
ASIP
2012

AJP

CM
E ProgramThe American Journal of Pathology, Vol. 181, No. 5, November 2012

Copyright © 2012 American Society for Investigative Pathology.

Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ajpath.2012.06.043

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Review
Eph/Ephrin Signaling in Injury and Inflammation
Mark G. Coulthard,*†‡§ Michael Morgan,¶

Trent M. Woodruff,¶ Thiruma V. Arumugam,¶

Stephen M. Taylor,¶ Todd C. Carpenter,�

Martin Lackmann,** and Andrew W. Boyd‡§††

From the Academic Discipline of Paediatrics and Child Health,*

University of Queensland, the Paediatric Intensive Care Unit,†

and the Queensland Children’s Medical Research Institute,‡

Royal Children’s Hospital, Herston, Australia; the Leukaemia

Foundation Laboratory,§ Queensland Institute of Medical

Research, Herston, Australia; the School of Biomedical Sciences,¶

University of Queensland, St. Lucia, Australia; the Section of

Pediatric Critical Care,� University of Colorado Denver, Aurora,

Colorado; the Department of Biochemistry and Molecular

Biology,�� Monash University, Melbourne, Australia; and the

Academic Discipline of Medicine,†† University of Queensland,

Royal Brisbane Women’s Hospital, Herston, Australia

The Eph/ephrin receptor–ligand system plays an im-
portant role in embryogenesis and adult life, princi-
pally by influencing cell behavior through signaling
pathways, resulting in modification of the cell cyto-
skeleton and cell adhesion. There are 10 EphA recep-
tors, and six EphB receptors, distinguished on se-
quence difference and binding preferences, that
interact with the six glycosylphosphatidylinositol-
linked ephrin-A ligands and the three transmem-
brane ephrin-B ligands, respectively. The Eph/ephrin
proteins, originally described as developmental regu-
lators that are expressed at low levels postembryoni-
cally, are re-expressed after injury to the optic nerve,
spinal cord, and brain in fish, amphibians, rodents,
and humans. In rodent spinal cord injury, the up-
regulation of EphA4 prevents recovery by inhibiting
axons from crossing the injury site. Eph/ephrin pro-
teins may be partly responsible for the phenotypic
changes to the vascular endothelium in inflamma-
tion, which allows fluid and inflammatory cells to
pass from the vascular space into the interstitial tis-
sues. Specifically, EphA2/ephrin-A1 signaling in the
lung may be responsible for pulmonary inflamma-
tion in acute lung injury. A role in T-cell maturation
and chronic inflammation (heart failure, inflamma-
tory bowel disease, and rheumatoid arthritis) is also
reported. Although there remains much to learn

about Eph/ephrin signaling in human disease, and
specifically in injury and inflammation, this area of
research raises the exciting prospect that novel ther-
apies will be developed that precisely target these
pathways. (Am J Pathol 2012, 181:1493–1503; http://dx.doi.

org/10.1016/j.ajpath.2012.06.043)

Tissue injury or damage is followed by an orderly process
that includes the induction of the following: i) an acute
inflammatory process, ii) regeneration of cells, iii) migra-
tion and proliferation of both parenchymal and connec-
tive tissue cells, and iv) tissue remodeling.1 There has
been a parallel drawn between tissue repair and embryo
morphogenesis,2 and the tissue repair gene profile is
similar to that expressed during embryological develop-
ment.3 This has been confirmed by differential gene ex-
pression studies in experimental wounds in model organ-
isms (eg, Drosophila and Caenorhabditis elegans),2 in vitro
gastrointestinal damage,4 and spinal cord injury.5 Imme-
diately after tissue injury, there is an acute inflammatory
response.1 Inflammation is characterized by the move-
ment of inflammatory cells to the site of infection or tissue
injury.6 The decreased adhesion between vascular en-
dothelial cells allows the passage of plasma water and
proteins into the interstitial space, and vascular endothe-
lial cells become more adhesive to inflammatory cells,
which leave the circulation and enter the injured tissue.7

The Eph/ephrin receptor–ligand family (which subse-
quently will be referred to jointly as the Eph/ephrin pro-
teins) is a group of cell surface proteins, and emerging
evidence suggests that these proteins play an important
role in injury8 (in particular, wound healing, ischemia-
reperfusion injury, and spinal cord injury) and inflamma-
tion.9 The direct implication of the Eph/ephrin proteins in
inflammation remains relatively obscure; however, there
is evidence to support their role in modulating vascular
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permeability during inflammation.10,11 This review will
summarize the extensive work on Eph/ephrin proteins in
injury and present recent evidence to support the hypoth-
esis that Eph/ephrin proteins play an essential role in
inflammation mediated through the vascular endothe-
lium. Finally, the review will anticipate future research that
may lead to novel pharmacological approaches for treat-
ing injury and inflammation.

