
J. LOGIC PROGRAMMING 1992:13:349-366 349

GLOBAL FLOW ANALYSIS AS A PRACTICAL
COMPILATION TOOL*

M. V. HERMENEGILDO, R. WARREN, AND S. K. DEBRAY

D This paper addresses the issue of the practicality of global flow analysis in
logic program compilation, in terms of speed of the analysis, precision, and
usefulness of the information obtained. To this end, design and implemen-
tation aspects are discussed for two practical abstract interpretation-based
flow analysis systems: MA3, the MCC And-parallel Analyzer and Annota-
tor; and MS, an experimental mode inference system developed for SB-
Prolog. The paper also provides performance data obtained from these
implementations and, as an example of an application, a study of the
usefulness of the mode information obtained in reducing run-time checks
in independent and-parallelism. Based on the results obtained, it is con-
cluded that the overhead of global flow analysis is not prohibitive, and the
results of analysis can be quite precise and useful. a

1. INTRODUCTION

The extensive use of advanced compilation techniques [8,22,30,32-341, coupled
with parallel execution [5,10,15,20,35], appears to be a very promising approach to
achieving improved performance in logic programming systems. Existing systems
are based largely on local analysis G.e., clause-level or, at most, procedure-level, as
in the WAM). Such techniques have already brought substantial performance
improvements to popular Prolog systems [2,7,29]. However, global analysis offers
the potential to attain substantially better object code and therefore even higher
execution speeds.

*A preliminary version of this paper appeared in Proceedings of the 1988 International Conference on
Logic Programming. The work of M. V. Hermenegildo was supported in part by MCC’s Deductive
Computing Laboratory and also in part by ESPRIT project 2471 PEPMA. The work of S. K. Debray was
supported in part by the National Science Foundation under grant number CCR-8702939.

Address correspondence to M. V. Hermenegildo, Facultad de Informatica, Universidad Politecnica de
Madrid, 28660-Boadilla de1 Monte, Madrid, Spain. E-mail: herme@fi.upm.es or herme@cs.utexas.edu.

Received June 1990; accepted February 1991.

THE JOURNAL OF LOGIC PROGRAMUING

OElsevier Science Publishing Co., Inc., 1992
6.55 Avenue of the Americas, New York, NY 10010 0743-1066/92/$5.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82014033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

350 ‘ M. V. HERMENEGILDO ET AL.

The purpose of dataflow analysis is to determine, at compile time, properties of
the terms that variables can be bound to, at runtime, at” different points in a
program. Since most “interesting” properties of programs are undecidable, the
information obtained via such static analyses is typically conservative.’ Nevertheless
it can be used in many cases to improve the quality of code generated for the
program. This has given rise to a great deal of research in flow analysis-based
optimization of logic programs (e.g., see [3,9,18,21,24,31,32,34]).

Most of the flow analyses that have been proposed for logic programming
languages are based on a technique called abstract interpretation [6]. The essential
idea in this technique is to give a finite description of the behavior of a program by
symbolically executing it over an “abstract domain,” which is usually a complete
lattice or cpo of finite height. Elements of the abstract domain and those of the
actual computational, domain are related via’a pair of monotone, adjoint functions
referred to as the abstraction ((~1 and concretization (y) functions. In addition, each
primitive operation f of the language is abstracted to an operation f’ over the
abstract domain. Soundness of the analysis, requires that the concrete operation f
and the corresponding abstract operation absf be related as follows: for every x
in the concrete computational domain, f(x) _c y(abs_Xcu(x))).

Though the idea of abstract interpretation has been applied to logic programs by
various researchers [l, 17-19,23,25], relatively few practical implementations ap-
pear to have actually been reported in the literature: at this time, the only
implemented systems that we are aware of, apart from those described in this
paper, are those of Janssens [18], Mellish 1241, Taylor [31], and Van Roy [34].
However, in order that the analysis and optimization of large programs be practical
as a compilation tool, it is necessary that such analysis algor,ithms be both precise
and efficient, and that the resulting information be of use for the intended purpose,
be it proving properties of the program or improving execution speed. The question
remains then regarding whether flow analysis can actually be done routinely with
useful precision in a reasonable amount of time, and, if so, what implementation
techniques might be used to achieve this goal.

This paper addresses the issue of the practicality and implementability of flow
analyses of Prolog programs. It reports on the design, implementation, and perfor-
mance of two abstract interpretation-based flow analysis systems: MA3, the MCC
And-parallel Analyzer and Annotator; and MS (“Mode system”), an experimental
how analysis system developed for SB-Prolog. Section 2 deals with implementation
issues: it briefly introduces the concept of “abstract compilation” used in these two
systems (Section 2.1) and discusses various implementation approaches and their
tradeoffs regarding extension tables, program transformations, treatment of builtins,
etc. (Sections 2.2-2.3). Section 3 offers speed and precision performance figures
and a discussion of these results. Section 4 presents as an example an application
of the mode information obtained in the compilation of logic programs for
independent and-parallel execution. Finally, Section 5 summarizes our conclusions,
which indicate that quite good precision can be attained and at a reasonable cost.

2. IMPLEMENTATION ISSUES

Although abstract interpretation of logic programs has been proposed by various
researchers, the paucity of reported implementations seems to suggest that its
implementation may be regarded as computationally expensive. We argue that such

GLOBAL FLOW ANALYSIS 351

a perception is not justified, and that if properly implemented, global flow analysis
systems for logic programs need not be overly expensive. In this section, various
implementation issues that are relevant to the efficiency of global dataflow analysis
systems are discussed.

