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1. Introduction

In their approach studying Macdonald g, t-Kostka polynomials K, (g, t), L. Lapointe, A. Lascoux and ]. Morse introduced

k-Schur functions in [18]. Abstractly, the k-Schur functions {s(") [X; t]} are generalizations of the Schur functions s, [X] and
are the fundamental basis of the subspace of the symmetric functions linearly spanned by the Hall-Littlewood symmetric
functions Q; [X; t] = > " K,.,.(0, t)s,,[X] with all parts of the partition A smaller than or equal to k. The motivating property
for defining the k-Schur functions was that the Macdonald polynomials H,[X; g, t] = Zu K,.;.(q, t)s,[X] [24] expand
positively in this basis when A has parts bounded by k. In more recent works [19-22], Lapointe and Morse have studied in
particular, properties of these symmetric functions and conjectured other definitions. Continuing research has established
the importance of k-Schur functions in other areas of mathematics including connections to the geometry of the affine
Grassmannian.

In this article, we introduce a basis for a subspace of the Hopf algebra of non-commutative symmetric functions studied
in [5,9,16,17] which we believe is a good analog of the k-Schur functions. This basis satisfies many of the same properties of
the
k-Schur functions and, unlike the commutative counterparts, our analogous versions are very well behaved so that proper-
ties which are difficult to prove or are conjectural in the commutative case, can be proven for the non-commutative versions.

Several non-equivalent analogs of the Macdonald and Hall-Littlewood symmetric functions have been introduced [3,
13,14,25] to model various properties of symmetric functions with extra parameters. In this article, we concentrate on the
versions introduced in [3] because they have exactly the properties of the commutative counterparts which we wish to
understand better. In particular, the non-commutative analogs introduced in [3] are known to have an operator v which
is analogous to the operator V introduced in [2]. The operator V is defined so that the Macdonald symmetric functions
H[X; q, t] = t"®H,[X; q, 1/t] are eigenfunctions with eigenvalues t"®q"*" (here n() = 3_._, (i — 1)A;) and similarly v
is defined so that the g, t-analogs of non-commutative symmetric functions are eigenfunctions (see Definition 17).
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The main results that we demonstrate here are difficult to appreciate without comparing these with the corresponding
properties of the k-Schur functions. We list here some of the striking conjectures about the k-Schur functions (all of which
except property (5) are from [ 18] or [19]) and preceding each of the statements, we list each of the corresponding theorems
for the non-commutative versions. Let A be a partition with all parts less than or equal to k.

(1) (Theorem 9) The k-Schur functions are a basis for the space of symmetric functions DC{QIL [X; t] : w1 < k}.In particular,
the element Q; [X; t] expands positively in the k-Schur functions.

(2) (Theorem 10) s(kk) [X; t] expands positively in terms of the functions sg‘“)[X; t].

(3) EThel(:renI; 14) The Macdonald symmetric function H; [X; q, t] = ZM K,.,.(q, t)s,[X] expands positively in terms of the
k-Schur basis.

(4) (Propositions 15 and 16) The fundamental involution w applied to si") [X; t] is another k-Schur function with the ¢t
parameter inverted.

(5) (Theorem 26) The operator V acting on sf\k) [X; 1/t] expands positively in the k-Schur basis also with the parameter
inverted.

Part of the motivation for considering this filtration of the non-commutative symmetric functions is that it reflects all of
the properties of the k-level filtration of the symmetric functions. The properties of the y-Schur non-commutative functions
have motivated us to study a k-level analog of the g, t-Catalan numbers [1] and it has also helped in making new conjectures
on the commutative symmetric functions through observations of the non-commutative counterparts (see for instance
Conjecture 21 which was made after observing the analogous property of the non-commutative versions of these functions).

2. Non-commutative symmetric functions

2.1. Preliminaries on compositions

The number of elements of a sequence « is called the length and is denoted by I(«). A sequence of positive integers

o = (a1, ..., o) is a composition of size n, written « = n, if

0l1+~-'+0l](a) =n.
A composition « is usually represented by a rim-hook diagram whose rows have lengths o4, .. ., o) (read from top to
bottom).