The Eph/Ephrin Proteins

Overview

The Eph receptor tyrosine kinases and their ephrin li-
gands are cell surface molecules with a wide range of
biological functions that influence cell behavior during
both embryogenesis and adult life.12 These functions
include roles in the following: i) the direction of cell posi-
tioning and migration; ii) axon guidance during develop-
ment; iii) control of tissue morphogenesis and patterning;
iv) defining tissue boundary formation during somatogen-
esis; v) the development of the vascular system; vi) neu-
ral plasticity; vii) tumor invasion and metastasis; viii) im-
mune function, hematopoiesis, and blood clotting; ix) the
biological characteristics of stem cells; and x) tissue re-
pair and maintenance.12

The Eph/ephrin proteins principally modify cytoskeletal
organization and cell–cell and cell–substrate adhesion.13

Cytoskeletal modification regulates the dynamics of cel-

Figure 1. The structure of the Eph receptors and their ephrin ligands. The
EphA and EphB receptors have a conserved domain structure. The ephrin-A
ligands are attached to the cell membrane by a glycosylphosphatidylinositol
anchor. The ephrin-B ligands are transmembrane proteins. PDZ, post-syn-
aptic density protein-95; SAM, sterile alpha motif. Adopted and modified
from Murai and Pasquale,18 with the permission of The Company of Biolo-
gists Ltd (copyright 2003).
lular protrusions, affects cell-cell adhesion and attach-
ment to the extracellular matrix, triggers cell segregation,
and modulates migration.14 Principle signaling cascades
initiated by Eph/ephrin interactions converge on cytoskel-
etal targets, such as integrins and small Rho family
GTPases, although emerging evidence reveals additional
direct roles in modulating viability and proliferation, in
particular stem and progenitor cells.15 This is in contrast
to other receptor tyrosine kinases, which were first iden-
tified as oncogenes, because they activated signaling
pathways that target gene transcription and regulate cell
proliferation and/or differentiation.16

Eph Nomenclature

There are 10 EphA receptors, EphA1–EphA10 (pro-
nounced eff-A), and six EphB receptors, EphB1–EphB4,
and EphB6 in vertebrates and an additional EphB recep-
tor, EphB5, which exists in chickens.17 The ligands of the
Eph receptors are known as ephrins (pronounced ef-
frins), an abbreviation derived from Eph family receptor-
interacting proteins. The initial distinction between EphA
and EphB receptors was based on sequence differences
within the extracellular ligand binding domain, but also
corresponds to the binding preferences for the six gly-
cosylphosphatidylinositol-linked ephrin-A ligands and the
three transmembrane ephrin-B ligands, respectively17,18

(Figure 1). The Eph/ephrin receptor–ligand interactions
are promiscuous within each A or B class, with variations
in binding affinities, although EphB4 only binds ephrin-
B2.19 There are also exceptions in the binding prefer-
ences between A and B classes, because EphA4 binds
to ephrin-B ligands (ephrin-B2–ephrin-B3),19 and EphB2

Figure 2. Eph receptor and ephrin ligand binding preferences. Double-
sided arrows, interactions between the specific Eph receptors and the

respective interacting ephrins. GPI, glycosylphosphatidylinositol. Adopted
and modified from Wilkinson,21 with the permission of Elsevier Inc. (2012).



Eph/Ephrins in Injury and Inflammation 1495
AJP November 2012, Vol. 181, No. 5
binds to most A-type ephrins, in particular ephrin-A520,21

(Figure 2).

Eph/Ephrin Receptor–Ligand Interaction

The interaction of an ephrin ligand with its cognate Eph
receptor involves both forward (Eph-mediated) and/or
reverse (ephrin-mediated) signaling, which can result in
either cell–cell adhesion or de-adhesion.12,22 The inter-
action between Eph receptors and ephrin ligands occurs
between receptor–ligand pairs expressed on two oppos-
ing cells (trans),23 whereas the relevance of reported
interactions on the same cell (cis) is disputed.16,24,25

Some reports imply that cis binding does not lead to
active signaling but interferes with receptor activation by
the ephrin-A presented on the surrounding cells.25 The
downstream effects of Eph/ephrin protein signaling are
ultimately mediated through changes in cytoskeletal pro-
teins (responsible for cell shape and motility) and cell
surface receptors for extracellular matrix proteins (re-
sponsible for cell adhesion).26 The specificity of the cel-
lular response for both forward and reverse signaling
events and the final outcome are determined by the type
and abundance of Ephs and ephrins on the interacting
cell surface and the sum of the Eph receptors on a cell
surface, which are competing for available ephrin targets
on the interacting cells.27