2.1. Abstract “Compilation ”

A naive implementation of a global flow analysis system, based on the technique
suggested by the name “abstract interpretation,” might proceed by modifying a
standard meta-circular interpreter to compute over the abstract domain. An
alternative is to specialize such an abstract interpreter to deal with only the
program under consideration. This can be done by making a single pass over the
program P to be analyzed and producing a transformed program P’ = T(PI which,
when executed, yields precisely the desired flow information about the original
program P (Figure 1). This transformation can be thought of as a partial eval-
uation of the abstract interpreter with respect to the input program P being
analyzed 141.

The transformation r is determined by the flow information desired. Abstract
interpretation of a program consists essentially of “simulating” its execution over
an abstract domain. This is done by specifying, as part of the abstract interpreta-
tion, an “abstract operation” abs_f for each primitive operation f of the lan-
guage. To see how this should be done, it is necessary to make the primitive
operations of the language-in our case, application of substitutions and unifica-
tion-explicit. Let these primitive operations be denoted by predicates app_subst
and unify: app_subst(O, t, t’> is true if and only if the substitution 0, applied to the
term t, yields the term t’, i.e., t’ = 8(t); and unifl(O,t,,t,,cr) is true if and only if
the terms t, and t,, unified in the context of the substitution 8, yield the
substitution (T, i.e. u = $00, where I) is the most general unifier of O(t, > and e(t,>.
Consider the execution of a clause p(T,,) :- q,(F, I,. . . , q,(T,>. Initially, each vari-
able in the clause is uninstantiated. First, the arguments in the head of the clause
are unified with those in the call to yield a substitution eo. The first literal in the

Source Program

P

Source Meaning
semantics p

M

transformation

T

semantics u
1 4.1

“Approximate” program Simplified Meaning

FIGURE 1. Analysis, abstraction and “approximate” programs.

352 M. V. HERMENEGILDO ET AL.

body is then evaluated in the context of this substitution; if this succeeds yielding a
new substitution 13,, the next literal in the body is evaluated in the context of 8,,
and so on. Finally, when all the literals in the body have been successfully
evaluated, yielding a substitution 0,,, the “return value” is obtained by applying 13,
to the tuple of arguments in the head of the clause.

This operational behavior can be made explicit by rewriting the clause as
follows:

apply_subst(e,,T,,X,,,).

where xi,,, _I?,,,,, !&,, and z OU,, i = 1,. . . , n, are distinct new tuples of variables,
and id is the identity substitution. Each k-ary predicate-which can be thought of
as a predicate that takes one argument that is a k-tuple of terms-has been
modified to have two arguments: the first, subscripted “in,” representing the tuple
of arguments at the call to the predicate, and the second, subscripted “out,”
representing the tuple of arguments at the return from that call.

It is important that we maintain separate sets of “calling” and “return”
arguments. One reason for doing this is to make explicit the operational aspects of
a logic program computation (since this is what an abstract interpretation tries to
mimic). We contend that it also has declarative virtues, since it makes explicit the
distinction between a term before a substitution is applied to it, and the term that
results after the application of the substitution. The most important reason for this,
however, is to anticipate a technical difficulty in abstract interpretation-certain
kinds of static analyses require that the connection between “calling” and “return”
values be maintained explicitly during analysis in order to avoid undue loss of
precision.

The corresponding abstract interpretation computation can now be described
simply by replacing the primitive operations upp_subst and unify by the corre-
sponding operations over the abstract domain, denoted by abs_app_subst and
abs_unify respectively:

abs_p(xi,, x0,,) :-

GLOBAL FLOW ANALYSIS 353

. ..)

ubs_upp_subs~(~~_,,T,,T,,;n),abs-q,(T,,;,~T,,,,,)~

ubs_unify(A,_,,T,,;,,T,,,,,,A,),

abs_ upp- sub.st(A,, To, x,,,).

where a({id}) represents the abstract domain element corresponding to (the
singleton set containing) the identity substitution. The Ai are “abstract substitu-
tions,” i.e., abstract domain elements representing sets of substitutions. The
resulting program is referred to as the “approximate” program.

While this transformation suffices to describe the computation over the abstract
domain, it may not be suitable for direct evaluation by a top-down interpreter, e.g.,
Prolog. One reason for this is that abstract interpretation requires that all possible
computation paths in the program be explored. Moreover, this program may not
terminate if executed directly by a top-down interpreter. Thus, additional machin-
ery is needed to force every computation path in the program to be explored and to
ensure termination once a fixpoint has been reached. We address both these issues
by evaluating the approximate program using extension tables 1121: this involves
augmenting the approximate program with code to maintain and manipulate such
extension tables.

The practical benefit of this approach is that since the flow information is
obtained by executing the transformed program directly, instead of having the
underlying system execute the abstract interpreter which in turn symbolically
executes the original program, one level of interpretation is avoided during the
iterative fixpoint computation characteristic of dataflow analyses. Since much of
the cost of global flow analyses is in these iterative fixpoint computations, this
results in significantly more efficient analyses. The technique which-with tongue
firmly in cheek-we refer to as “abstract compilation,” was (to the best of our
knowledge) first suggested in [9]. Both the MA3 and MS systems use this technique
in their implementations.

