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We introduce non-commutative analogs of k-Schur functions of Lapointe–Lascoux and
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one and two parameters in terms of these new functions. These results are similar to the
conjectures existing in the commutative case.
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1. Introduction

In their approach studying Macdonald q, t-Kostka polynomials Kλµ(q, t), L. Lapointe, A. Lascoux and J. Morse introduced
k-Schur functions in [18]. Abstractly, the k-Schur functions {s(k)λ [X; t]} are generalizations of the Schur functions sλ[X] and
are the fundamental basis of the subspace of the symmetric functions linearly spanned by the Hall–Littlewood symmetric
functions Q ′λ[X; t] =

∑
µ Kµλ(0, t)sµ[X]with all parts of the partition λ smaller than or equal to k. The motivating property

for defining the k-Schur functions was that the Macdonald polynomials Hλ[X; q, t] =
∑

µ Kµλ(q, t)sµ[X] [24] expand
positively in this basis when λ has parts bounded by k. In more recent works [19–22], Lapointe and Morse have studied in
particular, properties of these symmetric functions and conjectured other definitions. Continuing research has established
the importance of k-Schur functions in other areas of mathematics including connections to the geometry of the affine
Grassmannian.
In this article, we introduce a basis for a subspace of the Hopf algebra of non-commutative symmetric functions studied

in [5,9,16,17] which we believe is a good analog of the k-Schur functions. This basis satisfies many of the same properties of
the
k-Schur functions and, unlike the commutative counterparts, our analogous versions are very well behaved so that proper-
tieswhich are difficult to prove or are conjectural in the commutative case, can be proven for the non-commutative versions.
Several non-equivalent analogs of the Macdonald and Hall–Littlewood symmetric functions have been introduced [3,

13,14,25] to model various properties of symmetric functions with extra parameters. In this article, we concentrate on the
versions introduced in [3] because they have exactly the properties of the commutative counterparts which we wish to
understand better. In particular, the non-commutative analogs introduced in [3] are known to have an operator H which
is analogous to the operator ∇ introduced in [2]. The operator ∇ is defined so that the Macdonald symmetric functions
H̃λ[X; q, t] = tn(λ)Hλ[X; q, 1/t] are eigenfunctions with eigenvalues tn(λ)qn(λ

′) (here n(λ) =
∑
i≥1(i− 1)λi) and similarly H

is defined so that the q, t-analogs of non-commutative symmetric functions are eigenfunctions (see Definition 17).
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The main results that we demonstrate here are difficult to appreciate without comparing these with the corresponding
properties of the k-Schur functions. We list here some of the striking conjectures about the k-Schur functions (all of which
except property (5) are from [18] or [19]) and preceding each of the statements, we list each of the corresponding theorems
for the non-commutative versions. Let λ be a partition with all parts less than or equal to k.
(1) (Theorem 9) The k-Schur functions are a basis for the space of symmetric functionsL{Q ′µ[X; t] : µ1 ≤ k}. In particular,
the element Q ′λ[X; t] expands positively in the k-Schur functions.

(2) (Theorem 10) s(k)λ [X; t] expands positively in terms of the functions s
(k+1)
µ [X; t].

(3) (Theorem 14) The Macdonald symmetric function Hλ[X; q, t] =
∑

µ Kµλ(q, t)sµ[X] expands positively in terms of the
k-Schur basis.

(4) (Propositions 15 and 16) The fundamental involution ω applied to s(k)λ [X; t] is another k-Schur function with the t
parameter inverted.

(5) (Theorem 26) The operator ∇ acting on s(k)λ [X; 1/t] expands positively in the k-Schur basis also with the parameter
inverted.

Part of the motivation for considering this filtration of the non-commutative symmetric functions is that it reflects all of
the properties of the k-level filtration of the symmetric functions. The properties of the γ -Schur non-commutative functions
havemotivated us to study a k-level analog of the q, t-Catalan numbers [1] and it has also helped inmaking new conjectures
on the commutative symmetric functions through observations of the non-commutative counterparts (see for instance
Conjecture 21whichwasmade after observing the analogous property of the non-commutative versions of these functions).

2. Non-commutative symmetric functions

2.1. Preliminaries on compositions

The number of elements of a sequence α is called the length and is denoted by l(α). A sequence of positive integers
α = (α1, . . . , αl(α)) is a composition of size n, written α |H n, if

α1 + · · · + αl(α) = n.

A composition α is usually represented by a rim-hook diagram whose rows have lengths α1, . . . , αl(α) (read from top to
bottom).

Example 1. The composition α = (2, 4, 3, 1) of size 10 can be represented by the diagram

In the theory of non-commutative symmetric functions, we are interested in two kinds of concatenation operations. The
first operation is the usual concatenation defined, for two compositions α and β , by

α · β = (α1, α2, . . . , αl(α), β1, β2, . . . , βl(β)). (1)

The second operation is the attachment defined by

α|β = (α1, α2, . . . , αl(α)−1, αl(α) + β1, β2, β3, . . . , βl(β)). (2)

The descent set D(α) of a composition α is defined as the set

D(α) = {α1, α1 + α2, . . . , α1 + · · · + αl(α)−1}. (3)

The descent set D(α) characterizes the composition α and is of size l(α)− 1. It is easy to see that the compositions of n are
in one-to-one correspondence with the subsets of {1, 2, . . . , n− 1}.
For any composition α, the major index statistic is defined by

n(α) =
∑
i∈D(α)

i =
l(α)∑
i=1

(i− 1)αl(α)+1−i. (4)

For two compositions α and β , we can refine the previous statistic by defining c(α, β) as

c(α, β) =
∑

i∈D(α)∩D(β)

i. (5)

There is a natural partial order≤ on the set of compositions of n, which is called the refinement order. We say that α is finer
than β , written α ≤ β , if

D(β) ⊆ D(α). (6)
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We can also say that α ≤ β if there exists a sequence of compositions γ (1), . . . , γ (k) such that

α = γ (1) · γ (2) · . . . · γ (k) and β = γ (1) | γ (2) | . . . | γ (k). (7)

There exist three standard involutions on compositions. The first one is the reverse of a composition defined by
←−α = (αl(α), αl(α)−1, . . . , α1). (8)

If the descent set of α is D(α) = {i1, . . . , ik} then

D(←−α ) = {|α| − i1, |α| − i2, . . . , |α| − ik}. (9)

The second involution is the complement of a composition. For any composition α of n, the complement αc of α is the
composition with descent set the complement of D(α)

D(αc) = {1, 2, . . . , n− 1}\D(α). (10)

The third one is the analog of the conjugate of a partition and corresponds to the flipping of the composition about the line
y = x. It is defined by

α′ =
←−
αc =←−α

c
. (11)

Example 2. The descent set of the composition α = (2, 4, 3, 1) given in Example 1 is

D(α) = {2, 6, 9}.