Molecular Mechanisms of Eph/Ephrin Protein
Signaling

The interaction of an Eph receptor with its ephrin ligand
results in the formation of an Eph/ephrin tetramer and
juxtaposition of two catalytically autoinhibited Eph recep-
tor monomers in a ring-like complex, juxtaposing two
Ephs for potential cross phosphorylation.28 Once formed,
the heterotetrameric Eph/ephrin complex promotes eph-
rin-independent Eph/Eph interactions between neighbor-
ing Ephs that promote the assembly of higher-order oli-
gomers, which are required for Eph phosphorylation and
activation of downstream signaling.27 Recent findings
suggest that this oligomerization via Eph/Eph protein in-
terfaces in the globular (ephrin-binding) and cysteine-
rich domains occurs independent of Eph signaling ca-
pacity and subclass specificity, so that the composition
of the signaling cluster reflects the expression profile of
Ephs on a cell surface.28 Once activated, tyrosine phos-
phorylation–induced changes in the conformations of
Eph/ephrin cytoplasmic domains, in particular release of
the Eph kinase domain from the inhibitory interaction with
the juxtamembrane domain, allow the specific binding of
Src homology (domains) 2 and 3, phosphotyrosine do-
main, or post-synaptic density protein-95 domain–con-
taining downstream signaling molecules and activate
corresponding signaling pathways22,27 (Figure 3).

Eph/ephrin protein signaling results in the activation of
several cytoplasmic downstream signaling pathways, in-
cluding the following: i) Src family kinases, ii) mitogen-
activated protein kinase, iii) p-21 activated kinase, iv)

post-synaptic density protein-95–dependent pathways,
v) chemokine pathways, vi) heterotrimeric G-protein
pathways, and vii) integrin-mediated pathways.12,13,26

The activity of each of these pathways is dependent on
the activity of the Rho family GTPases, including RhoA,
Ras-related C3 botulinum toxin substrate (Rac) 1, and
cell division control protein 42 (Cdc42); the Rac–GTPase-
activating protein (GAP); �-chimerin13; and a variety of
guanine nucleotide exchange factors, including ephex-
ins.29 The guanine nucleotide exchange factors, which
mediate the downstream signaling, are specific for the
cell type29; this may, in part, account for the different cell
responses, either cell adhesion or cell–cell repulsion (de-
adhesion), after Eph/ephrin receptor activation.23 The at-
tenuation and termination of Eph/ephrin protein signaling
involves proteolytic cleavage by a disintegrin and metal-
loproteinase 1030 and �-secretase,26 receptor-mediated
endocytosis,26 and tyrosine phosphatase activity.31

The Role of the Eph/Ephrin Proteins in Tissue
Injury

Wound Healing

The Eph/ephrin proteins play a role in tissue repair and
maintenance.32 The pathological features that follow trau-

Figure 3. Eph/ephrin signaling pathways. Structurally and functionally sig-
nificant domains within Eph and ephrin proteins and signaling pathways of
activated Eph receptors and ephrins that modulate cell shape and attach-
ment. Arrows, positive outcome; blue circle, phosphorylation; flat end
lines, inhibition. Adopted and modified from Himanen et al,20 with the
permission of Taylor and Francis Group Ltd (copyright 2010).
matic injury and tissue damage include formation of a
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platelet plug and coagulation of extravasated blood,
which initiates a complex signaling cascade to recruit
inflammatory cells, stimulate fibroblast and epithelial cell
proliferation, direct cell migration, and induce angiogen-
esis to restore tissue integrity.1,33 The classic histological
observation that many of the features of normal wound
healing are similar to the tumor microenvironment sug-
gested that the tumor stroma is normal wound healing
gone awry.34 Fibroblasts exposed to serum express
many of the genes involved in wound healing.34 The
fibroblast serum response was investigated with a cDNA
microarray genome-wide survey and confirmed a gene
expression signature similar to metastatic cancer.34 How-
ever, although this approach of measuring gene expres-
sion has thus far not revealed Eph/ephrin proteins as
candidates at the time points considered,34 the Eph/
ephrin proteins are involved in angiogenesis26 and cell
migration,13 both critical aspects of wound healing.1,6,33

Ischemia-Reperfusion Injury

Tissue injury can also result from vascular disease in
which the blood and nutrient supply is interrupted with
severe consequences to major organs (eg, acute myo-
cardial infarction and cerebrovascular stroke).6 The isch-
emic damage is then followed by reperfusion injury when
blood flow is restored, either as part of the natural history
of the disease or as a result of therapeutic measures.35

The ischemia-reperfusion injury is characterized by the
following: i) an inflammatory response regulated by the
pro-inflammatory cytokines, tumor necrosis factor
(TNF)-�, IL-1, and IL-6; ii) up-regulation of endothelial
adhesion molecules; and iii) recruitment of inflammatory
cells to the damaged tissue.35