Example 1. The composition @ = (2, 4, 3, 1) of size 10 can be represented by the diagram

In the theory of non-commutative symmetric functions, we are interested in two kinds of concatenation operations. The
first operation is the usual concatenation defined, for two compositions « and 8, by

a'ﬂ:(a17a25"'7al(0()5/317/327"'$ﬁl(ﬁ))' (])
The second operation is the attachment defined by
alB = (a1, az, ..., Oya)—1, Q@) + B1, B2, B3, -, Big))- (2)
The descent set D(«) of a composition « is defined as the set
D(a) = {aq, a1 + oz, ... 00+ - -+ Qy—1}- (3)
The descent set D(«) characterizes the composition « and is of size I(«) — 1. It is easy to see that the compositions of n are
in one-to-one correspondence with the subsets of {1, 2, ...,n — 1}.
For any composition «, the major index statistic is defined by
(@)
n@= Y i=Y (i— D@1 4)
ieD(a) i=1

For two compositions « and 8, we can refine the previous statistic by defining c(«, 8) as
ca,py= )y i 5)
ieD(a)ND(B)

There is a natural partial order < on the set of compositions of n, which is called the refinement order. We say that « is finer
than g, written o < g, if

D(B) < D(a). (6)
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We can also say that o < g if there exists a sequence of compositions y?, ..., y® such that

a=yP.y@. o y® and B=y @ y@ L y®. (7)
There exist three standard involutions on compositions. The first one is the reverse of a composition defined by

@ = (@) A@)—1s - - - » ©1)- (8)
If the descent set of « is D(«) = {iy, ..., i} then

D(®@) = f{la| — iy, | — iz, ..., || — ik} 9

The second involution is the complement of a composition. For any composition « of n, the complement «¢ of « is the
composition with descent set the complement of D(«)

D) ={1,2,...,n— 1}\D(x). (10)

The third one is the analog of the conjugate of a partition and corresponds to the flipping of the composition about the line
y = x. Itis defined by

o =& = & (1
Example 2. The descent set of the composition @ = (2, 4, 3, 1) given in Example 1 is

D(e) = {2,6,9}.
The three previous involutions applied on the composition « give

& =0,3,42), at=(1,2,1,1,2,1,2) and o' =(2,1,2,1,1,2,1).

These compositions correspond respectively to the following diagrams

2.2. Non-commutative symmetric functions

For more details about non-commutative symmetric functions see [5,9,16,17]. We use the convention of bold font for
writing down the non-commutative symmetric functions. Let A = {ay, ay, . . .} be a sequence of non-commutative variables
and X the corresponding sequence where variables commute. For any composition «, we define the non-commutative
homogeneous functions by

hy(A) = h, (A) . .. hg,, (A), (12)
where h; (A) is a non-commuting generator of the algebra that is analogous to the element h, (X) in the space of symmetric
functions. That is

@)= Y a0 -a,. (13)

i1<ip<-<ip
The product of two non-commutative homogeneous symmetric functions is given by

hy (A)hg(A) = hy.g(A). (14)
The space of non-commutative symmetric functions Sym over the field C(g, t) of rational functions in the parameters q and
t is defined by

Sym = C(q, t)(hy, hy, ...). (15)
The analogs of Schur functions are the ribbon Schur functions defined for any composition « by
R,(A) = Y (=)@ hy(A). (16)
as<p

The multiplication rule for two ribbon Schur functions is given by

R (A)Rg(A) = Ro.p(A) + Ryjp(A). (17)
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There are two involutions «° and & on the non-commutative symmetric functions which are the analogs of the involution
w in Sym. They are defined for any composition « by

©°(Ry(A)) =Ryc(A) and @ (Ry(A)) = R (A). (18)
We define the commutative evaluation of a non-commutative symmetric function through the surjective map

X: Sym — Sym
h,(A) +—— h,(X).

The image of the ribbon Schur function R, (A) by x is the commutative skew Schur function indexed by the skew partition
corresponding to the ribbon «.

(19)

2.3. Deformations of non-commutative symmetric functions

The modified Hall-Littlewood functions Q, (X; t) (resp. modified Macdonald polynomials H; (X; g, t)) are t-analogs (resp.
(g, t)-analogs) of the complete functions h; (X). In this section, we recall basic statements on the non-commutative analogs
of these deformations defined in [3]. There exist different non-commutative analogs of Hall-Littlewood functions and
Macdonald polynomials which have been considered in [13,14] by Hivert, Lascoux and Thibon and more recently in [25]
by Tevlin.

2.3.1. Non-commutative Hall-Littlewood functions
In [3], the authors define non-commutative analogs of Hall-Littlewood functions by

Hy (A t) = ) t““PIRy(A). (20)
pze
The non-commutative Hall-Littlewood functions H, (A; t) satisfy the following specializations
H,(A; 0) =Ry (A) and Hy(A; 1) = hy(A). (21)

Example 3. The expansion of the non-commutative Hall-Littlewood H1,;(A; t) in the ribbon Schur basis is

Hi2i(A; £) = Ri21(A) + t R31(A) + £ Ri3(A) + t* Re(A).