An important issue from the perspective of efficiency of analysis is not only how
the transformation of the program is performed-since the transformation process
obviously represents overhead-but also how the “approximate” program is incor-
porated into the Prolog system for execution. The issue of program transformation
will be returned to later, after introducing the techniques for dealing with exten-
sion tables. The approach taken in order to make the “approximate” program
executable will depend greatly on the characteristics of the underlying system. The
most immediate alternative is to “assert” the transformed clauses into the database.
Global analysis is then performed by simply calling the entry point of the trans-
formed program. In a system in which asserted code is fully compiled, including
indexing, this is a desirable solution because of its simplicity. In many systems,
however, asserted code is actually interpreted and sometimes not even indexed. In
those cases, the performance advantage of “abstract compilation” is lost, since
although one level of interpretation is eliminated another may be added. An
alternative solution is to make the approximate program fully compiled by storing
it in a temporary file and loading it into the Prolog system using the standard

354 M. V. HERMENEGILDO ET AL.

compiler. There is an obvious tradeoff between these two alternatives: program
assert overhead and perhaps slow analysis (dependent on the implementation of
assert) vs. I/O and program compilation overhead but with a lower analysis time.

2.2. Implementation of Extension Tables

An important component of a flow analysis system is the extension table [12], which
is a memo structure that records dataflow information during analysis. A central
issue in the design of the program transformation system, discussed in the previous
section, is the implementation of this table: although the extension table module
may appear to be a rather small component of the entire flow analysis system,
design and implementation decisions made for this component can have profound
repercussions on the design, implementation and performance of the remainder of
the system. For this reason, the issues and tradeoffs involved are discussed at some
length. It is assumed that the flow analysis system is being implemented on top of,
rather than as part of, a conventional Prolog system.’ This means that there are
two basic approaches to implementing the extension table: (i) as part of the Prolog
database, with operations on the table effected via side effects, through assert and
retract; and (ii) using Prolog terms as the data structures representing the table,
with table operations affected via unification.

There are several advantages to implementing the extension table as part of the
Prolog database. The most important of these is that the program transformation is
simplified considerably: firstly, the table becomes a global structure that does not
have to be passed around explicitly; more importantly, all execution paths in the
program can be explored in a relatively straightforward way. For the analysis of a
program to be sound, it is necessary that every execution path that can be taken at
runtime be explored during analysis. If operations on the table are persistent
across backtracking, then this can be effected simply by adding a fail literal at the
end of each transformed clause. The effect of this, when the transformed clause is
executed, is that after the body has been processed, execution is forced to
backtrack into the next possible execution path. In this manner, every execution
path in the program is considered during analysis (cuts in the source program are
discarded during transformation, so they do not pose a problem). Moreover, once
the transformed program has been implemented in this manner, another advantage
becomes apparent: because execution is made to fail back as soon as an execution
path has been explored, space used on the various Prolog stacks during the analysis
of that path can be reclaimed relatively efficiently. The MA3 system currently uses
the Prolog database for extension table implementation. Figure 2 shows a simpli-
fied version of the program transformation used by the MA3 system applied to the
familiar qsort example. ‘$unify’ goals perform the abstract unification, while the
‘$findmode’ goals perform the failure-driven exploration of execution paths and
LUB calculations.

The principal disadvantage in implementing the extension table as part of the
Prolog database is that operations on the table use assert and retract, which are

’ Note that section 4 presents results from an implementation where the global analyzer is part of a
(parallel) Prolog system. However, in this case the whole compiler, as is often the case, is written in
standard Prolog, and the considerations in this section still apply.

GLOBAL FLOW ANALYSIS 3.55

% Original program

qsort([I, R, R).
qsort([XILl R, RO) :-

partitioncl, X, Ll, L21,
sort(L2, Rl, RO),
sort(L1, R, [XIRll).

%Transformed program

‘compute$MODE’(qsort(A, B, C), Mode, Mode) :-
‘$unify’(qsort([I, F, F), qsort(A, B, Cl).

‘compute$MODE’(qsort(A, B, Cl, InMode, OutMode) :-
‘$unify’(qsort([HlIl, J, K), qsort(A, B, Cl),
‘$findmode’(partition(I, H, L, M), InMode, N),
‘$findmode’(qsort(M, 0, K), N, P),
‘$findmode’(qsort(L, J, [H/01), P, Outmode).

FIGURE 2. Approximate program transformation in MA’.

relatively expensive: e.g., in three representative systems, asserting a unit clause is
between two and three orders of magnitude slower than doing a simple unification,
see Table 1. This would be less of a problem if access to asserted clauses were very
fast. Unfortunately, as can be seen from Table 1, accessing asserted code is also
relatively expensive in most current Prolog systems. There is also a hidden cost in
the failure-driven exploration of execution paths: this approach requires that
choice points be created at the entrance to predicates with more than one
applicable clause. This can incur a significant cost, since the creation of a choice
point is typically relatively expensive. The tradeoffs here, however, are more
complex: for example, it is difficult to compare the cost incurred in creating these
choice points with the time saved in failure-driven space reclamation as compared
to garbage collection.

Another approach is to implement the extension table as a Prolog term, with
operations on the table effected via unification. The principal advantage of this
approach is that assert and retract are not necessary for manipulating the table.
Instead, unification-which, as mentioned above, is two to three orders of magni-
tude faster-is used. The principal disadvantage of this approach is that because
operations on the table are undone on failure and backtracking, the program
transformation must explicitly force all execution paths to be explored. This makes
the transformation more complex. The fact that the extension table has to be
passed around explicitly as a parameter to all relevant predicates also adds to the

TABLE 1. Normalized costs of some operations in representative Prolog systems’

System Unification Assert Accessing asserted code

Quintus 1.6 1,o 544-1477 300-930
SB-Prolog 2.3 1.0 3038-6075 103-144

Sicstus 0.5 1.0 359-678 308-639

TAbstracted from the results of a benchmark suite due to Fernando Pereira [281.

356 M. V. HERMENEGILDO ET AL.

p$pred(InMode, ExtTbl, OutMode) :-
p$cl(l, InMode, ExtTbl, Outmode,),
. . . .
p$cl(m, InMode, ExtTbl,OutMode,),
lub([OutMode ,, . . . , OutMode, 1, OutMode).

p$cl(l, InMode, ExtTbl,OutMode) :- . . .

p$clim, InMode, ExtTbl, OutMode) :- . . .