The three previous involutions applied on the composition α give
←−α = (1, 3, 4, 2), αc = (1, 2, 1, 1, 2, 1, 2) and α′ = (2, 1, 2, 1, 1, 2, 1).

These compositions correspond respectively to the following diagrams

2.2. Non-commutative symmetric functions

For more details about non-commutative symmetric functions see [5,9,16,17]. We use the convention of bold font for
writing down the non-commutative symmetric functions. Let A = {a1, a2, . . .} be a sequence of non-commutative variables
and X the corresponding sequence where variables commute. For any composition α, we define the non-commutative
homogeneous functions by

hα(A) = hα1(A) . . .hαl(α)(A), (12)

where hn(A) is a non-commuting generator of the algebra that is analogous to the element hn(X) in the space of symmetric
functions. That is

hn(A) =
∑

i1≤i2≤···≤in

ai1ai2 · · · ain . (13)

The product of two non-commutative homogeneous symmetric functions is given by

hα(A)hβ(A) = hα·β(A). (14)

The space of non-commutative symmetric functions Sym over the fieldC(q, t) of rational functions in the parameters q and
t is defined by

Sym = C(q, t)〈h1,h2, . . .〉. (15)

The analogs of Schur functions are the ribbon Schur functions defined for any composition α by

Rα(A) =
∑
α≤β

(−1)l(α)−l(β)hβ(A). (16)

The multiplication rule for two ribbon Schur functions is given by

Rα(A)Rβ(A) = Rα·β(A)+ Rα|β(A). (17)
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There are two involutions ωc and←−ω on the non-commutative symmetric functions which are the analogs of the involution
ω in Sym. They are defined for any composition α by

ωc(Rα(A)) = Rαc (A) and ←−ω (Rα(A)) = R←−α (A). (18)

We define the commutative evaluation of a non-commutative symmetric function through the surjective map

χ : Sym −→ Sym
hα(A) 7−→ hα(X).

(19)

The image of the ribbon Schur function Rα(A) by χ is the commutative skew Schur function indexed by the skew partition
corresponding to the ribbon α.

2.3. Deformations of non-commutative symmetric functions

ThemodifiedHall–Littlewood functionsQ ′λ(X; t) (resp.modifiedMacdonald polynomials H̃λ(X; q, t)) are t-analogs (resp.
(q, t)-analogs) of the complete functions hλ(X). In this section, we recall basic statements on the non-commutative analogs
of these deformations defined in [3]. There exist different non-commutative analogs of Hall–Littlewood functions and
Macdonald polynomials which have been considered in [13,14] by Hivert, Lascoux and Thibon and more recently in [25]
by Tevlin.

2.3.1. Non-commutative Hall–Littlewood functions
In [3], the authors define non-commutative analogs of Hall–Littlewood functions by

Hα(A; t) =
∑
β≥α

tc(α,β
c )Rβ(A). (20)

The non-commutative Hall–Littlewood functions Hα(A; t) satisfy the following specializations

Hα(A; 0) = Rα(A) and Hα(A; 1) = hα(A). (21)

Example 3. The expansion of the non-commutative Hall–Littlewood H121(A; t) in the ribbon Schur basis is

H121(A; t) = R121(A)+ t R31(A)+ t3 R13(A)+ t4 R4(A).

For any hook composition α = (1a, b), the commutative image of Hα(A; t) by χ coincides with the commutative modified
Hall–Littlewood functions Q ′(b,1a)(X; t)

χ(H(1a,b)(A; t)) = Q ′(b,1a)(X; t). (22)

In [3],we findmore detailed statements on these non-commutative functions. For example, there are an explicit expansion of
the product of twoHall–Littlewood functions in terms of Hall–Littlewood functions, a Pieri formula, some creation operators
and a factorization formula at primitive roots of unity. Most of these properties also exist for the analogs considered in [13].

2.3.2. Non-commutative Macdonald polynomials
In [3], the authors also give a definition for non-commutative analogs of Macdonald polynomials in Sym. These functions

are defined by

Hα(A; q, t) =
∑
β|H|α|

tc(α,β
c )qc(α

′,
←−
β )Rβ(A). (23)

We define non-commutative analogs of the modified Macdonald polynomials H̃λ(X; q, t) by

H̃α(A; q, t) = tn(α)Hα
(
A; q,

1
t

)
=

∑
β|H|α|

tc(α,β)qc(α
′,
←−
β )Rβ(A). (24)

The right hand side of (24) comes from the following property

n(α)− c(α, βc) =
∑
i∈D(α)

i−
∑

i∈D(α)∩({1,...,n}\D(β))

i =
∑

i∈D(α)∩D(β)

i = c(α, β). (25)

Example 4. The expansion of the non-commutative Macdonald polynomial H̃31(A; q, t) in the ribbon Schur basis is

H̃31(A; q, t) = R4(A) + q3 R13(A) + q2 R22(A) + q5 R112(A) + t3 R31(A)
+ q3t3 R121(A) + q2t3 R211(A) + q5t3 R1111(A).
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These definitions can be expressed in terms of tensor products of 2× 2 matrices (see [3] for more details). For two matrices
B and C = (cij)1≤i,j≤m, we use the following convention for the definition of their tensor product

B⊗ C = [cijB]1≤i,j≤m. (26)
Let n be a non-negative integer. To consider column vectors of elements of degree n in Sym, we need a total order on the set
of compositions of n. We use the total order corresponding to the rank function φ defined by

φ : {α, α |H n} −→ {0, . . . , 2n−1 − 1}
α 7−→

∑
i∈D(α)

2i−1. (27)

More precisely, an element of a basis indexed by a composition α appears in the row φ(α) of the vector.