For any hook composition @ = (1¢, b), the commutative image of H, (A; t) by x coincides with the commutative modified
Hall-Littlewood functions Q(/b,l“)(X; t)

X (Haa by (A; £) = Q(p 10y (X5 ). (22)

In [3], we find more detailed statements on these non-commutative functions. For example, there are an explicit expansion of
the product of two Hall-Littlewood functions in terms of Hall-Littlewood functions, a Pieri formula, some creation operators
and a factorization formula at primitive roots of unity. Most of these properties also exist for the analogs considered in [13].

2.3.2. Non-commutative Macdonald polynomials
In [3], the authors also give a definition for non-commutative analogs of Macdonald polynomials in Sym. These functions
are defined by

<
Ho(Aiq.0) = Y t7@Fqe@ PRy a). (23)
BEla|
We define non-commutative analogs of the modified Macdonald polynomials ITI,\ (X;q,t) by
~ 1 g
Ho(A;q,t) = t"“H, <A; q. *) = 3 g PRy, (24)

Bl
The right hand side of (24) comes from the following property

n(@ —c(a, =Y i- > i= Y i=c.p. (25)

ieD(a) ieD(a)N({1,...,n}\D(B)) ieD(a)ND(B)

Example 4. The expansion of the non-commutative Macdonald polynomial ﬁ31 (A; q, t) in the ribbon Schur basis is

H3i(A; ¢, t) = Ry(A) + ¢ Ris(D) + @ Raa(A) + ¢° Rinn(A) + £ Rsi(A)
+ @ Rizi(A) + @ Rui(A) + ¢ Ry (A).
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These definitions can be expressed in terms of tensor products of 2 x 2 matrices (see [3] for more details). For two matrices
Band C = (¢jj)1<i j<m, we use the following convention for the definition of their tensor product

B® C = [¢;Bli<ij<m- (26)
Let n be a non-negative integer. To consider column vectors of elements of degree n in Sym, we need a total order on the set
of compositions of n. We use the total order corresponding to the rank function ¢ defined by

¢: {o,abE=n — {0,...,2"'—1}

o — Z 21, (27)
ieD(x)

More precisely, an element of a basis indexed by a composition o appears in the row ¢ («) of the vector.

Example 5. Using this total order, the compositions of 4 are listed as follows
4), (13), (22), (112), (31), (121), (211), (1111).

We denote by R(A) the column vector of ribbon Schur functions (R,(A))q=n and by H(A; g, t) the column vector of
Macdonald polynomials (H (A; g, t))q=n. Directly from Eq. (23), we obtain the following formula

1 n—17 1 n—2 1
Hago=|, 1 el }@---@[tn_l ﬂR(A). (28)

The matrix expression for the column vector ﬁ(A; g, t) of modified non-commutative Macdonald polynomials defined with
Eq. (24) is given by

—_—
-

1 ¢t 1

- " n-17 T n—2 1
Aagn=|1 7 |e| qz]@"'@[ tn"_1]R(A>. (29)

Example 6. The matrix expression of Macdonald polynomials for n = 3 is given by
) 3 |1 ¢ q ¢
~ . 11 q 1 ¢q a2 |1t q qt
1

q
(111) t 2

3. Non-commutative analogs of k-Schur functions

We define analogs of k-Schur functions in the space of non-commutative symmetric functions Sym. To find k-Schur
functions, Lapointe, Lascoux and Morse originally observed in [18] that certain linear combinations of Hall-Littlewood
functions were Schur positive and essentially give atoms that make up the Macdonald symmetric functions.

Let n be a non-negative integer and y a composition of n. The subspace Ssym"’ of Sym is defined as the following
homogeneous linear span of some non-commutative Hall-Littlewood functions H, (A; t)

Ssym"”) = £{H,(A; t) such that = |y | and & < y}. (30)

This space is a natural analog of the subspace of Sym® generated by the modified Hall-Littlewood functions Q; (X; t) indexed
by partitions A with the first part being less than k.

Definition 7. Let o and y be two compositions of n such that @ < y. The y-ribbon Schur function R((XV)(A; t) is defined by
RVA:n= Y @Ry (31)
D(w)\géggn(y)

The compositions 8 which appear in the previous sum are those which appear in the interval of the composition poset for
the refinement order between « and the composition with descent set D(a)\D(y ).

Example 8. For n = 5, the expansion of the (131)-ribbon Schur function R§113211) (A) is

R§113211) (A; 1) = Ri121(A) + t Ry21(A) + t* Ryg3(A) + £ Ry3(A). (32)
Directly from Definition 7, the y-ribbon Schur functions reduce for special cases of the level y to some particular non-
commutative symmetric functions.