FIGURE 3. Approximate program transformation in Ms.

size of the transformed program, which in turn increases the time and space to
assert it.

In the MS analysis system, the extension table is maintained as a Prolog
structure, and the exploration of every execution path in the program is guaranteed
as follows: each transformed clause is given an extra argument, the clause number,
Corresponding to each predicate there is a driver which calls each numbered
clause in turn, collects the results, and returns a summary (in this case, their least
upper bound) to the caller. Thus, the transformed predicates for a predicate p with
m clauses have the structure shown in Figure 3.

In systems that support indexing on asserted clauses, an index will be created on
the first argument (corresponding to the clause number) of the transformed
predicate p$cl. This has the advantage that selection of the different clauses then
becomes deterministic, so no choice points need to be created for the different
p!§cl calls. This, in turn, leads to space and time savings. On the other hand, this
approach does not permit failure-driven space reclamation.

2.3. Other Optimizations

Because of the high cost of assert, and the relatively slow speed of asserted code, it
is advantageous to shift as much work as possible from within asserted code to
within compiled code, so as to reduce the amount of asserting necessary. For
example, it is substantially cheaper not to create and assert the p$pred clause
shown in Figure 3, with m + 1 literals in the body, directly as given. Instead, we
define a compiled predicate mode-iterate that takes a template of the p$cl goals
and the number of clauses m, invokes each of the p$cl goals, collects their
individual output modes, computes the least upper bound of these and returns it as
the overall output mode. This reduces the size (and cost) of asserting the p$pred
clause significantly. The p$pred clause that is asserted now looks simply like

p$pred (InMode, ExtTbl, OutMode) :-

mode_iterate(m, p$cl(_ , InMode, ExtTbl, _) , OModes) ,

lub(OModes, OutMode).

GLOBAL FLOW ANALYSIS 357

The predicate mode-iterate, which is defined and compiled as part of the main
analysis program, is given by the following:

mode_iterate(N, Call, OModes) :-

N>O+

(OModes = [OModeJORest] ,

copy_ terms(Call, Copy),

arg(l,Wy9N)9

arg(%Co~~,OMode),

call (COPY) ,

Nl is N - 1,

mode_iterate(Nl, Call, ORest)

);

OModes= [I.

While this makes some extra term copying necessary at runtime (m copies of the
p$cl template have to be created), the overhead involved is usually more than
offset by the savings in assert. This is in some ways similar to the ‘$findmode’
predicate used by MA3. Note that if input and output modes are always ground
terms, as in the MS system, then the call to copy-terms/2 above can be replaced
by two calls to functor/3.

Another optimization that can result in significant reductions in the amount of
code asserted, and cause substantial improvements in the speed of the system, is to
eliminate clauses that are redundant with respect to success pattern computation.
This of course depends on the granularity of the abstract domain. For example,
assuming an abstract domain that represents all ground terms by a single element
of the abstract domain, given the set of facts and clauses

p(a,h) .
P(C, [a,b,cl).
PG, XI -

p(e,f).

PC&Y) :- g(X) ,h(a,Y).

PC&Y) :- g(X) ,h(f(h) ,V.

they can be represented by transforming only the following subset:

p(aJ4.

P(X,X) -

PVLY) :- g(X) ,h(a,Y) .
This optimization is especially effective for “database” predicates or tables, which
are defined entirely by unit clauses. As an example of the utility of this optimiza-
tion, consider the benchmarks presented in Section 3. SB-Prolog’s assembler, which
is used in the LZS~ benchmark, contains tables defining instruction names, opcodes,
and their sizes: most of these clauses can be eliminated for mode inference
purposes. The peephole benchmark, which is SB-Prolog’s peephole optimizer,
contains large tables that contain information about registers used and defined by

358 M. V. HERMENEGILDO ET AL.

different instructions: many of these can likewise be eliminated. The read bench-
mark, consisting of a Prolog tokenizer and parser, contains a table of operators and
a table defining “special characters,” which can also be subjected to this optimiza-
tion. By eliminating redundant clauses in this manner, two kinds of savings are
realized: the space and time taken to create and assert the approximate program
decreases; and the time taken in the fixpoint computation also decreases. In our
experiments, the speedups obtained from this optimization ranged up to a factor of
2 in some cases.

Another interesting issue is the treatment of builtin predicates. One simple
alternative is to simply ignore such predicates in the analysis. This is however not
desirable because a great deal of information can be derived from builtin predi-
cates: first, the output modes of many builtin predicates are known and can be
applied to subsequent goals in the path. Second, builtin predicates often require
particular entry modes (for example, some arguments must be ground, others may
have to be unbound variables) or otherwise they fail. An example of this is the
is/2 arithmetic predicate which requires its second argument to be ground (and an
arithmetic expression). If it can be determined during the analysis that such
conditions are not met then it can be concluded that the rest of the current path
will not be executed resulting in analysis time saved and potentially increased
precision. In addition, if no information is available regarding an argument for
which a builtin predicate enforces a particular mode, it can be assumed that if
execution is to continue after that predicate, then the argument must have been
bound to that mode. Table 2 shows some examples of modes for builtins in a
simple {?, car, ground) domain.