Example 5. Using this total order, the compositions of 4 are listed as follows

(4), (13), (22), (112), (31), (121), (211), (1111) .

We denote by R(A) the column vector of ribbon Schur functions (Rα(A))α|Hn and by H(A; q, t) the column vector of
Macdonald polynomials (Hα(A; q, t))α|Hn. Directly from Eq. (23), we obtain the following formula

H(A; q, t) =
[
1 qn−1

t 1

]
⊗

[
1 qn−2

t2 1

]
⊗ · · · ⊗

[
1 q
tn−1 1

]
R(A). (28)

The matrix expression for the column vector H̃(A; q, t) of modified non-commutative Macdonald polynomials defined with
Eq. (24) is given by

H̃(A; q, t) =
[
1 qn−1

1 t

]
⊗

[
1 qn−2

1 t2

]
⊗ · · · ⊗

[
1 q
1 tn−1

]
R(A). (29)

Example 6. The matrix expression of Macdonald polynomials for n = 3 is given by

H̃(A; q, t) =
[
1 q2
1 t

]
⊗

[
1 q
1 t2

]
R(A) =

 (3) 1 q2 q q3
(12) 1 t q qt
(21) 1 q2 t2 q2t2

(111) 1 t t2 t3

R(A).

3. Non-commutative analogs of k-Schur functions

We define analogs of k-Schur functions in the space of non-commutative symmetric functions Sym. To find k-Schur
functions, Lapointe, Lascoux and Morse originally observed in [18] that certain linear combinations of Hall–Littlewood
functions were Schur positive and essentially give atoms that make up the Macdonald symmetric functions.
Let n be a non-negative integer and γ a composition of n. The subspace Sym(γ ) of Sym is defined as the following

homogeneous linear span of some non-commutative Hall–Littlewood functions Hα(A; t)

Sym(γ )
= L{Hα(A; t) such that α |H |γ | and α ≤ γ }. (30)

This space is a natural analog of the subspace of Sym(k) generated by themodifiedHall–Littlewood functionsQ ′λ(X; t) indexed
by partitions λwith the first part being less than k.

Definition 7. Let α and γ be two compositions of n such that α ≤ γ . The γ -ribbon Schur function R(γ )α (A; t) is defined by

R(γ )α (A; t) =
∑
β≥α

D(α)\D(β)⊆D(γ )

tc(α,β
c )Rβ(A). (31)

The compositions β which appear in the previous sum are those which appear in the interval of the composition poset for
the refinement order between α and the composition with descent set D(α)\D(γ ).

Example 8. For n = 5, the expansion of the (131)-ribbon Schur function R(131)1121 (A) is

R(131)1121 (A; t) = R1121(A)+ t R221(A)+ t4 R113(A)+ t5 R23(A). (32)

Directly from Definition 7, the γ -ribbon Schur functions reduce for special cases of the level γ to some particular non-
commutative symmetric functions.

R((|α|))α (A; t) = Rα(A) and R(α)α (A; t) = Hα(A; t). (33)

At this moment, it is not clear that the γ -ribbon Schur functions form a basis of the subspace Sym(γ ). The following theorem
gives us an explicit expression for the γ -ribbon Schur functions in terms of Hall–Littlewood functions.
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Theorem 9. The set of elements
{
R(γ )α (A; t)

}
α≤γ

is a basis of Sym(γ ). The change of bases between Hall–Littlewood functions
and γ -ribbon Schur functions is given by

Hα(A; t) =
∑
α≤β≤γ

tc(α,β
c )R(γ )β (A; t). (34)

The inverse change of basis is given by

R(γ )α (A; t) =
∑
α≤β≤γ

(−1)l(α)−l(β)tc(α,β
c )Hβ(A; t). (35)

Proof. In this theorem, Eq. (35) is a Möbius inversion over the Boolean lattice of Eq. (34). The proof of Eq. (34) follows from
Theorem 10 which gives branching rules for γ -Schur functions and from the limit cases given in Eq. (33). �

Theorem 10. Let γ and γ̃ be two compositions of n such that γ ≤ γ̃ . For any composition α ≤ γ of n, the branching rule from
the γ -Schur functions to the γ̃ -Schur functions is given by

R(γ )α (A; t) =
∑

β:γ̃≥β≥α
D(α)\D(β)⊆D(γ )\D(γ̃ )

tc(α,β
c )R(γ̃ )β (A; t). (36)

This theorem means that there exists a family of branching rules for a given level γ . This theorem is also an analog of the
branching rules from the k-Schur functions to the (k+1)-Schur functions in the commutative case. They are still conjectural
and seem to be related to a poset structure of the k-shapes.

Example 11. The two branchings for the (221)-Schur function R(221)(1121)(A; t) to levels (41) and (23) are

R(221)(1121)(A; t) = R(41)(1121)(A; t)+ t
2 R(41)(131)(A; t) (37)

= R(23)(1121)(A; t)+ t
4 R(23)(113)(A; t). (38)

In this example

R(221)(1121)(A; t) = R(1121)(A)+ t2R(131)(A)+ t4R(113)(A)+ t6R(14)(A),

and

R(41)(1121)(A; t) = R(1121)(A)+ t4R(113)(A)

R(41)(131)(A; t) = R(131)(A)+ t4R(14)(A),

R(23)(1121)(A; t) = R(1121)(A)+ t2R(131)(A)

R(23)(113)(A; t) = R(113)(A)+ t2R(14)(A).

In order to prove Theorem 10, we need to prove the following two technical lemmas.

Lemma 12. Let β be a composition of n. For two compositions α and δ of n such that α ≤ β ≤ δ,

c(α, βc)+ c(β, δc) = c(α, δc).

Proof. The quantity c(α, βc)+ c(β, δc) is the sum over all i in the set D(α) ∩ D(βc) and D(β) ∩ D(δc). Since D(β) ⊆ D(α)
and D(βc) ⊆ D(δc),

(D(α) ∩ D(βc)) ∪ (D(β) ∩ D(δc)) = (D(α) ∩ D(βc)) ∪ (D(α) ∩ D(β) ∩ D(δc))
= D(α) ∩ (D(βc) ∪ (D(β) ∩ D(δc)))
= D(α) ∩ ((D(βc) ∩ D(δc)) ∪ (D(β) ∩ D(δc)))
= D(α) ∩ D(δc) ∩ (D(βc) ∪ D(β))
= D(α) ∩ D(δc).