RU“D(A; t) = Ry (A) and RW(A;t) = Hy(A; t). (33)

At this moment, it is not clear that the y-ribbon Schur functions form a basis of the subspace Sym’. The following theorem
gives us an explicit expression for the y-ribbon Schur functions in terms of Hall-Littlewood functions.
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Theorem 9. The set of elements {RY (A; t)}a<y is a basis of Sym"’. The change of bases between Hall-Littlewood functions
and y -ribbon Schur functions is given by N

Ho(A D= Y PRV @A), (34)
a=<f=<y
The inverse change of basis is given by

RV A:n) = ) (=17 P @R, A; 1), (35)

a<p=<y

Proof. In this theorem, Eq. (35) is a Mobius inversion over the Boolean lattice of Eq. (34). The proof of Eq. (34) follows from
Theorem 10 which gives branching rules for y-Schur functions and from the limit cases given in Eq. (33). O

Theorem 10. Let y and y be two compositions of n such that y < y. For any composition « < y of n, the branching rule from
the y -Schur functions to the y-Schur functions is given by

RY(A: 1) = Yoo @ERY (4. (36)
y=pza
D(&)\D(ﬂy)SD(V)\D(%

This theorem means that there exists a family of branching rules for a given level y. This theorem is also an analog of the
branching rules from the k-Schur functions to the (k4 1)-Schur functions in the commutative case. They are still conjectural
and seem to be related to a poset structure of the k-shapes.

Example 11. The two branchings for the (221)-Schur function Rﬁﬂ)l) (A; t) to levels (41) and (23) are

RZD (A:0) = R4, (A0 + CRGD (45 0) (37)
= R%])(A; £) +t* Rﬁﬁ)a)(f‘; t). (38)

In this example

RE??Q)I)(A; t) = Ra121)(A) + °Risn (A) + 'Rz (A) + °Ri1g) (A),
and

R(1131) (A; ) = Ranan (A) + t*Rernz) (A)

RE??])(A; t) =Rz (A) + t*Rug (A),

R(111) (A; ) = Ranan (A) + Ry (A)

RE% (A; 1) = Ra13)(A) + t°Ri14) (A).

In order to prove Theorem 10, we need to prove the following two technical lemmas.

Lemma 12. Let 8 be a composition of n. For two compositions « and § of n such that « < B < 4,
c(a, B +c(B,8) = c(a, ).
Proof. The quantity c(«, 8) + c(B, &°) is the sum over all i in the set D(«) N D(B) and D(B8) N D(8°). Since D(B) < D(«)
and D(8°) C D(5°),
(D(a) ND(B)) U (D(B) N D(6%)) = (D(ex) N D(B°)) U (D(r) N D(B) N D(5°))
= D(a) N (D(B) U (D(B) N D(5)))
= D(a) N ((D(B°) N D(8)) U (D(B) N D(5)))
= D(a) N D(8°) N (D(B°) UD(B))
= D(a) N D(5°).
Therefore c(a, ) + c(B, 6°) = c(a, 8. O

Lemma 13. Let y and ¥ be two compositions of n such that y < y. Let « be a composition of n such that « < y. The map
which sends (8, ) to 8 is a bijection between the two sets

A={(5,B)suchthat § > B > acand B < y and D(«)\D(B) S D(y)\D(y) and D(8)\D(8) € D(y)}
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and
B = {8 such that § > o and D(«)\D(§) € D(y)}.
Proof. Let o be a composition of n and assume that (§, 8) is in A. Let i be in D(«)\D(§), then eitheri € D(8) ori & D(B). If
i € D(B), then since D(B)\D(8) < D(y),
i€ D(y) € D(y).
Ifi & D(B), then
i€ D(@)\D(B) € D(y)\D(y) < D(y).

Consequently, § is an element of B.

If (8, B) is in the set A, then we have D(8)\D(8) € D(y), so therefore we can conclude that D(8) € D(y) U D(§). We
also have the conditions that 8 < § and 8 < y. Therefore D(§) € D(B) and D(y) < D(B). Therefore D(8) U D(y) € D(B).
Thus for each §, there is at most one pair (8, 8) in A that will have D(8) = D(§) U D(y). But we need to show that this pair

is in fact in the set A.
Let i be in D(w)\D(B) = D(a)\(D(8) U D(y)) so thati ¢ D(§) and i & D(y). Hence,

i € D()\D(8) € D(y)
and therefore
i€ D(y)\D(y).