Finally, in order to provide a starting point for the abstract analysis a number of
“query forms” are generally given to the analyzer along with the program, corre-
sponding to the possible points at which execution of the program may be invoked
(alternatively, all possible queries to all possible predicates in the program should
be considered, but this will generally severely limit the amount of information that
can be obtained from the analysis). In addition, ideally query forms should also
include the set of abstract entry substitutions for each of these possible entry
points. It is interesting to note that’ in a Prolog system with modules, such as
Quintus Prolog [29], the module entry point information can actually be used as
query forms, since it determines the points at which the program can be accessed
from outside. This property is used in the MA’ system so that in general the user
does not need to provide any additional information to the global analysis system
beyond the normal module declarations, global analysis thus not imposing any
additional burden on the programmer. For example, a Quintus module declaration
such as

:- module(foo, [main/21).

TABLE 2. Examples of builtin predicates modes

Builtin

is/2

c/2
put/2
length/2
var/ 1
number/ 1

Input Mode

?, ground

ground, ground

ground, ground
31 .>.

?
?

Output Mode

ground, ground

ground, ground

ground, ground

?, ground
var

ground

GLOBAL FLOW ANALYSIS 359

which is found at the beginning of a file would instruct the system to perform
global analysis of this file, starting with the main/2 predicate. Of course, since no
information is available at this point regarding input abstract substitutions the
analysis would start with :- main(?,?). The user can of course provide additional

information regarding the input abstract substitutions (for example, in MA3 via
:- imode and :- omode declarations).

2.4. Effects of Program “Cleanness” on Flow Analysis

Although “impure” language features such as var/l, nonvar/ 1, cur, etc., can be
handled without any trouble, a significant problem in reliable flow analysis is the
use of features such as call/ 1, not / 1, etc., where the argument appearing in the
program text is a variable. Such goals are difficult and expensive to analyze
correctly, and can affect the precision and efficiency of analysis significantly. A
similar problem arises with assert and retract. Neither of the two flow analysis
systems described here address these problems at this time. What is curious is that
in almost every program containing such “dirty” features that we looked at, their
use was not really necessary, and seemed to be a hangover from an imperative
programming style. Our experience indicates that (i) “clean” programs are desir-
able not only for their aesthetic and semantic appeal, but also for the very
pragmatic reason that such programs are much more amenable to compiler
analysis and optimization; and (ii) “unclean” features can often be avoided with a
little effort during coding

3. PERFORMANCE

In this section, we offer timings and other statistics obtained from the two
inference systems presented in this paper (MA3 and MS). These figures support our
claim that global program analysis need not be computationally overwhelming: the
cost fraction corresponding to a flow analysis pass added to a typical Prolog
compiler would seem to be of the order of 30-80%.

Tables 3 and 4, and 5 and 6 give two different performance perspectives,
efficiency and precision. The benchmark programs used were the following:

.

.

.

.

.

.

.

.

.

.

asm, the SB-Prolog assembler;

boyer, from the Gabriel benchmarks, by Evan Tick;

browse, from the Gabriel benchmarks, by Tep Dobry and Herve Touati;

func, a functionality inference system written for SB-Prolog;

projgeom, a program due to William Older;

peephole, the peephole optimizer used in SB-Prolog;

preprocess, a source-level preprocessor used in the SB-Prolog compiler;

queens, a program for the n-queens problem;

read + rdtok, the public-domain Prolog tokenizer and parser by Richard
O’Keefe and D. H. D. Warren; and

serialize, by D. H. D. Warren.

360 M. V. HERMENEGILDO ET AL.

TABLE 3. hIA3 Compile vs. Analysis times (sets, using Quintus 2.2, Sun 3/50)

Benchmark Analysis Time T, Total Compile Time T2 T,/Tz

asm 63.70 96.22 0.66
boyer 26.01 45.22 0.58
browse 33.32 40.32 0.83
func 38.20 55.14 0.69
peephole 23.45 40.32 0.58
preprocess 79.84 102.17 0.78
projgeom 3.70 6.83 0.54
queens 2.86 5.92 0.48
read 64.23 82.67 0.78
serialize 4.35 7.44 0.58

They constitute a set of “real” programs representing a wide mix of application
areas, characteristics, and coding styles.

Tables 3 and 4 give analysis vs. compile times: as can be seen, flow analysis takes
up 27-50% of the total compilation time in the MS system (actual analysis time of
a benchmark is compared to the time taken by the SB-Prolog compiler to compile
the benchmark), and from 50-82% in the MA3 system (idem. with respect to the
Quintus compiler). In each case, most of the time charged to mode inference is in
fact taken up in asserting the “approximate” program. Thus, all these numbers
could be improved by improving the efficiency of assert. Although MA3 uses the
Prolog database to implement the extension table and MS passes around a Prolog
term, we would caution against using the figures in Tables 3 and 4 to draw
conclusions regarding the relative efficiencies of these two approaches, since the
speeds of the underlying Prolog systems and compilers were very different. It is
also our intuition that if a combination of the techniques used in both systems (and
described in Section 2.2) is used, substantially better performance could be ob-
tained.

Tables 5 and 6 attempt to characterize the “precision” of the inference systems
(differences in the total number of argument positions in a program between
Tables 5 and 6 arise from differences in the set of predicates considered to be
“builtins” by the two mode inference systems). Table 5 gives the precision of the
MA3 system, in terms of the percentage of argument positions whose modes were
correctly inferred. The values range from 55% to lOO%, in most cases lying in the

TABLE 4. MS Compile vs. Analysis times (sets, using SB-Prolog 2.3.2, Sun 3/50)

Benchmark Analysis Time T, Total Compile Time T, T, /Tz

asm 103.76 242.84 0.43
boyer 48.30 140.32 0.34
browse 18.08 66.94 0.27
func 66.00 136.94 0.48
peephole 47.80 115.26 0.41
preprocess 94.66 194.88 0.49
projgeom 8.40 18.90 0.44
queens 9.60 19.16 0.50
read 68.32 155.90 0.44
serialize 6.90 19.12 0.36