Therefore c(α, βc)+ c(β, δc) = c(α, δc). �

Lemma 13. Let γ and γ̃ be two compositions of n such that γ ≤ γ̃ . Let α be a composition of n such that α ≤ γ . The map
which sends (δ, β) to δ is a bijection between the two sets

A = {(δ, β) such that δ ≥ β ≥ α and β ≤ γ̃ and D(α)\D(β) ⊆ D(γ )\D(γ̃ ) and D(β)\D(δ) ⊆ D(γ̃ )}
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and

B = {δ such that δ ≥ α and D(α)\D(δ) ⊆ D(γ )}.

Proof. Let α be a composition of n and assume that (δ, β) is in A. Let i be in D(α)\D(δ), then either i ∈ D(β) or i 6∈ D(β). If
i ∈ D(β), then since D(β)\D(δ) ⊆ D(γ̃ ),

i ∈ D(γ̃ ) ⊆ D(γ ).

If i 6∈ D(β), then

i ∈ D(α)\D(β) ⊆ D(γ )\D(γ̃ ) ⊆ D(γ ).

Consequently, δ is an element of B.
If (δ, β) is in the set A, then we have D(β)\D(δ) ⊆ D(γ̃ ), so therefore we can conclude that D(β) ⊆ D(γ̃ ) ∪ D(δ). We

also have the conditions that β ≤ δ and β ≤ γ̃ . Therefore D(δ) ⊆ D(β) and D(γ̃ ) ⊆ D(β). Therefore D(δ) ∪ D(γ̃ ) ⊆ D(β).
Thus for each δ, there is at most one pair (δ, β) in A that will have D(β) = D(δ) ∪ D(γ̃ ). But we need to show that this pair
is in fact in the set A.
Let i be in D(α)\D(β) = D(α)\(D(δ) ∪ D(γ̃ )) so that i 6∈ D(δ) and i 6∈ D(γ̃ ). Hence,

i ∈ D(α)\D(δ) ⊆ D(γ )

and therefore

i ∈ D(γ )\D(γ̃ ).

We conclude that D(α)\D(β) ⊆ D(γ )\D(γ̃ ).
Moreover, if i ∈ D(β)\D(δ) = (D(δ) ∪ D(γ̃ ))\D(δ) it must be that i ∈ D(γ̃ ). Therefore D(β)\D(δ) ⊆ D(γ̃ ). These two

conditions imply that (δ, β) ∈ A. �

Proof of Theorem 10. Let α be a composition of n and consider the following expression obtained using Lemma 12

∑
β:γ̃≥β≥α

D(α)\D(β)⊆D(γ )\D(γ̃ )

tc(α,β
c ) R(γ̃ )β (A; t) =

∑
β:γ̃≥β≥α

D(α)\D(β)⊆D(γ )\D(γ̃ )

tc(α,β
c )

 ∑
δ≥β

D(β)\D(δ)⊆D(γ̃ )

tc(β,δ
c ) Rδ(A)



=

∑
β:γ̃≥β≥α

D(α)\D(β)⊆D(γ )\D(γ̃ )

 ∑
δ≥β

D(β)\D(δ)⊆D(γ̃ )

tc(α,δ
c )Rδ(A)

 . (39)

Lemma 13 shows that there is exactly one term in this sum for every composition in the interval between α and the
composition with descent set equal to D(α)\D(γ ) (i.e. compositions δ such that D(α)\D(δ) ⊆ D(γ )).
From Definition 7, this implies that Eq. (39) is equal to R(γ )α (A; t). �

Theorem 14. Let α and γ be two compositions of n such that α ≤ γ . The non-commutative Macdonald polynomialsHα(A; q, t)
and H̃α(A; q, t) are γ -Schur positive. More precisely,

Hα(A; q, t) =
∑
β≤γ

tc(α,β
c )qc(α

′,
←−
β )R(γ )β (A), (40)

and

H̃α(A; q, t) =
∑
β≤γ

tc(α,β)qc(α
′,
←−
β )R(γ )β

(
A;
1
t

)
. (41)

Proof.

∑
β≤γ

tc(α,β
c )qc(α

′,
←−
β )R(γ )β (A; t) =

∑
β≤γ

tc(α,β
c )qc(α

′,
←−
β )

 ∑
δ≥β

D(β)\D(δ)⊆D(γ )

tc(β,δ
c )Rδ(A)



=

∑
β≤γ

 ∑
δ≥β

D(β)\D(δ)⊆D(γ )

tc(α,β
c )+c(β,δc )qc(α

′,
←−
β )Rδ(A)

 . (42)

Using Lemma 13 with α = γ = (1n) and γ̃ = γ , we see that there is a 1–1 correspondence between the set

{(δ, β) such that δ ≥ β and β ≤ γ and D(β)\D(δ) ⊆ D(γ )}
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and the set of all compositions of n. Consequently, each β which appears in this sum is determined from the composition δ
and its descent set is given by

D(β) = D(γ ) ∪ D(δ).

Now we want to show that c(α, βc) + c(β, δc) = c(α, δc) in the specific case where β does not satisfy the conditions of
Lemma 12. We must come up with an independent argument. Note that D(γ ) ⊆ D(α) and D(β) = D(γ ) ∪ D(δ), hence

(D(α) ∩ D(βc)) ∪ (D(β) ∩ D(δc)) = (D(α) ∩ D(γ c) ∩ D(δc)) ∪ ((D(γ ) ∪ D(δ)) ∩ D(δc))
= (D(α) ∩ D(γ c) ∩ D(δc)) ∪ (D(γ ) ∩ D(δc))
= ((D(α) ∩ D(γ c)) ∪ D(γ )) ∩ D(δc)
= D(α) ∩ D(δc).

Moreover, since D(γ ) ⊆ D(α), we have

D(α′) ∩ D(←−γ ) = ∅.

Therefore

D(α′) ∩ D(←−β ) = D(α′) ∩ (D(←−γ ) ∪ D(←−δ )) = D(α′) ∩ D(←−δ ).