In both an in vivo and in vitro mouse model of renal
ischemia-reperfusion injury, EphA2 was up-regulated
through an Src kinase–dependent pathway.36 A mouse
skin flap model was used to determine the response of
Eph/ephrin proteins to hypoxia. Partial cutaneous oxygen
tension and tissue lactate/pyruvate measurements mon-
itored by microdialysis confirmed tissue hypoxia, and
quantitative PCR confirmed induction of hypoxia-induc-
ible factor-1� and vascular endothelial growth factor
(VEGF).37 The expression levels of EphB4, ephrin-B2,
EphA2, and ephrin-A1 were up-regulated in hypoxic skin,
and the temporal expression pattern was determined,
which supports the hypothesis that Eph/ephrin proteins
are involved in revascularization after hypoxic injury.37

Also, hypoxia-inducible factor-2� (but not hypoxia-induc-
ible factor-1�) binds the hypoxia response element in the
ephrin-A1 promoter and plays a role in tumor vascular-
ization by inducing ephrin-A1 expression.38 Furthermore,
ephrin-B2 is required during angiogenesis and ex-
pressed specifically in arteries, which have a higher ox-
ygen tension than veins. In fact, chromatin immunopre-
cipitation, mutagenesis, and small-interfering RNA
knockdown experiments indicate that hypoxia drives ar-
terial differentiation by increasing ephrin-B2 expression
in endothelial cells through stimulating protein 1 activa-

tion.39
Optic Nerve and Spinal Cord Injury in Lower
Vertebrates

The function of the Eph/ephrin proteins was first charac-
terized in axon guidance.17 Reciprocal gradients of Eph/
ephrins were responsible for the precise projection of the
retinal ganglion cells onto the optic tectum/superior col-
liculus.40 In fish and amphibians, damage to the optic
nerve or spinal cord is followed by infiltration of microglial
cells and macrophages and subsequent axon regrowth
and functional recovery.41 In contrast, at the injury site in
mammals, there is expression of chondroitin sulfate pro-
teoglycan (lecticans and neuroglycan 2) in the extracel-
lular matrix and inhibitory factors, including axon guid-
ance molecules (semaphorins, ephrins, and netrins) and
prototypic myelin inhibitors (Nogo, myelin-associated
glycoprotein, and oligodendrocyte myelin glycoprotein),
that actively inhibit axonal regeneration, resulting in poor
functional recovery.42 In fish, the neurons that undergo
successful axonal regeneration have a similar, but not
identical, molecular profile to neurons in the embryonic
state.43 In adult goldfish with optic nerve injury, immuno-
histochemical (IHC) studies indicated that there was tran-
sient up-regulation of EphA3 and EphA5 in the retinal
ganglion cells (RGCs), coincident with up-regulated tec-
tal ephrin-A2 expression, both of which were required for
restoration of the normal retinotectal topographic map.44

Optic Nerve and Spinal Cord Injury in Rodents

In mice with optic nerve de-afferentation, the graded
expression patterns of ephrin-A2 and ephrin-A5 in the
superior colliculus were similar to those found during
development.45 In rat optic nerve injury, there was up-
regulation of ephrin-A2 in the superior colliculus and
EphA5 in the retina.46 A strain of mutant mice that ex-
pressed the yellow fluorescent protein in a small, fixed
proportion of RGC axons was bred with EphB3-null
mice.47 After optic nerve crush injury, macrophages ex-
pressing EphB3 accumulated at the injury site, and eph-
rin-B3 was expressed on RGC axons at the injury site.47

In mice with reduced EphB3 function, there was de-
creased axon sprouting after optic nerve crush injury.47

This suggests a role for EphB3-expressing macrophages
interacting with ephrin-B3–expressing RGC axons in the
remodeling events that follow optic nerve injury.47

Spinal cord injury in rats resulted in a marked increase
in EphB3 mRNA at day 7 after injury, and was confirmed
by immunolocalization of EphB3 expression in white mat-
ter astrocytes and gray matter neurons.48 In another
study using semiquantitative PCR of the injured adult rat
spinal cord, EphA3, EphA4, and EphA7 mRNAs were
up-regulated. Furthermore, EphA3, EphA4, EphA6, and
EphA8 immunoreactivity was increased in the ventrolat-
eral white matter. The EphA receptor expression local-
ized in the white matter to glial cells, both astrocytes and
oligodendrocytes, and localized to neurons in the gray
matter. The expression of EphA3 mRNA and protein after
spinal cord injury was elevated from day 2 to day 28, and