GLOBAL FLOW ANALYSIS 361

TABLE 5. Precision of the MA3 svstem

Benchmark TAP Number “hits” Percent hits

asm 113 92 81.4

boyer 69 38 55.0

browse 47 37 78.7

func 130 81 62.3

peephole 36 33 91.6

preprocess 139 116 83.4

projgeom 27 23 85.2

queens 20 20 100.0

read 141 126 89.3

serialize 15 13 86.6

80-90% range. Thus, MA3 proves to be quite precise, presumably due to the
tracking of variable aliasing and structures of terms. Table 6 gives the precision
figures for Ms. Unlike MA3, MS uses an extremely simple abstract domain “ground,”
“nonvariable” and “unknown” and makes no attempt to keep track of the struc-
tures of terms, relative positions of embedded variables within a term, etc. As a
result, there are two sources of imprecision: (i) the inability to reason about “free”
arguments; and (ii) lack of information about term structures. In an attempt to
distinguish between the loss of precision due to these two effects, two different
measures of precision are used: the relative precision, expressed as the percentage
of “interesting,” i.e. non-free argument positions, whose modes are correctly
inferred by the system; and the absolute precision, expressed as the percentage of
all argument positions whose modes are correctly inferred. It can be seen that the
relative precision of the MS system ranges, in most cases from 70% to over 95%;
for programs that pass around a lot of partially instantiated structures, such as
func, preprocess, read and serialize, the lack of information about term structures
results in a drop in the relative precision to between 50% and 70%. The boyer
program is something of an anomaly, but the unusually low precision of inference
in this case can be traced to the inference system’s lack of sufficient knowledge
about the builtins functor/3 and arg/3. As might be expected in this case, the
inability to represent and reason about free variables results in lower absolute
precision figures.

TABLE 6. Precision of the MS system

Benchmark TAP IAP Number “hits” hits/IAP (%I hits/TAP (%I

asm 96 69 67 97.10 69.79

boyer 61 35 7 20.0 11.48

browse 42 30 21 70.0 50.0
func 118 87 58 66.67 49.15
peephole 34 21 16 76.19 47.05
preprocess 131 92 46 50.0 35.11
projgeom 27 24 22 91.67 81.48
queens 21 17 16 94.12 76.19
read 147 85 51 60.0 34.69
serialize 14 7 4 57.14 30.77

TAP, Total number of argument positions; IAP, number of “interesting” arg. positions.

362 M. V. HERMENEGILDO ET AL.

4. AN APPLICATION: AND-PARALLELISM DETECTION

This section discusses the application of mode inferencing to the generation of
Independent/Restricted And-parallelism [10,14,15], an efficient type of paral-
lelism in which only independent goals are executed in parallel and one of the
main applications of the MA” system. Note, however, that the application of mode
information is in general much broader, ranging from other high-level applications,
such as the improvement of Prolog’s backtracking behavior, to low-level applica-
tions relating to details of code generation in Prolog compilers. Together, they
underscore the importance of mode information at all levels in optimizing compil-
ers for high-performance logic programming systems. This application is presented
as a specific example of the usefulness of the information obtained from global
flow analysis.

The parallelization process is herein viewed as a transformation of the original
Prolog program into an &-Prolog [13,15] program which contains (possibly condi-
tional) parallel conjunctions of goals. Although &-Prolog supports several types of
parallelizing expressions the discussion is herein limited for conciseness to the
generation of Conditional Graph Expressions (CGEs) [15]. CGEs are a mechanism
(derived from DeGroot’s ECEs [lo]) for the generation and control of and-paralle-
lism. CGEs can appear in the bodies of Horn clauses and augment such clauses
with conditions which determine the independence of goals and provide control
over the spawning and synchronization of such independent goals during parallel
forward execution and backtracking. A CGE is defined as an independence
condition i_cond, followed by a conjunction of goals, i.e.:

(i- cond = > goal, &goal, & . . . &goal,)

i-cod is a sufficient condition (to be checked at run-time) which when met
guarantees the independence of the goals in the conjunction. Operationally, goal,
through goal,, can be run in parallel if i_cond is met; otherwise they are run
sequentially. Goals in a CGE may themselves be either standard Prolog goals or
other CGEs so that complex execution graphs can be encoded. Such execution
graphs and expressions can be generated by the user, but a more desirable
situation is, of course, that they be generated automatically by the compiler. Chang
et al. [3], DeGroot Ill], Jacobs and Langen [16], and Hermenegildo et al. [14,15,271,
among others, have addressed this subject. The two main issues involved in the
CGE generation process are how to associate the goals in a clause into groups for
parallel execution, and how to determine conditions for independence for each
group. Given a particular goal grouping, and considering only local analysis (i.e.,
restricting the analysis to a single clause) a sufficient i-cod can be given by the
conjunction [14,151:

ground(list_of_variables) , indep(list_of_tuples)

where list_of_variables is the set of all variables which appear in more than one
conjunct contained within the CGE, and list_of_tuples is the minimal set of pairs
of non-shared variables which appear in different conjuncts. The ground check
succeeds if every variable in list_of_v&ubles is instantiated to a ground term
when the test is made at runtime; the “indep” check succeeds if for all pairs in
list_of_tuples the two variables in each pair are bound to terms which do not
share variables.