We conclude that

c(α′,←−β ) = c(α′,←−δ ).

Finally, we have that Eq. (42) is equivalent to∑
β≤γ

tc(α,β
c )qc(α

′,
←−
β )R(γ )β (A; t) =

∑
δ|Hn

tc(α,δ
c )qc(α

′,
←−
δ )Rδ(A) = Hα(A; q, t).

The expansion for the modified version H̃α(X; t) is obtained by using Eq. (24) in the previous equation. �

From now on, we need to use an order on compositions, different from the one used in Section 2.3.2. Given a fixed γ |H n,
let

D(γ ) = {i1, . . . , ik} and D(γ c) = {j1, . . . , jn−k−1},
where i1 < i2 < · · · < ik and j1 < j2 < · · · < jn−k−1.
Given this, let σγ be the unique permutation of {1, 2, . . . , n− 1} defined by

σγ (is) = s for 1 ≤ s ≤ k,
σγ (jr) = r + k for 1 ≤ r ≤ n− k− 1.

We then define for all compositions α of n the rank function

φγ (α) =
∑
i∈D(α)

2σγ (i)−1. (43)

Let us denote by H̃|γ (A; q, t) the column vector of the modified non-commutative Macdonald polynomials H̃α(X; q, t)
indexed by compositions α such that α ≤ γ ordered using φγ . The expression of (41) given in Theorem 14 can be expressed
in terms of 1× 1 and 2× 2 matrices

H̃|γ (A; q, t) =
⊗
i∈D(γ )

[
t i
] ⊗
i6∈D(γ )

[
1 qn−i

1 t i

]
R(γ )

(
A;
1
t

)
. (44)

Proposition 15. Let γ be a composition of n. For any composition α ≤ γ of n, let us define ζ , the composition with descent set
D(ζ ) = D(γ c) \ D(α) ∪ D(γ ). There exists an analog of the k-conjugation given by

ωc
(
R(γ )α (A; t)

)
= tn(γ )R(γ )ζ

(
A;
1
t

)
. (45)

Proof. By Eq. (31) we have

ωc
(
R(γ )α (A; t)

)
=

∑
β≥α

D(α)\D(β)⊆D(γ )

tc(α,β
c )Rβc (A).

To check that the exponent of t agrees with the right hand side of the equation stated in the proposition, we notice that
D(ζ )∩D(β) = (D(γ c)\D(α))∩D(β)∪D(γ )∩D(β) = D(γ )∩D(β), sinceD(β) ⊆ D(α). Therefore n(γ )−c(γ , β) = c(γ , βc).
Since we also have that D(γ ) ⊆ D(α) and D(α) \ D(β) ⊆ D(γ ), then it follows that n(γ ) − c(ζ , β) = n(γ ) − c(γ , β) =
c(γ , βc) = c(α, βc).
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This shows that our sum has reduced to

ωc
(
R(γ )α (A; t)

)
=

∑
β≥α

D(α)\D(β)⊆D(γ )

tc(α,β
c )Rβc (A) =

∑
β≥α

D(α)\D(β)⊆D(γ )

tn(γ )−c(ζ ,β)Rβc (A).

It is also necessary to verify that the terms in the right hand side of the equation are those that also appear in R(γ )ζ (A; t).
That is, we show D(β) ⊆ D(α) and D(α) \ D(β) ⊆ D(γ ), if and only if D(βc) ⊆ D(ζ ) and D(ζ ) \ D(βc) ⊆ D(γ ). By noticing
that D(βc) = (D(γ ) ∩ D(βc)) ] (D(γ c) ∩ D(βc)), then D(γ ) ∩ D(βc) ⊆ D(γ ) and D(γ c) ∩ D(βc) = D(γ c) \ D(α), we see
that β ≥ ζ . This also shows that D(ζ ) \ D(βc) = D(γ ) \ (D(γ ) ∩ D(βc)) and is hence a subset of D(γ ).
We conclude that∑

β≥α
D(α)\D(β)⊆D(γ )

tn(γ )−c(ζ ,β)Rβc (A) = tn(γ )
∑
βc≥ζ

D(ζ )\D(βc )⊆D(γ )

t−c(ζ ,β)Rβc (A) = tn(γ )R
(γ )

ζ

(
A;
1
t

)
. �

Proposition 16. At t = 1, we have another analog of the k-conjugation given by

←−ω
(
R(γ )α (A; 1)

)
= R(
←−γ )

←−α
(A; 1). (46)

The action of←−ω is a consequence of Proposition 32which follows easily from the definitions and hencewe do not provide
a proof here.

4. The non-commutative nabla operator

In the theory of commutative symmetric functions, the operator ∇ is defined as the linear operator which admits the
modified Macdonald polynomials H̃λ(X; q, t) as eigenvectors for the eigenvalues tn(λ)qn(λ

′). This operator is related to the
combinatorics of Dyck paths and to the space of diagonal harmonics [2,6–8,12,10,11,23]. In [3], the authors give a non-
commutative analog H of the operator nabla in the space Sym.

Definition 17. The non-commutative nabla operator H is the linear operator defined on the basis of non-commutative
modified Macdonald polynomials by

H
(
H̃α(A; q, t)

)
= tn(α)qn(α

′)H̃α(A; q, t). (47)

This definition can be reformulated in terms of 2× 2 matrices as proved in [3] by

H
(
H̃(A; q, t)

)
=

[
qn−1 0
0 t

]
⊗

[
qn−2 0
0 t2

]
⊗ · · · ⊗

[
q 0
0 tn−1

]
H̃(A; q, t). (48)

Proposition 18 ([3]). For all compositions α, the non-commutative functions H (Rα(A)) is ribbon Schur positive, up to a global
sign. More precisely, in terms of matrices, we have

H (R(A)) =
[
0 −qn−1t
1 (t + qn−1)

]
⊗

[
0 −qn−2t2

1 (t2 + qn−2)

]
⊗ · · · ⊗

[
0 −qtn−1

1 (tn−1 + q)

]
R(A). (49)

Example 19. The ribbon Schur expansion of H (R121(A)) is given by

H (R121(A)) = −q2t2R22(A)− (q3t2 + q2t5)R211(A)− (q5t2 + q2t3)R112(A)− (q6t2 + q5t5 + q3t3 + q2t6)R1111(A).