EphA3 immunoreactivity was observed in reactive astro-
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cytes.49 However, in a contusive model of rat spinal cord
injury, ephrin-A1 was the only ephrin-A ligand up-regu-
lated.50 EphB3 expression detected by in situ hybridiza-
tion was up-regulated in rats subjected to complete tho-
racic spinal cord transection and was confirmed by
IHC.51 IHC data suggested that ephrin-B2 was ex-
pressed on reactive central nervous system astrocytes
and that EphB2 was present on fibroblasts invading the
injury site from the adjacent meninges.52

After spinal cord hemisection, EphA4 was up-regu-
lated in wild-type mice on astrocytes associated with the
glial scar at the injury site, whereas EphA4-null mice
showed markedly reduced astrocytic gliosis and scar
formation.53 The EphA4-null mice exhibited axonal re-
generation, characterized by axons growing across the
injury site, associated with significant functional recovery
1 to 3 months after the injury.53 EphA4 up-regulation after
spinal cord contusion injury in rats was blocked by infus-
ing EphA4 antisense oligonucleotides; however, although
this did not result in enhanced locomotor recovery, it did
improve chronic pain scores.54 In nonhuman primates,
cortical injury resulted in up-regulation of EphA4 on re-
active astrocytes at the lesion.55 A more complete under-
standing of the molecular basis of recovering axons in the
fish, amphibian, and rodent central nervous systems will
provide valuable insight into potential therapeutic ad-
vances after brain and spinal cord injury in humans.56

Signaling Mechanisms in Spinal Cord Injury

The precise downstream intracellular signaling mecha-
nisms that mediate the inhibitory effect of ephrins after
spinal cord injury remain unknown. However, in the days
after contusive spinal cord injury in rats, Western blot
analysis studies identified an increased expression pro-
file of the Rho guanine exchange factor, ephexin, in re-
active astrocytes, activated macrophages, and neurons
at the lesion site, which colocalized with EphA3, EphA4,
and EphA7.57 In vitro studies determined that up-regula-
tion of VAV-2 in Schwann cells mediated the inhibitory
signal.58 The interactions of EphB receptors with eph-
rin-B ligands modulate spinal cord synaptic efficiency in
an N-methyl-D-aspartate receptor–dependent manner
and contribute to neuropathic and inflammatory pain
states mediated via a mitogen-activated protein kinase–
dependent mechanism.59

Adult Brain Disorders

The Eph/ephrin proteins are important in brain develop-
ment and synapse function in the adult brain and have
been implicated in brain disorders.44 In this regard, sin-
gle-nucleotide polymorphism and haplotype analyses
suggest that the EFBN2 (ephrin-B2) locus is associated
with schizophrenia in the Han Chinese population.60 Fur-
thermore, the Eph protein expression profiles in both
active and inactive central nervous system lesions of
multiple sclerosis, normal adjacent white matter, and
control tissues have been characterized by IHC.61 In-
flammatory cells in active multiple sclerosis lesions ex-

pressed ephrin-A1 to A4 and EphA1, A3, A4, A6, A7, and
not EphA2, A5, and A8. In axons adjacent to active mul-
tiple sclerosis lesions, EphA3, A4, and A7 and ephrin-A1
expression was increased.61

The Role of the Eph/Ephrin Proteins in
Inflammation

The Development of the Vascular Endothelium

The normal development of the cardiovascular and lym-
phatic system requires the coordinated function of sev-
eral important transcription factors, receptor–ligand
pairs, growth factors, and guidance molecules.62 These
molecules include the Eph/ephrin proteins, VEGF and
receptors 1 and 2, angiopoietins (Ang-1 and Ang-2) and
their receptors (Tie-1 and Tie-2), netrins, slits and their
receptors (Robo), semaphorins and plexins (the recep-
tors for the semaphorins), and neuropilins.63 The expres-
sion of ephrin-B2 and its receptor, EphB4, in a comple-
mentary pattern on embryonic arteries and veins,
respectively, suggested a reciprocal interaction in the
vascular remodeling process.63

The Vascular Endothelium in Inflammation

The initial evidence for the role of Eph/ephrin proteins in
vascular biology was the identification of ephrin-A1 (pre-
viously B61) as a TNF-�–responsive gene in endothelial
cells highlighting a potential role in inflammatory re-
sponses.64 The vascular endothelium controls the pas-
sage of fluid, proteins, and inflammatory cells from the
blood into the interstitium via the paracellular spaces
between endothelial cells.65 The endothelial cell–cell
junctional structures, which include the gap, adherens,
and tight junctions (zona occludens), play an important
role in determining and regulating this endothelial barrier
function.65 The endothelial cell–cell junctional structures
are a complex of transmembrane proteins, and barrier
function is influenced by several external factors acting
through signaling pathways that regulate the paracellular
space.65 The gap junctions facilitate the movement of
ions and second messengers between adjacent endo-
thelial cells.66 The adherens junctions are particularly
important in the post-capillary venule, which also ex-
presses the receptors for inflammatory mediators, includ-
ing TNF-�, IL-1�, and VEGF.67 The predominant struc-
tural protein of the adherens junction is VE-cadherin,
which interacts with the p120 catenin and �-catenin pro-
teins.65 The tight junctions (zona occludens-1) are lo-
cated at the most apical part of the cell membrane, and
the claudins, occludins, and JAM-A are major constituent
proteins (Figure 4).65