GLOBAL FLOW ANALYSIS 363

TABLE 7. Performance of the abstract interpreter and annotator

Usefulness of Abstract Interpretation

Benchmark

Number of

CGEs Overhead

Percent
Percent

modes
unconditional CGEs Checks/CGE

inferred w/o ai w ai w/o ai w ai

AVG N/A 38.9 83.34 9.31 52.2 3.0 0.74

asm 123 33.3 81.4 27.6 47.2 1.6 0.8

boyer 10 30.1 55.0 30.0 60.0 2.3 1.6

browse 9 65.2 78.7 0 44.4 2.2 0.5

matrix 3 38.3 82.3 0 33.3 4.7 0.6

peephole 27.0 25.6 91.6 0 70.4 4.2 0.4

projgeom 4.0 36.0 85.2 0 50.0 4.5 1.0

queens 7 30.2 100.0 14.3 71.4 2.5 0.4

read 42 48.1 89.3 11.9 59.5 2.2 0.8

serialize 3.0 43.3 86.6 0 33.3 3.0 0.6

The conditions above are sufficient but not necessary in the majority of cases.
Since the “indep” and “ground” checks can be expensive (e.g., if the checks are
performed on deeply nested structures), it is imperative to reduce them to a
minimum. A limited number of checks can be eliminated by additional local
analysis, using knowledge about the modes of builtins and the fact that first
occurrences of existential variables are always unbound 1141. However, local
analysis proves to be of relatively limited utility. On the other hand, our experience
with the MA” system shows that, given a global analyzer capable of inferring
groundness and independence of variables, CGE checks can be significantly re-
duced and sometimes eliminated altogether at compile time through partial evalua-
tion with the mode information.

Table 7 summarizes some of our experiments in applying inferred mode infor-
mation to CGE generation. The results correspond to the “MEL” annotation
algorithm [27], coupled with MA”. The table shows for each benchmark the
number of CGEs generated, the fraction (overhead) added by the global analysis
time to the actual compilation time, the percentage of modes inferred, the
percentage of unconditional CGEs generated (i.e., for which no run-time checks
are needed), and the average number of checks per CGE. A new benchmark
(matrix, a matrix multiplication program) is also shown in this table. The “Ovhd”
figures given in this table represent actual overhead, i.e., the percentage of time
added to compilation by global analysis (as opposed to the fraction of compilation
time represented by the analysis). The reader may note that these figures are also
lower than those given in the previous section. This is due to the fact that in this
section the global analyzer is measured while embedded within the &-Prolog
compiler, while for the measurements in the previous section the analyzer was
extracted from the &-Prolog compiler and run standalone on top of Quintus
Prolog, in order to make comparison with the MS system more meaningful. The
last two columns are given with and without abstract interpretation for comparison.
The number of checks per CGE is significantly reduced when global analysis is
applied and in a good number of cases unconditional CGEs are generated (i.e.,
CGEs with no checks), resulting in parallel execution with no independence

364 M. V. HERMENEGILDO ET AL.

detection overhead. It can be seen that only a minor improvement of these results
would make it feasible to avoid run-time checks altogether by simply generating
parallel code for unconditional CGEs and sequential code (rather than a CGE) for
the conditional ones (as proposed in the “UDG” annotation method proposed in
[271X The usefulness of global flow analysis in this application is therefore clear. In
fact, the results presented in Table 7 represent lower bounds on CGE optimization
and are expected to improve as our analysis and parallelization tools, which are not
directly the subject of the paper, mature. Most significantly, the results presented
are based on &X3 inferring term groundness only. Recent results 117,261 show that it
is possible to infer both groundness and independence information with a high
degree of accuracy. This and other refinements should continue to optimize the
parallelization process, further improving runtime performance.

Although we have concentrated on the issue of i_cond determination, the
groundness and independence mode information is also essential in the goal
grouping process, mode analysis therefore representing an important tool for the
efficient implementation of and-parallelism. In addition, the same techniques can
be applied to the generation of other types of (non CGE-based) execution graphs
as supported by &-Prolog and other types of and- and or-parallel execution. For
example, the knowledge that variables are ground (and therefore, read-only) could
be used to selectively avoid at compile-time multiple binding environment mainte-
nance overheads in OR-parallel systems, thus extending the usefulness of this
application of global flow analysis.

5. CONCLUSION

Global flow analysis offers information that can be useful both in optimizing
compilers and in the efficient exploitation of parallelism, the combination of which
currently appears to be the best approach towards achieving increased perfor-
mance in logic programming systems. Our experiences with the implementation of
two flow analysis systems for Prolog (MA3, the MCC And-parallel Analyzer and
Annotator and MS, a flow analisis system for SB-Prolog), as reported in this paper,
show that global dataflow analyses need not be too expensive computationally to be
practical. We have proposed novel implementation techniques, shown an example
of an actual application of the information generated, and discussed some preci-
sion and performance tradeoffs. In addition, we have provided performance data
obtained from the MA3 and MS implementations analyzing sizeable programs, and
showed positive results from applying the information generated by MA” to the
problem of avoiding run-time checks in independent and-parallelism. The results
showed that these systems are indeed practical tools: analysis time typically
increases conventional compilation time by about a factor of two to three, and
considerable flow information is obtained that can result in significant speedups in
program execution. Moreover, much of the current overhead is due to having
implemented only a particular subset of the techniques presented herein and to
inefficiencies in the underlying Prolog implementations (e.g., in assert) that can be
improved upon. Our conclusion is therefore that such techniques can be used to
implement global flow analysis systems that are quite precise, yet not overly
expensive.

GLOBAL FLOW ANALYSIS 365

REFERENCES

1.

2.
3.

4.
5.

6.

7.

8.

9.

10.

11.