We conclude that D(«)\D(B) < D(y)\D(y).
Moreover, ifi € D(8)\D(8) = (D(8) U D(3))\D(8) it must be that i € D(y). Therefore D(8)\D(8) € D(y). These two
conditions imply that (§, 8) € A. O

Proof of Theorem 10. Let @ be a composition of n and consider the following expression obtained using Lemma 12

3 (e@.B%) Y EOR@

> £°@PO R (A; )

y=pza By=p=a 5>p
D(a)\D(B)SD(y)\D(¥) D(a)\D(B)SD(y)\D(¥) D(B)\D()SD(¥)
8¢
= § § t“@OIRs(A) | . (39)

Y>p>a

Y=p> 0=p
D(@)\D(B)SD(y)\D(y) \ D(B\D()SD(y)

Lemma 13 shows that there is exactly one term in this sum for every composition in the interval between « and the
composition with descent set equal to D(«)\D(y) (i.e. compositions é such that D(«)\D(§) < D(y)).
From Definition 7, this implies that Eq. (39) is equal to Ré”(A; t), O

Theorem 14. Let « and y be two compositions of nsuch that « < y. The non-commutative Macdonald polynomials H, (A; g, t)
and H, (A; q, t) are y-Schur positive. More precisely,

<
Hy(A:q. ) = Y 5@ FORY (a), (40)
B=y
and
Ho(Aiq.t) = Y P g By (A; ?>. (41)
B=y
Proof.

C ! ? ( ) C ! ? 65
3 e @sgE BRY (a0 = 3 e g B Y OR @A)

B=y B=y 5>p
D(B)\D()SD(y)

<
=y 3 e e Porsa) |. (42)
B<

5=p
D(B)\D(8)=D(y)

Using Lemma 13 witha = y = (1") and y = y, we see that there is a 1-1 correspondence between the set
{(6, B) such that § > B and B < y and D(B)\D(8) < D(y)}
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and the set of all compositions of n. Consequently, each 8 which appears in this sum is determined from the composition §
and its descent set is given by

D(B) = D(y) UD(3).

Now we want to show that c(«, 8¢) + c(B, 6°) = c(«, §°) in the specific case where 8 does not satisfy the conditions of
Lemma 12. We must come up with an independent argument. Note that D(y) € D(«) and D(8) = D(y) U D(8), hence

(D(e) N D(B)) U (D(B) ND(8%)) = (D(e) N D(y) N D(8)) U (D(y) UD(8)) N D(5))
= (D(a) ND(y) N D(8%)) U (D(y) N D(5))
= ((D(@) N D(¥)) UD(y)) N D(5°)
= D(a) N D(5°).
Moreover, since D(y) C D(«), we have
D(@)ND(Y) = 0.
Therefore
D(@) ND(B) = D(@) N (D(¥) UD(F)) = D) ND(F).
We conclude that
c(a/, <,3_) =c(@, ).
Finally, we have that Eq. (42) is equivalent to
C / T C ’ <
3 @B g FORY (45 6) = P DRy (A) = Ho(A; g, 1),
B=<y SE=n
The expansion for the modified version ﬁa (X; t) is obtained by using Eq. (24) in the previous equation. 0O

From now on, we need to use an order on compositions, different from the one used in Section 2.3.2. Given a fixed y = n,
let

D(V) ={iy,..., i} and D()/C) = {1, .. s dn—k=1}s

wherei; <ip < --- <iyandj; <j, < -+ < jn_k_1.
Given this, let o, be the unique permutation of {1, 2, ..., n — 1} defined by
o,(s) =s for1 <s <k,

o,(r)=r+k forl<r<n-k-1
We then define for all compositions « of n the rank function
d)y(a) — Z zay(i)*l- (43)
ieD(e)

Let us denote by ﬁly(A; g, t) the column vector of the modified non-commutative Macdonald polynomials ﬁa X;q,t)
indexed by compositions « such that @ < y ordered using ¢,,. The expression of (41) given in Theorem 14 can be expressed
interms of 1 x 1and 2 x 2 matrices

~ i n—i 1
H, (40,0 = @[] Q) E Y ]Rm (A; ?)' (44)

ieD(y) igD(y)

Proposition 15. Let y be a composition of n. For any composition « < y of n, let us define ¢, the composition with descent set
D(¢) = D(y°) \ D(«) U D(y). There exists an analog of the k-conjugation given by

1
o RV (A; 1) = t""RY (A; t) : (45)

Proof. By Eq. (31) we have
@° (R‘(XV)(A; t)) — Z tc(a,BE)RﬂC (A).
D@N\DHSDG)

To check that the exponent of t agrees with the right hand side of the equation stated in the proposition, we notice that
D(&)ND(B) = (D(y)\D(e))ND(B)UD(y)ND(B) = D(y)ND(B),since D(B) < D(e). Thereforen(y)—c(y, B) = c(y, B°).
Since we also have that D(y) € D(«) and D(«) \ D(B8) < D(y), then it follows that n(y) — c(¢, ) = n(y) —c(y, B) =
c(y, BY) = cla, B).
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This shows that our sum has reduced to