Furthermore, the junctional structures are linked to the
actin and myosin filament cytoskeleton of the endothelial
cell.65 The cortical actin filaments are critical components
of the cellular cytoskeleton and interact with myosin fila-
ments through myosin light chain kinase, resulting in
changes to endothelial cell shape.72 The distortion of
endothelial cell shape allows the development of gaps in

the monolayer, permitting the passage of fluid, proteins,
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and inflammatory cells from the blood into the interstitial
tissues.72 The actin filaments are tethered to membrane
proteins, including VE-cadherin, and are dynamically
regulated by the Rho family guanosine triphosphatases
(Rho-GTPases), specifically RhoA, Rac1, and Cdc42,
which are known targets of Eph/ephrin signaling. In gen-
eral, Rac1 and Cdc42 activation stabilizes actin, whereas
RhoA activation, in response to inflammatory stimuli, in-
cluding thrombin and VEGF, disrupts the actin cytoskel-
eton73 (Figure 4).

The Role of Specific Eph/Ephrin Proteins in
Inflammation

The up-regulation of various Eph/ephrin proteins in re-
sponse to the pro-inflammatory cytokines suggests a role
in inflammation.9 Rats administered lipopolysaccharide
(LPS) respond with a biphasic or polyphasic (phase 1
to 3) fever, dependent on dose.74 When rats were admin-
istered LPS, there was altered regulation of several Eph/
ephrin proteins in the LPS processing organs (liver and

Figure 4. Mechanism of EphA2 signaling in the endothelium. The passage o
of the endothelial cell and the permeability of the endothelial gap junction
signaling pathways acting through the myosin light chain kinase (MLCK).69 T
and influences cell shape through MLCK.70 EphA2 signaling increases recruit
Increased low-molecular-weight phosphotyrosine phosphatase dephospho
Rho-GTP, which destabilizes adherens junctions.71 The inflammatory media
adhesion molecule 1 expression, facilitating leukocyte migration and attach
shape.69 Ephrin-A1, the ligand for EphA2, is up-regulated by TNF-�,64 and E
permeability in inflammation. SHP, Src homology region 2 domain–contain
lung) determined by differential mRNA display and RT-
PCR.74 There was increased EphA2 expression in the
hypothalamus, with no change in ephrin-A1; however,
there was a counterchange in corresponding receptor–
ligand pair expression in the liver and lung.74 There was
a biphasic change in ephrin-A1 expression with early
(phase 2) down-regulation (threefold) and up-regulation
of EphA2 (16-fold) in the liver (similar changes in the
lung), followed by later (phase 3) up-regulation (fourfold)
of ephrin-A1 and normalization of EphA2.74 Furthermore,
there was up-regulation of ephrin-B2 and down-regula-
tion of EphB3 (liver and similar in lung), with up-regulation
of ephrin-A1/ephrin-A3 and down-regulation of EphA1/
EphA3 (EphA3 was 21-fold underexpressed in the lung
during phase 3), and these findings were confirmed by
immunoblotting.74

The vasculature is central to the pathogenesis of in-
flammation, and the vascular endothelium plays a key
role in orchestrating the response to injury or infection.6

Changes in the phenotype of the endothelium allow the
passage of fluid into the interstitium and enable inflam-
matory cells to localize and migrate into an injured or

nd inflammatory cells across the endothelium is regulated by both the shape
actinomyosin contractile elements that control cell shape are regulated by

n binding to the proteinase-activated receptor-1 increases Src kinase activity
both Src kinase and low-molecular-weight phosphotyrosine phosphatase.70

the p190 RhoGAP that inhibits p190 Rho-GAP activity and up-regulates
F-� and interferon (IFN)-�, up-regulate NF-�B, which increases intercellular
Furthermore, NF-�B increases MLCK activity, thus altering endothelial cell
-regulates NF-�B.70 Thus, EphA2 may have a central role in endothelial cell

sphatase.
f fluid a
s.68 The
hrombi
ment of
rylates

tors, TN
ment.70
infected tissue.6 The up-regulation of ephrin-A1 by
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TNF-�, IL-1�, and LPS in the endothelium is mediated by
a p38 mitogen-activated protein kinase and a stress-
activated protein kinase/c-Jun NH2-terminal kinase–de-
pendent mechanism.75 Ephrin-A1 is chemoattractive for
migrating endothelial cells in vitro, induces tubule forma-
tion in assays with human umbilical vein endothelial cells,
and has previously induced sprouting blood vessels in a
corneal pocket assay.76