In the case of commutative symmetric functions, A. Lascoux gives two conjectures that the commutative symmetric
functions ∇

(
Q ′λ
(
X; 1t

))
and ∇

(
ω
(
Q ′λ(X; t)

))
are Schur positive, up to a global sign, for any partition λ.

Example 20. The conjectures of Lascoux for the Hall–Littlewood function Q ′211(X; t) are

∇

(
Q ′211

(
X;
1
t

))
= −qt6s1111(X)− (qt5 + qt4)s211(X)− qt3s31(X)− qt4s22(X),

and

∇
(
ω(Q ′211 (X; t))

)
= (t9 + qt6)s1111 + (t8 + t7 + t6 + qt5 + qt4)s211(X)+ (t7 + t5 + qt4)s22(X)

+ (t6 + t5 + t4 + qt3)s31(X)+ t3s4(X).

We can generalize the conjectures of Lascoux considering the expansion of the previous functions on the k-Schur basis in
the parameter 1/t .
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Conjecture 21. Let k be a non-negative integer and λ be a partition of size n such that λ1 ≤ k. For any integer k′ such that
k′ ≥ k, the commutative symmetric functions

tn(n−1)/2∇
(
Q ′λ

(
X;
1
t

))
and tn(λ)+n(n−1)/2∇

(
ω
(
Q ′λ(X; t)

))
are positive, up to a global sign, in the basis of the k′-Schur functions in the parameter 1/t.

Example 22. For λ = (311) and k = 3 and k = 4, we have the following expansions

t10∇
(
Q ′311

(
X;
1
t

))
= (q3t3 + q2)s(3)11111

(
1
t

)
+ (q3t5 + q2t3 + q2t2)s(3)2111

(
1
t

)
+ (q3t4 + q2t3)s(3)221

(
1
t

)
+ q2t5s(3)311

(
1
t

)
and

t13∇(ω(Q ′311(X; t))) = (q
3t7 + q2t6 + qt4 + qt3 + 1)s(3)11111

(
1
t

)
+ (q3t9 + q2t8 + q2t7 + qt7 + 2qt6 + qt5 + t4 + t3 + t2)s(3)2111

(
1
t

)
+ (q2t9 + q2t8 + qt8 + 2qt7 + qt6 + t6 + t5 + t4 + t3)s(3)221

(
1
t

)
+ (q2t9 + qt9 + qt8 + t7 + t6 + t5)s(3)311

(
1
t

)
+ t8s(3)32

(
1
t

)
.

Weprove an analog of this conjecture in the non-commutative case.We also prove that the functionsHR(γ )α (A; t) are positive
in the γ -Schur basis.

Theorem 23. Let γ be a composition. For any composition α, the functions HR(γ )α
(
A; 1t

)
are positive in the γ -Schur basis in the

parameter 1/t. More precisely, we have

HR(γ )
(
A;
1
t

)
=

⊗
i∈D(γ )

[
t i
] ⊗
i6∈D(γ )

[
0 −t iqn−i

1 t i + qn−i

]
R(γ )

(
A;
1
t

)
. (50)

It is important to remark here that the order on the vector R(A) is the one given by φγ .
Proof. Inverting relation (44), we can express the γ -ribbon Schur functions in terms of modified Macdonald polynomials
as follows

R(γ )
(
A;
1
t

)
=

⊗
i∈D(γ )

[
1
t i

] ⊗
i6∈D(γ )

1
t i − qn−i

[
t i −qn−i

−1 1

]
H̃|γ (A; q, t), (51)

where H̃|γ (A; q, t) represents the column vector of the H̃α(A; q, t) for α ≤ γ .
Applying the linear operator H, we obtain

HR(γ )
(
A;
1
t

)
=

⊗
i∈D(γ )

[
1
t i

] ⊗
i6∈D(γ )

1
t i − qn−i

[
t i −qn−i

−1 1

]
HH̃|γ (A; q, t). (52)

By the definition of the operator H on H̃α(X; q, t), we have

HH̃|γ (A; q, t) =
⊗
i∈D(γ )

[
t i
] ⊗
i6∈D(γ )

[
qn−i 0
0 t i

]
H̃|γ (A; q, t). (53)

Consequently, we have

HR(γ )
(
A;
1
t

)
=

⊗
i∈D(γ )

[1]
⊗
i6∈D(γ )

1
t i − qn−i

[
t iqn−i −t iqn−i

−qn−i t i

]
H̃|γ (A; q, t). (54)

By using Eq. (44), we obtain

HR(γ )
(
A;
1
t

)
=

⊗
i∈D(γ )

[
t i
] ⊗
i6∈D(γ )

[
0 −t iqn−i

1 t i + qn−i

]
R(γ )

(
A;
1
t

)
. � (55)
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Theorem 24. The image of the non-commutative modified Hall–Littlewood functions by the operator H is γ -Schur positive, up
to a global sign. More precisely,

H
(
H̃|γ (A; t)

)
=

⊗
i∈D(γ )

[
t2i
] ⊗
i6∈D(γ )

[
0 −t iqn−i

t i t2i

]
R(γ )

(
A;
1
t

)
. (56)

Proof. The specialization of Eq. (44) at q = 0 gives us

H̃|γ (A; t) =
⊗
i∈D(γ )

[
t i
] ⊗
i6∈D(γ )

[
1 0
1 t i

]
R(γ )

(
A;
1
t

)
. (57)

Using the result of Theorem 23, we obtain Eq. (56). �

Example 25. For the non-commutative Hall–Littlewood function H̃121(A; t), we have

H
(
H̃121(A; t)

)
= −q2t6R22(A)− q2t9R211(A)− q2t7R112(A)− q2t10R1111. (58)

Theorem 26. The image of the γ -Schur functions in the parameter 1/t by the operator H is ribbon Schur positive, up to a global
sign. More precisely,

H

(
R(γ )

(
A;
1
t

))
=

⊗
i∈D(γ )

[
1 t i

] ⊗
i6∈D(γ )

[
0 −qn−it i

1 (t i + qn−i)

]
R(A). (59)

Proof. By restricting Eq. (29) to the space Sym(γ ), we obtain

H̃|γ (A; q, t) =
⊗
i∈D(γ )

[
1 t i

] ⊗
i6∈D(γ )

[
1 qn−i

1 t i

]
R(A), (60)

where the column vectors are ordered using φγ .
The theorem is finally obtained by the composition of Eqs. (52), (53) and (60). �

Remark. There aremanyways of defining non-commutative analogs of commutative symmetric functions. The fact thatH of
these analogs are ribbon-Schur positive, up to a global sign, is an interesting property which is sharedwith the commutative
version as conjectured in [1]. On the commutative side, these results permit us to define some generalizations of the (q, t)-
Catalan numbers.

