimal. Suppose x is not in V(E*(G)).
Let y be an element of N(x) such that deg y is as small as possible. Since xy is not
in E*(G) and x is in G¥*, theie exists : in G such that N(z)=N(x)—y or
N(z)= ﬁ(x)_—- y i i

Suppose N(z)= N(x)-y. Then zx is not in E*(G), so N(y)= N(x)—z or there
exists w in G such that N(w)= N(x)-z. But M(y)=N(x)-z implies N(y)=
N(z), so N(w)= N(x)- z. By the minimality of de;' x, w is not in G*. Thus there
exist u and v in G such that N(u)=N(v)—w or N(z)= N(u)—w. In the latter
case, u L x but u is not in N(z), so u=y. But this contradicts the minimality of
deg y. Hence, we may assume N(u)= N(v)—w. Now v L x aud v# 2. Since vx is
not in E¥{G), there exists f in G such that N(f)= N(x)—v or N(t)= N(x)—v. But
N(t)= N(x)- v is a contradiction, since t Lz and ¢ is not in N(x). Also from
N(1) = N(x)— v, we must have x = w, s:nce N(u)= N(v)—w. But this impossible
since N(w)= N(x)—z.

Therefore, we may assume that N(z) = N(x)—y. By the minimality of deg x, z
is in G*. Thus there exist v and w such that N(v)= N(w)—z or N{y) = N{w)— 2.

Suppose N(y)= N(w)—z. wx is not in E*(G), so there exists u in G such that
N(u)= N(x)-w or N(u)= N(x)—w. But if N(u)=N(x)—w, then x = z, which is
a contradiction. Hence, N(u)= N(x)— w. But then u =y, otherwise, since u is in
N(x)—y= N(z), we would have z in N(u)< N(x). Since G is connecied and
|G|= S, we may choose a in G—{w,x, y, z} such that N(a)N{x, y, w, z} # . But
then a L x and ax is not in E*(G). Hence, there exists b in G such that
N(b)= N(x)—a or N(b) = N(x)—a. In the first case, b L y and b is not in: N(x) is
a vontradiction to N(y)= N(x)— w. In the latter, b L x and b#y since a=# w. But
then b L z so that z is in N(x), again a1 contradiction.

Suppose N(v)= N(w)—z. Since N(z)=N(x)—y, wLx. wx is no.in E*(G) so
there exists u in G such that N(u)= N(x)—w or N(u)= N(x)—~w. The former
implies x = z, so V(u)= N(x)—w. If v#x, then vl x and v# w. But then from
v L u, it follows that u is in N(w), which is a c. ntradiction. Therefore, v = x and
N(x)= N(w)—z. Since N(u)= N(x)-w, it follows from the minimality ¢f deg x
that u is not in G*. Thus there exist s and ¢ in G such that N(s)= N(t)—u or
N{(w) = N(s)— u. Bui N(w)=M(s)—u implies s L x and s is not in N(w), contrary
to N(x)= N(w)— z. Hence N(s)= N(t)— u. We claim s = x. If s# x, then it would
follow from 71 x that s | v But v+ 1. so s = w. By the minimality of deg. and
since s L x and deg s<degt, we have (#y. Note xi is not in E*(G). So there
exists r in G such that N(r)=N(x)—t or N(r'=N(x)—t In the letter case we
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i G, ‘'we' may choose 2 in G-{u, w, % ¥z} such that N(a)n{u, w, X,y z}#ﬂ
But then a Lx, so there exists b in G such that N(b)=N(x)-a or N(b)=
N(x)—a. If N(b)= N(x)— a, then b L'w. Hence, since b is not in N(x), we have
b=z But then N(z)= N(x)-- a and N(z) = N{(x)—y yields y = a, a contradiction.
Since N(b)=N(x)—a and deg b<deg x<deg y, we have b+ y. But then b1z,
and hence z is in N(x). This is impossible since N(z)= N(x)—y.

As a consequence of Theorem 4.1, we see ihat if G is a connected totially point
determining graph and is not an X-join of hooks, then E*(G) # §. However, with
the nex¢ two results, Entringer and Gassman in [2] have supplied necessary and
sufficient conditions for the total edge nucleus to be nonempty. :

Theorem 4.2. If G is a connected totally pcint determining graph, then E*(G)=§
if and only if G is the path on four points.

A tail of length n in a graph G is an induced subgraph T with vertex sct
{t;, &2y . . ., t,} satisfying N(#;) ={t}, N(t)={t_,, .} for2=i=n-2,and N(t,) =
{t._1, a} where a is some point of G. We say that the tail T is adjoi1ed at the poin!
ato G.