Bruynooghe, M., A Framework for the Abstract Interpretation of Logic Programs.
Technical Report CW62, Department of Computer Science, Katholieke Universiteit
Leuven, 1987.
Carlsson, M., Sicstus Prolog User’s Manual, Spanga, Sweden, 1988.
Chang, J.-H., and Despain, Alvin M., Semi-Intelligent Backtracking of Prolog Based on
Static Data Dependency Analysis, in: International Symposium on Logic Programming,
Boston, 198.5.
Codish, M., Personal communication, 1986.
Conery, J. S., Parallel Execution of Logic Programs, Kluwer Academic Publishers,
Norwell, Mass., 1987.
Cousot, P., and Cousot, R., Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints, in: Conference
Rec. 4th ACM Symposium on Principles of Programming Languages, 1977.
Debray, S., The SB-Prolog System, Version 2.3.2: A User’s Manual. Technical Report
87-15, Department of Computer Science, University of Arizona, Tucson, 1988.
Debray, S. K., A Simple Code Improvement Scheme for Prolog, in: Sixth International
Conference on Logic Programming, Lisbon, 1989.
Debray, S. K., and Warren, D. S., Automatic Mode Inference for Prolog Programs. J.
Logic Programming 207-229 Sept. (1988).
DeGroot, D., Restricted AND-Parallelism, in: International Conference on Fifth Genera-
tion Computer Systems, Tokyo, 1984.
DeGroot, D., A Technique for Compiling Execution Graph Expressions for Restricted
AND-parallelism in Logic Programs, in: Proceedings of the 1987 International Supercom-
puting Conference, Athens, 1987.

12. Dietrich, S. W., Extension Tables: Memo Relations in Logic Programmine, in: Fourth

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

IEEE Symposium on Logic Programming, San Francisco, 19187. ” “’
Hermenegildo, M., and Greene, K., &-Prolog and its Performance: Exploiting Indepen-
dent And-Parallelism, in: 1990 International Conference on Logic Programming, Jerusalem,
1990.
Hermenegildo, M., and Rossi, F., On the Correctness and Efficiency of Independent
And-Parallelism in Logic Programs, in: 1989 North American Conference on Logic
Programming, Cleveland, Ohio, 1989.
Hermenegildo, M. V., An Abstract Machine Based Execution Model for Computer
Architecture Design and Efficient Implementation of Logic Programs in Parallel, Ph.D.
Dissertation, Department of Electrical and Computer Engineering (Department of
Computer Science TR-86-20), University of Texas at Austin, Austin, TX, 1986.
Jacobs, D., and Langen, A., Compilation of Logic Programs for Restricted And-Paralle-
lism, in: European Symposium on Programming, 1988.
Jacobs, D., and Langen, A., Accurate and Efficient Approximation of Variable Aliasing
in Logic Programs, in: 1989 North American Conference on Logic Programming, Cleve-
land, Ohio, 1989.
Janssens, G., Deriving Run-time Properties of Logic Programs by means of Abstract
Interpretation, Ph.D. Dissertation, Department of Computer Science, Katholieke Uni-
versiteit Leuven, Beigium, 1990.
Jones, N., and Sondergaard, H., A semantics-based framework for the abstract interpre-
tation of prolog, in: Abstract Interpretation of Declarative Languages, Ellis-Horwood,
1987, pp. 124-142.
Kale, L., Parallel Execution of Logic Programs: the REDUCE-OR Process Model, in:
Fourth International Conference on Logic Programming, Melbourne, Australia, 1987.
Mannila, H., and Ukkonen, E., Flow Analysis of Prolog Programs, in: 4th IEEE
Symposium on Logic Programming, San Francisco, 1987.
Marien, A., Janssens, G., Mulkers, A., and Bruynooghe, M., The impact of abstract
interpretation: an experiment in code generation, in: Sixth International Conference on
Logic Programming, Lisbon, 1989.

366 M. V. HERMENEGILDO ET AL.

23. Marriott, K., and Sondergaard, Semantics-based dataflow analysis of logic programs.
Information Processing pp. 601-606 (1989).

24. Mellish, C. S., Some Global Optimizations for a Prolog Compiler. J. Logic Programming
(1985).

2.5.

26.

27.

28.
29.
30.

31.

32.

33.

34.

35.

Mellish, C. S., Abstract Interpretation of Prolog Programs, in: Third International
Conference on Logic Programming, London, 1986.
Muthukumar, K., and Hermenegildo, M., Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation, in: 1989 North American
Conference on Logic Programming, Cleveland, Ohio, 1989.
Muthukumar, K., and Hermenegildo, M., The DCG, UDG, and MEL Methods for
Automatic Compile-time Parallelization of Logic Programs for Independent And-paral-
lelism, in: 1990 International Conference on Logic Programming, Jerusalem, 1990.
Pereira, F., Prolog Benchmarks. Prolog Electronic Digest 5(56) (1987).
Quintus Prolog User’s Guide and Reference Manual-Version 6, 1986.
Tan, J.-C., Prolog Optimization by Removal of Redundant Trailings. Technical Report,
Department of Computer Science, National Taiwan University, Taipei, 1989.
Taylor, A., Removal of dereferencing and trailing in prolog compilation, in: Sixth
International Conference on Logic Programming, Lisbon, 1989.
Taylor, A., LIPS on a MIPS: Results from a prolog compiler for a RISC. Technical
Report, Association for Logic Programming, 1990.
Turk, A. K., Compiler Optimizations for the WAM, in: Third International Conference on
Logic Programming, London, 1986.
Van Roy, P., and Despain, A. M., The Benefits of Global Dataflow Analysis for an
Optimizing Prolog Compiler, in: Proceedings of the North American Conference on Logic
Programming, Austin, Texas, 1990.
Warren, D. H. D., OR-Parallel Execution Models of Prolog, in: Proceedings of TAP-
SOFT ‘87, Pisa, 1987.