5. Multivariate version of the γ-Schur functions

In all the previous definitions, it is possible to replace the powers of the parameter t by products of the sequence of
parameters t1, . . . , tn−1 and the parameter q using the sequence q1, . . . , qn−1. Powers of the parameters t and q are always
of the form c(α, β) =

∑
i∈D(α)∩D(β) i, for some compositions α and β . The multivariate versions permit us to keep track of

the descents which appear in c(α, β). We reserve the presentation of these multivariate versions as a side note, as these
refined results detract us from the presentation of the previous sections.

Definition 27. For any composition α of n, multivariate non-commutative Hall–Littlewood functions are defined by

Hα(A; t1, . . . , tn−1) =
∑
β≥α

( ∏
i∈D(α)∩D(βc )

ti

)
Rβ(A). (61)

These functions are related to the non-commutative Hall–Littlewood functions by the specialization ti → t i

Hα(A; t) = Hα(A; t, t2, . . . , tn−1). (62)

Example 28. The expansion of the multivariate non-commutative Hall–Littlewood function H121(A; t1, t2, t3) in the ribbon
Schur basis is

H121(A; t1, t2, t3) = R121(A)+ t1 R31(A)+ t3 R13(A)+ t1t3 R4(A).

Definition 29. As for non-commutative Hall–Littlewood functions, we define a multivariate version of non-commutative
Macdonald polynomials by

Hα(A; q1, . . . , qn−1, t1, . . . , tn−1) =
∑
β|H|α|

 ∏
i∈D(α)∩D(βc )

ti
∏

i∈D(α′)∩D(
←−
β )

qi

Rβ(A). (63)
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The non-commutative multivariate modified Macdonald polynomials are defined by

H̃α(A; q1, . . . , qn−1, t1, . . . , tn−1) =

( ∏
i∈D(α)

ti

)
Hα (A; q1, . . . , qn−1, 1/t1, . . . , 1/tn−1) (64)

=

∑
β|H|α|

( ∏
i∈D(α)∩D(β)

ti

) ∏
i∈D(α′)∩D(

←−
β )

qi

Rβ(A). (65)

The non-commutative Macdonald polynomials Hα(X; q, t) (resp. Hα(X, q1, . . . , qn−1, t1, . . . , tn−1)) and their modified
versions H̃α(X; q, t) (resp. H̃α(X; q1, . . . , qn−1, t1, . . . , tn−1)) coincide under the specialization ti → t i and qi → qi.

Example 30. The expansion of the multivariate non-commutative modified Macdonald polynomial H̃31(A; q1, q2, q3,
t1, t2, t3) in the ribbon Schur basis is

H̃31(A; q1, q2, q3, t1, t2, t3) = R4(A) + q3 R13(A) + q2 R22(A) + q2q3 R112(A) + t3 R31(A)
+ q3t3 R121(A) + q2t3 R211(A) + q2q3t3 R1111(A).

For the multivariate non-commutative Macdonald polynomials and their modified version, matricial expressions are given
by

H(A; q, t) =
[
1 q1
tn−1 1

]
⊗

[
1 q2
tn−2 1

]
⊗ · · · ⊗

[
1 qn−1
t1 1

]
R(A), (66)

H̃(A; q, t) =
[
1 qn−1
1 t1

]
⊗

[
1 qn−2
1 t2

]
⊗ · · · ⊗

[
1 q1
1 tn−1

]
R(A). (67)

Definition 31. Let α and γ be two compositions of n such that α ≤ γ . A multivariate version of non-commutative γ -Schur
functions is defined by

R(γ )α (A; t1, . . . , tn−1) =
∑
β≥α

D(α)\D(β)⊆D(γ )

( ∏
i∈D(α)∩D(βc )

ti

)
Rβ(A). (68)

All the results stated in the previous sections can be generalized to the multivariate versions for the most part simply by
changing t i → ti. For practical notational purposes, it was convenient to state the results using only the two parameters q
and t .

Proposition 32. The action of the analog of the k-conjugation on the multivariate γ -Schur functions is given by

←−ω
(
R(γ )α (A; t1, . . . , tn−1)

)
= R(
←−γ )

←−α
(A; tn−1, . . . , t1). (69)

Remark. The non-commutative analogs of Hall–Littlewood functions and Macdonald polynomials defined in [13] admit
also a multivariate version defined in [14].
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Appendix

A.1. Tables of γ -Schur functions on ribbon Schur functions for weight 4

These tables are calculated fromDefinition 7. The columns of the table index the corresponding elements of the γ -ribbon
Schur basis and the rows index the subscripts of the ribbon Schur basis.
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(31) (121) (211) (1111)
(4) t3 · · ·

(13) · t3 · ·

(22) · · t3 ·

(112) · · · t3
(31) 1 · · ·

(121) · 1 · ·

(211) · · 1 ·

(1111) · · · 1

(31)-Schur functions

(22) (112) (211) (1111)
(4) t2 · · ·

(13) · t2 · ·

(22) 1 · · ·

(112) · 1 · ·

(31) · · t2 ·

(121) · · · t2
(211) · · 1 ·

(1111) · · · 1

(22)-Schur functions

(13) (112) (121) (1111)
(4) t · · ·

(13) 1 · · ·

(22) · t · ·

(112) · 1 · ·

(31) · · t ·

(121) · · 1 ·

(211) · · · t
(1111) · · · 1

(13)-Schur functions

(112) (1111)
(4) t3 ·

(13) t2 ·

(22) t ·

(112) 1 ·

(31) · t3

(121) · t2
(211) · t
(1111) · 1

(112)-Schur functions

(121) (1111)
(4) t4 ·

(13) t3 ·

(22) · t4

(112) · t3
(31) t ·

(121) 1 ·

(211) · t
(1111) · 1

(121)-Schur functions

(211) (1111)
(4) t5 ·

(13) · t5

(22) t3 ·

(112) · t3

(31) t2 ·

(121) · t2
(211) 1 ·

(1111) · 1

(211)-Schur functions

A.2. Table of Macdonald polynomials in the γ -Schur basis in weight 4

The tables below show examples of Theorem 14. The columns indicate the index α of the function Hα(A; q, t).