EphA2/Ephrin-A1 Signaling in Vascular
Endothelial Injury

Both EphA2 and ephrin-A1 are expressed in distal normal
lung tissue, and in vitro studies of pulmonary vascular
endothelial cells determined that ephrin-A1 increases
monolayer permeability with evidence of tight and adhe-
rens junction disruption.10 Intravenous injection of eph-
rin-A1 in rats induces leakage of labeled albumin, with
histological evidence of endothelial disruption, and the
EphA2 receptor was markedly up-regulated in the lungs
of hypoxic infected rats.10 Furthermore, when rats were
exposed to viral infection, EphA2 was up-regulated by an
endothelin-dependent effect in lung endothelial cells,
and when EphA2 signaling was blocked with a soluble
ligand competitor (ephrin-A1-Fc), there was markedly re-
duced extravasation of albumin and reduced lung edema
formation.11 The pattern of distribution of vascular EphA2
receptors in the lung is predominantly in the alveolar
microvasculature, indicating localization to the capillary
bed as the source of fluid and protein extravasation.11

Surprisingly, EphA2-deficient mice treated with Myco-
plasma pulmonis infection or sensitized to ovalbumin to
cause airway inflammation displayed increased cytokine
production and greater leukocyte infiltration at the site of
inflammation,77 in contrast with a bleomycin model of
lung injury, in which EphA2 knockout mice were pro-
tected from lung injury.78

EphA2/Ephrin-A1 Signaling in Retinovascular
Disease

In retinopathy of prematurity, diabetic retinopathy, neo-
vascular glaucoma, and age-related macular degenera-
tion, vision loss results from abnormal retinal angiogene-
sis.79 The VEGF-induced angiogenic responses of
cultured retinal endothelial cells are inhibited by EphA2-
Fc.79 In a rat model of retinopathy of prematurity, an
intraocular injection of a soluble EphA2-Fc receptor re-
sulted in a significant reduction in abnormal retinal revas-
cularization without affecting normal retinal vessels.79 In
a mouse model of proliferative retinopathy, an intraocular
injection of ephrin-A1-Fc suppressed ischemic retinal re-
vascularization in a dose-dependent manner by inhibiting
VEGF-induced angiogenesis and vasopermeability.80

Eph/Ephrin Signaling and Inflammatory Cells

The regulation and maturation of hematopoietic stem
cells are complex and partly modulated by EphA/eph-

rin-A interactions.81 The migration of T lymphocytes be-
tween the peripheral blood and organized lymphoid tis-
sue is tightly regulated by an array of chemokines, and
the migration of T cells to inflammatory sites is also
chemokine dependent.82 Similarly, the organization of
the thymus and trafficking and maturation of T lympho-
cytes within thymic microenvironments is, in part, regu-
lated by Eph/ephrin protein interactions, with the balance
between Eph and ephrin-B signaling important for T-cell
development, which is under the influence of thymic ep-
ithelial cells.82 The blockade of Eph/ephrin signaling with
EphA-Fc fusion proteins reduces CD4�CD8� thymo-
cytes. EphA4 knockout mice have a block in T-cell mat-
uration because of changes in the nonlymphoid thymic
microenvironment. Ephrin-B1 is critical for T-cell devel-
opment, whereas EphB6 overexpression results in break-
down of the thymic cortex-medulla limits.82 The chemo-
kine response of T cells can be modulated by
costimulation with ephrin-A and ephrin-B.83 In chronic
lymphocytic leukemia, EphA2/ephrin-A4 interactions me-
diate trafficking of malignant B lymphocytes into tissues
through the high endothelial venules.84

Recently, both ephrin-A2 and ephrin-B2 expression
has been documented on human polymorphonuclear
neutrophils, and gene microarray confirmed ephrin-A2
and ephrin-B2 expression in polymorphonuclear neutro-
phil–induced inflammation-mediated angiogenesis in a
CD18-deficient mouse model.85 However, the precise
role of Eph/ephrins in human polymorphonuclear neu-
trophils remains obscure. Peripheral blood leukocytes
stimulated with TNF-� led to an increased expression
of ephrin-B2, which has the potential to activate the
endothelium in inflammation.86

Eph/Ephrin Signaling and Chronic Inflammation

There is evidence for the involvement of Eph/ephrin pro-
teins in a range of chronic inflammatory diseases. The
levels of circulating cytokines, TNF-� and IL-1�, are ele-
vated in chronic heart failure, and differential display
identified EphA3 as a cytokine-responsive gene in cul-
tured rat cardiomyocytes; however, a link between
EphA3 and cardiac failure has not been determined.87