Let G be a totally point determining graph such that E*(G) = @. If there exists
a component C of G such that E¥(C)# @, then G must have an isolated point.
Since G cannot contain more than one isolated point, the next theorem completes
the characterization of the totally point determin.ng graphs G for which E*(G)=

.
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Theorem 4.3. If G is a graph with exactly one isolated point, then G is totally point
deterinining and E*(G)=0 if and only if each component C of G consists of a
connccted bipartite graph B whose vertex set B,UB,, with B,NB,=0#B,,
satispies (i), (i1), and (iii) together with tails adjoined at the points of B, so that (iv),
(v) and (vi) are satisfied.

(i) B, and B, are both independent subsets of B.

(ii) Distinct points of R, have distinct neighborhoods.

(iii) Each non-empty subset of the neighborhood of a point of B, is the neighbor-
hood of some point of B,.

(iv) If B,={b,} and B, =@, then b, has one tail of length 3 or at least two tails
each of length 2 or 3 adjoined.

(v) If B,={b,} and B,#@, then b, has at least one tail of length 2 or 3
adjoined.

(vi) If B, is not a sing.eton, then each point of B, has an arbitrary number
(possibly zero) of tails of length 2 or 3 adjoined.

When comparing E(G°® and E°G) for a connected, non-complete, point
determining graph G, we could only guarantee that E(G°)N E°(G) # 9, provided
G° has no isolated points (see [5]). However, for totally point determining graphs
we obtain a much stronger relationship.

Theorem 4.4. If G is a totally point determining graph, then E(G*)< EX(G).

The proof of Theorem 4.4 is trivial and hence is omitted.
Concerning the removal of edges in cycles of a totally point determining graph,
in [5] we showed the following.

Theorem 4.5. If G is a totally point determining graph and C is an odd cycle of G,
then there exists an edge of C that is also in E°(G).

The graph in Fig. 11 shows that we cannot extend Theorem 4.5 to E*(G) since
the spanning cycle of this graph contains no totally removable edge. However, we

can show the iollowing.

O

L 7

Fig. 11.




The m 4 7. Let G bea connected 'lly pomt determining graph If G is not the
‘ path' on five pomts, the EXG)N(L(5 G))* #0.

Proof. Let e=xy be in and assume ¢ is chosen so that deg x +degy is

mlmmal Snppose e is not in (L(G))* Then there exist a and b in L(G) such that
N(a)= N(b)-—»e or N(a) N(b)—* :

Suppose N(a) N{b) e. Then b =xz, since b L e. Also, since al b and ate¢,
we have g=zu for some u in G—{x, y} In addition N{u)—zc{x} and

N(x)—- {y, z}_, {u}. Thus N(u)= N(x)—~y or N(u)= N(x)—y; but this contradicts
xy being in E¥*(G).

Suppose N(a)= N(b)—e. Then b L e so that b = xz. Also since a+ b and aze,
a = uv for some u and v in G—{x, y, z}. Also, N{a)= N(b)—e implies

N(u)—-v<s{x, z},
N@)—ucix, z},
N(z)—xc{y, v},
N(x) —{y, z} = {u, v}.

Suppose neither u nor v is adjacent to z. Then N(z)={x}. Since G is point
Jetermining, deg y >deg z. Then by the minimality of deg x +deg y, xz is not in
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E*(G). Thus there exists w in G such that N{w)=N(x)—z or N(w)=ﬁ(x)—z.
‘Since G is connected we may assume without loss of generality that u L .. If
;;;N(%}—N{:%z then w i u implies w=uv; but this is impossible since v+ y.
}}"ﬂ(:v)-*—N(x)—-z, w#y since y+ u. But then wLx and wisnot y or z,so w=u
or w =1, In either case, N(u)= N(v) and we have a contradiction.
Hence, we may assume without loss of gene:ality that u L z. Also v+ x, for
otherwxsc, N(u)= N(x)--y or N(u)= N(x)- y, and either of these contradicts xy
“being in E*(G). If v L -, then u L x since N(v)# N(x); but then N(u)= N(z).
Therefore, N(v) = {u}.

If ulx, then N(z)= N(x)-y, contrary to xy being in E*(G). Thus N(u)=
{v, z} and G is the graph in Fig. 12. Since G s not the path on five points, deg
y =2, But then by the minimality of deg x +deg y, uv is not in £*(G). But this is
impossible.

G - {u,v,x,z}

¢ = O O —O— O / o)
v 1 4 X y
tig. 12.

In a sense, Theorem 4.7 is best possible. For the example in Fig. 13, E*(G) =
{3,4,7} and (L(G))*=1{2, 3, 6. 7}. Therefore, in general we do not have either
E%G) < (L(G)* or (L(G))*< E*(G).

G = O -O— —0O- -0
i
O -0
5 € 7 O
1 2
l}____
| 3
| e
i &
L(e) = O O d
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