(31) (121) (211) (1111)
(31) 1 t t2 t3

(121) q3 1 q3t2 t2

(211) q2 q2t 1 t
(1111) q5 q2 q3 1

H|(31) in the (31)-Schur basis

(22) (112) (211) (1111)
(22) 1 t t3 t4

(112) q3 1 q3t3 t3
(211) q qt 1 t
(1111) q4 q q3 1

H|(22) in the (22)-Schur basis

(13) (112) (121) (1111)
(13) 1 t2 t3 t5

(112) q2 1 q2t3 t3

(121) q qt2 1 t2

(1111) q3 q q2 1

H|(13) in the (13)-Schur basis

References

[1] N. Bergeron, F. Descouens, M. Zabrocki, A filtration of (q, t)-Catalan numbers, Adv. in Appl. Math. (in press).
[2] F. Bergeron, A. Garsia, M. Haiman, G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions,
Methods Appl. Anal. 6 (3) (1999) 363–420.



N. Bergeron et al. / Discrete Mathematics 309 (2009) 5092–5105 5105

[3] N. Bergeron, M. Zabrocki, q and q, t-analogs of non-commutative symmetric functions, Discrete Math. 298 (1) (2005) 79–103.
[4] F. Descouens, Making research on symmetric functions using MuPAD-Combinat, in: Lectures Notes in Computer Sciences, 4151, Springer, 2006.
[5] G. Duchamp, A. Klyachko, D. Krob, J.-Y. Thibon, Non-commutative symmetric functions III: Deformations of Cauchy and convolution algebras, Discrete
Math. Theor. Comput. Sci. 1 (1997) 159–216.

[6] A. Garsia, J. Haglund, A positivity result in the theory of Macdonald polynomials, Proc. Natl. Acad. Sci, USA 98 (8) (2001) 4313–4316 (electronic).
[7] A. Garsia, J. Haglund, A proof of the (q, t)-Catalan positivity conjecture, Discrete Math. 256 (3) (2002) 677–717.
[8] A. Garsia, M. Haiman, A remarkable q, t-Catalan sequence and q-Lagrange inversion, J. Algebraic Combin. 5 (1996) 191–244.
[9] I.M. Gelfand, D. Krob, B. Leclerc, A. Lascoux, V.S. Retakh, J.-Y. Thibon, Non commutative symmetric functions, Adv. Math. 112 (1995) 218–348.
[10] J. Haglund, Conjectured statistics for the (q, t)-Catalan numbers, Adv. Math. 175 (2) (2003) 319–334.
[11] J. Haglund, N. Loehr, A conjectured combinatorial formula for the Hilbert series for diagonal harmonics, Discrete Math. 298 (2005) 189–204.
[12] M. Haiman, J. Haglund, N. Loehr, J. Remmel, A. Ulyanov, A combinatorial formula of the diagonal coinvariants, Duke Math. J. 126 (2005) 195–232.
[13] F. Hivert, Hecke algebra, difference operators, and quasi-symmetric functions, Adv. Math. 155 (2000) 181–238.
[14] F. Hivert, A. Lascoux, J.-Y. Thibon, Non-commutative symmetric functions and quasi-symmetric functions with two and more parameters, Preprint,

2001. arXiv:math/0106191.
[15] F. Hivert, N. Thiéry, MuPAD-Combinat, an open source package for research in algebraic combinatorics, Sém. Lothar. Combin. 51 (2003) 70p

(electronic).
[16] D. Krob, B. Leclerc, J.-Y. Thibon, Non-commutative symmetric functions II: Transformation of alphabets, Int. J. Algebra Comput. 7 (1997) 181–264.
[17] D. Krob, J.-Y. Thibon, Non-commutative symmetric functions IV: Quantum linear groups and Hecke algebra at q = 0, J. Algebraic Combin. 6 (1997)

339–376.
[18] L. Lapointe, A. Lascoux, J. Morse, Tableaux atoms and a new Macdonald positivity conjecture, Duke Math. J. 116 (1) (2003) 103–146.
[19] L. Lapointe, J. Morse, Schur functions analogs for a filtration of the symmetric functions space, J. Combin. Theory Ser. A 101 (2) (2003) 191–224.
[20] L. Lapointe, J. Morse, Tableaux on k+ 1-cores, reduced words for affine permutations and k-Schur expansion, J. Combin. Theory Ser. A 112 (1) (2005)

44–81.
[21] L. Lapointe, J. Morse, A k-tableau characterization of k-Schur functions, Preprint, 2005. arXiv:math.CO/0505519.
[22] L. Lapointe, J. Morse, Quantum cohomology and the k-Schur basis, Trans. Amer. Math. Soc. 360 (2008) 2021–2040.
[23] N. Loehr, G. Warrington, Nested quantum Dyck paths and ∇(sλ), Preprint, 2007. arXiv:0705.4608.
[24] I.G. Macdonald, Symmetric Functions and Hall-Polynomials, second edition, in: Oxford Mathematical Monographs, Oxford Univ. Press, 1995.
[25] L. Tevlin, in preparation.

http://arxiv.org/math/0106191
http://arxiv.org/math.CO/0505519
http://arxiv.org/0705.4608

	A non-commutative generalization of  k -Schur functions
	Introduction
	Non-commutative symmetric functions
	Preliminaries on compositions
	Non-commutative symmetric functions
	Deformations of non-commutative symmetric functions
	Non-commutative Hall--Littlewood functions
	Non-commutative Macdonald polynomials


	Non-commutative analogs of  k -Schur functions
	The non-commutative nabla operator
	Multivariate version of the  γ-Schur functions
	Acknowledgments
	Tables of  γ-Schur functions on ribbon Schur functions for weight 4
	Table of Macdonald polynomials in the  γ-Schur basis in weight 4

	References