C —
of (RLV)(A; t)) — § tc@p )Rﬁc A) = E ) C({,ﬁ)Rﬁc (A).
B>a B>a
D(a)\D(B)SD(y) D(a)\D(B)SD(y)

It is also necessary to verify that the terms in the right hand side of the equation are those that also appear in Rg”) (A; ©).
That is, we show D(8) C D(«) and D(«) \ D(8) C D(y), ifand only if D(8¢) € D(¢) and D(¢) \ D(B8°) C D(y). By noticing
that D(B8°) = (D(y) N D(B)) W (D(¥°) N D(B°)), then D(y) N D(B) € D(y) and D(y°) N D(B°) = D(y°) \ D(a), we see
that 8 > ¢. This also shows that D(¢) \ D(8°) = D(y) \ (D(y) N D(B°)) and is hence a subset of D(y).

We conclude that

ARy = D Y PR (A) = ("R (A; %) .

BC=¢

B>a
D(@)\D(B)SD(y) D(O\D(BE)SD(y)
Proposition 16. At t = 1, we have another analog of the k-conjugation given by
a1 — v 4.
@ (R A D) =R (@A), (46)

The action of & is a consequence of Proposition 32 which follows easily from the definitions and hence we do not provide
a proof here.

4. The non-commutative nabla operator

In the theory of commutative symmetric functions, the operator V is defined as the linear operator which admits the
modified Macdonald polynomials H; (X; g, t) as eigenvectors for the eigenvalues t"*¢"*"). This operator is related to the
combinatorics of Dyck paths and to the space of diagonal harmonics [2,6-8,12,10,11,23]. In [3], the authors give a non-
commutative analog v of the operator nabla in the space Sym.

Definition 17. The non-commutative nabla operator v is the linear operator defined on the basis of non-commutative
modified Macdonald polynomials by

v (Ho(A; 0, ) = g H, (4; g, 1). (47)
This definition can be reformulated in terms of 2 x 2 matrices as proved in [3] by
faam=|T" e[ e . ol ° lfa
v (H®A; g, t))—[ 0 t]@[ 0o 2|®®|g qo1|[HAGD. (48)

Proposition 18 ([3]). For all compositions «, the non-commutative functions v (R, (A)) is ribbon Schur positive, up to a global
sign. More precisely, in terms of matrices, we have

_ 0 _qn—lt 0 _qn—2t2 0 _qtn—l
v (R(A)) = |:1 (t + qn—1)] ® |:1  + qn—Z)] ® - ® [1 ' + q) R(A). (49)

Example 19. The ribbon Schur expansion of v (Ry31(A)) is given by
¥ Ri21(A) = —¢°t°Raz(A) — (P> + @ )Ro11(A) — (°t* + )Rz (A) — (@°t° + @ + ¢ + ¢ t)Ry111 (A).

In the case of commutative symmetric functions, A. Lascoux gives two conjectures that the commutative symmetric
functions V (Q; (X; 1)) and V (w (Q;(X; t))) are Schur positive, up to a global sign, for any partition 1.

Example 20. The conjectures of Lascoux for the Hall-Littlewood function Q;,,(X; t) are

/ 1 6 5 4 3 4
VI [ X; 7)) = —qt°s1111(X) — (qt° + qt™)s211(X) — qt7s31(X) — qt~sp(X),
and
V (0(Qy1; X; ) = (¢° + qt®)siins + (8 + 7 +° 4+ gt° + qtH)so1(X) + (7 + £ + qth)sn(X)
+ (° + £+ t* 4 qt7)s31(X) + s4(X).

We can generalize the conjectures of Lascoux considering the expansion of the previous functions on the k-Schur basis in
the parameter 1/t.
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Conjecture 21. Let k be a non-negative integer and A be a partition of size n such that A, < k. For any integer k' such that
k' > k, the commutative symmetric functions

/2y (Q; <x; %)) and  ("PHV2Y (4 (Q(X: D))

are positive, up to a global sign, in the basis of the k’-Schur functions in the parameter 1/t.

Example 22. For A = (311) and k = 3 and k = 4, we have the following expansions

1 1 1 1
t'ov (an (x; ?>> = @+, (t) (@ + @8 + P, (t> + (@t + s, (t)
1
+q°t sfl)l <?>

1
PV (@(Q5 (X: 0) = @0+t +at’ + a6’ + sy, (;)

and

(3)

1
(3)
+ (@ + @t + ¢t +qt’ +2qt° + g+ + 2 + sy, (t)
1
+ (@*t° + % + qt® + 2qt" + qt® + ° + £ + t* + )55 (?)

1
+ (% + qt° + qt® + 7 + 5 4+ 1°)s$) ( > + 1859 (r)

We prove an analog of this conjecture in the non-commutative case. We also prove that the functions vaj/) (A; t) are positive
in the y-Schur basis.

Theorem 23. Let y be a composition. For any composition «, the functions VR(V) (A ) are positive in the y-Schur basis in the
parameter 1/t. More precisely, we have

1 . 0 —t'q 1

) R )

VR (A’t>—.® [tl]'® [1 th4q" I]Ry (A t)' (50)
ieD(y) iD(y)

It is important to remark here that the order on the vector R(A) is the one given by ¢, .

Proof. Inverting relation (44), we can express the y-ribbon Schur functions in terms of modified Macdonald polynomials
as follows

1 1 1 ti =il ~
) R 2 - q .
R (A’ f) N ® |:tii| ® t— gni [_] 1 1|H|V(A, q,t), (51)

iD(y) i#D(y)

where H| (A; g, t) represents the column vector of the a(A q,t)fora < vy.
Applymg the linear operator v, we obtain

1 1 1 o gl ~

(AN Vi _ q .

vR (A, t) = ® [ﬂ.]@ g [_1 ! j|vH|y(A, q,t). (52)
ieD(y) i€D(y)

By the definition of the operator v on lfla (X; g, t), we have

v, g0 = Q) [t] @ [qo_ |l g, 0. (53)

ieD(y) igD(y)

Consequently, we have

,Rw( ) QM Q s t_‘}f _t't‘,’n I}ﬁw\; q.0). (54)

ieD(y) 1¢D(V)

By using Eq. (44), we obtain

1 . 0 —tq 1
vR?) (A; 7) =[] QR [ P ] R" (A ) O (55)
t iebt) igpoy L1 £ ‘
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Theorem 24. The image of the non-commutative modified Hall-Littlewood functions by the operator v is y-Schur positive, up
to a global sign. More precisely,

o . 0 _ti n—i 1
v, e0) = @ [ @ [¢ T R (x 7). 0
ieD(y) igD(y)
Proof. The specialization of Eq. (44) at ¢ = 0 gives us
~ i 1 0 1
o= Q[1Q |1 p]r” (a7). e
. . t
ieD(y) igD(y)

Using the result of Theorem 23, we obtain Eq. (56). O
Example 25. For the non-commutative Hall-Littlewood function ﬁm (A; t), we have

v (Hizi(4; 1)) = —¢*t°Rya (A) — *t°Ro11(A) — ¢t Ryna(A) — ¢t "Ry, (58)

Theorem 26. The image of the y-Schur functions in the parameter 1/t by the operator v is ribbon Schur positive, up to a global
sign. More precisely,

n—i.i
t

o (4 1)) = i 0 —-q 't
v(RV<A,t))_®[1 t]@[] (t,+qn,)]R(A). (59)

ieD(y) igD(y)

Proof. By restricting Eq. (29) to the space Sym"’, we obtain
~ . 1 qn—i
. _— 1
Hya0= Q[ ]1Q [] /i
ieD(y) igD(y)

where the column vectors are ordered using ¢,,.
The theorem is finally obtained by the composition of Eqs. (52), (53) and (60). O

i| R(A), (60)

Remark. There are many ways of defining non-commutative analogs of commutative symmetric functions. The fact that v of
these analogs are ribbon-Schur positive, up to a global sign, is an interesting property which is shared with the commutative
version as conjectured in [1]. On the commutative side, these results permit us to define some generalizations of the (q, t)-
Catalan numbers.

5. Multivariate version of the y-Schur functions

In all the previous definitions, it is possible to replace the powers of the parameter t by products of the sequence of
parameters ty, ..., t,_1 and the parameter q using the sequence ¢y, . . ., q,_1. Powers of the parameters t and q are always
of the form c(et, B) = Y icp(w)np(p) I for some compositions o and . The multivariate versions permit us to keep track of
the descents which appear in c(«, ). We reserve the presentation of these multivariate versions as a side note, as these
refined results detract us from the presentation of the previous sections.

Definition 27. For any composition « of n, multivariate non-commutative Hall-Littlewood functions are defined by

Ha(A;ﬁ,...,tn_]):Z( I1 tl)Rﬁ(A). (61)

B=a \ieD(a)ND(B)

These functions are related to the non-commutative Hall-Littlewood functions by the specialization t; — t

H,(A; t) = H (A t, £, ..., t"7 D). (62)
Example 28. The expansion of the multivariate non-commutative Hall-Littlewood function Hy31(A; t1, t3, t3) in the ribbon
Schur basis is

Hip1(A; ty, £, t3) = Ry21(A) + t1 R31(A) + t3 Ri3(A) + t1t3 Ry(A).

Definition 29. As for non-commutative Hall-Littlewood functions, we define a multivariate version of non-commutative
Macdonald polynomials by

HoAiqr .ot tod=Y | [ & J[ a]|Re@&. (63)

Al \ €D@MDE) o B
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The non-commutative multivariate modified Macdonald polynomials are defined by

H, (A; qi, .- > Gn-t,t1, ... tao1) = (l_[ ti) H, (A5 q1, ..., Qnor, 1/t1, .00, 1/t021) (64)

ieD(a)

= Z( I t,-) [[ a]|RrRe@A. (65)
ieD(a)ND(B)

BEll ien@)np( B )
The non-commutative Macdonald polynomials Hy(X; g, t) (resp. Hy(X, g1, ..., qn-1, t1, ..., tn—1)) and their modified
versions Hy (X; q, t) (resp. Hy (X; q1, . . ., Gu_1, t1, - . . , ta_1)) coincide under the specialization t; — t' and q; — ¢'.

Example 30. The expansion of the multivariate non-commutative modified Macdonald polynomial ﬁ31(A; q1, 92, g3,
t1, tp, t3) in the ribbon Schur basis is

Hsi(A; g1, 42, @3, 1, b3, £3) = Ra(A) + g3 Ri3(A) + G2 Ra(A) + ¢203 Ria(A) + t3 R (A)
+ q3t3 Ri21(A) + qat3 Ry11(A) + q2q3t3 Rypq1(A).

For the multivariate non-commutative Macdonald polynomials and their modified version, matricial expressions are given
by

H(A; q, t)=[tn1 q{]@[tnl qf]@---@[; q"f} R(A), (66)

-1 -2

ﬁm;q,r):[} "';j}@[} qf;z-z}@--.@[} tf_]l]R(A)- (67)

Definition 31. Let « and y be two compositions of n such that @ < y. A multivariate version of non-commutative y-Schur
functions is defined by

RV Aty .t = Y ( I ti)R,g(A). (68)

pza ieD(a)ND(BC)
D(@)\D(B)SD(y)

All the results stated in the previous sections can be generalized to the multivariate versions for the most part simply by

changing t' — t;. For practical notational purposes, it was convenient to state the results using only the two parameters q
and t.

Proposition 32. The action of the analog of the k-conjugation on the multivariate y-Schur functions is given by

$ (R((Xy)(A, t], ) tnfl)) = Rg)(A, tn71, ceey t]) (69)

Remark. The non-commutative analogs of Hall-Littlewood functions and Macdonald polynomials defined in [13] admit
also a multivariate version defined in [14].
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Appendix

A.1. Tables of y-Schur functions on ribbon Schur functions for weight 4

These tables are calculated from Definition 7. The columns of the table index the corresponding elements of the y -ribbon
Schur basis and the rows index the subscripts of the ribbon Schur basis.
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31 (121) @11 (1111 22) (112) (@11 (111D
(4) t3 . . . (4) 2 . . .
(13) t3 . (13) . t?
(22) 3 . (22) 1 .
(112) . t3 (112) : 1 :
(31) 1 . . (31) t? .
(121) . 1 . (121) . t?
(211) . 1 . (211) 1 .
(1111) . 1 (1111) . 1
(31)-Schur functions (22)-Schur functions
(13) (112) (121) (1111) (112) (1111) (121) (1111)
&) t . . . (4) t3 . 4) t .
(13) 1 . (13) t? (13) t3 .
(22) . t (22) t (22) t
(112) 1 . (112) 1 . (112) . 3
(31) . t (31) 3 (31) t .
(121) 1 . (121) t? (121) 1 .
(211) : t (211) t (211) . t
(1111) (1111) 1 (1111) 1

(13)-Schur functions

(112)-Schur functions

211) (1111
(4) r .
(13) . t°
(22) t3 .
(112) . t3
(31) t? .
(121) . t?
(211) 1 .
(1111) . 1

(121)-Schur functions

(211)-Schur functions

A.2. Table of Macdonald polynomials in the y -Schur basis in weight 4

The tables below show examples of Theorem 14. The columns indicate the index « of the function H, (4; g, t).

31 (121) @11 (1111) (22) (112) (211 (1111)
(31) 1 t t? t3 (22) 1 t t3 t?
(121 | ¢ 1 q’t? t? 112) | ¢ 1 gt t3
Q1) | ¢ ¢t 1 t 1) | ¢q qt 1 t
1111 | ¢ q? q° 1 a1y | ¢* q q 1

H|31) in the (31)-Schur basis

H|(22) in the (22)-Schur basis

(13) (112) (121) (1111)
(13) 1 t? t3 t°
(112) | ¢? 1 q*t3 t3
(121) q qt? 1 t?
any | ¢ q 7 1

H|(13) in the (13)-Schur basis
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