The Eph/ephrin proteins are expressed during small in-
testine development.88 EphA2 (formerly Eck) and eph-
rin-A1 (formerly B61) have been described in the main-
tenance of the intestinal barrier, and EphB/ephrin-B
expression gradients direct intestinal epithelial cell posi-
tioning within the crypts.89 Real-time PCR and cDNA
microarray analysis determined that EphA2, ephrin-A1,
EphB2, and ephrin-B1/B2 expression was up-regulated
in the intestinal epithelial cells of mucosal lesions in pa-
tients with inflammatory bowel disease.4 EphA2, ephrin-
A1, EphB2, and ephrin-B1/2 had increased expression in
the intestinal cells of patients with Crohn’s disease.90

Stimulation of the ephrin-B2 reverse signaling pathway
induced the expression of wound healing–associated
genes in an intestinal epithelial cell line-6.90 Stimulation of
ephrin-B1/2 with EphB1-Fc in intestinal epithelial cells
induced pro-inflammatory genes (cyclooxygenase-2 and

monocyte chemotactic protein-1) and genes involved in



1500 Coulthard et al
AJP November 2012, Vol. 181, No. 5
wound healing (FAK and ERK 1/2 mitogen-activated pro-
tein kinase pathway), resulting in faster wound healing.4

Ephrin-B1 expression was significantly increased in
patients with rheumatoid arthritis in the synovial fibroblast
cells and invading CD3-positive lymphocytes compared
with patients with osteoarthritis.91 An increase in eph-
rin-B1 expression was also seen in peripheral blood lym-
phocytes of patients with rheumatoid arthritis compared
with healthy people.91 In an animal model of rheumatoid
arthritis, animals treated with an ephrin-B1-Fc fusion pro-
tein that activates the EphB1 receptor resulted in an
increase in TNF-� and IL-6 production and increased the
number of peripheral blood lymphocytes migrating into
the joint.91 Higher levels of ephrin-B1 expression may be
associated with increased inflammation in rheumatoid
arthritis.91 In human bone samples from patients with
osteoarthritis, the EphB4 receptor was up-regulated.92 In
subchondral bone tissue cultures from patients with os-
teoarthritis, ephrin-B2 and its receptor, EphB4, inhibited
bone resorption factors.92 The activation of EphB4 with
ephrin-2B resulted in decreased IL-1�, IL-6, and matrix
metalloproteinase (1, 9, and 13) production.92

The Mechanism of Eph/Ephrin Receptor–Ligand
Signaling and Vascular Leak

The principal effect of Eph/ephrin receptor–ligand inter-
action is cell repulsion or de-adhesion mediated through
a complex signaling cascade converging on a final com-
mon pathway, which regulates the activity of the Rho
family GTPases (RhoA, Rac1, and Cdc42), which medi-
ate changes to cytoskeletal proteins13 (Figure 3). Vascu-
lar leak in inflammation is well described, but the precise
mechanism linking inflammatory mediators with in-
creased endothelial paracellular permeability is still not
well understood.69 Ephrin-A1 is a TNF-�–responsive
gene that potentially links systemic inflammation and the
release of inflammatory mediators with EphA2-ephrin-A1
signaling events.64 However, EphA2 stimulation by eph-
rin-A1-Fc in cultured bovine retinal endothelial cells re-
sulted in suppression of VEGF receptor 2 phosphoryla-
tion and VEGF-mediated increased vasopermeability80;
these findings were confirmed in a rodent model.80

Although the Eph/ephrin signaling system may be
partly responsible for vascular leak, recently, other sig-
naling systems (eg, the Slit-Robo system) have also been
implicated.68 In MDCK cells, EphA2 activation by ephrin-
A1-Fc phosphorylates claudin-4 in tight junctions and
attenuates claudin-4 association with zona occludens-1,
increasing paracellular permeability.93 In a brain micro-
vascular endothelial cell line, EphA2 associated with the
tight junction and stimulation by recombinant ephrin-
A1-Fc increased monolayer permeability, whereas
EphA2 inactivation by RNA interference or a kinase-inac-
tive mutant promoted tight junction formation94 (Figure 4).
EphA2 co-associates with and regulates cadherin ex-
pression in the adherens junction, and activation of
EphA2 suppresses cell proliferation and cell adhesion in
a range of cells, including endothelial cells.95 In human

mammary epithelial cells (MCF10A), overexpression of
EphA2 destabilizes the adherens junction by weakening
E-cadherin–mediated cell–cell adhesion through activa-
tion of a Rho-GTPase signaling pathway, which involves
Src-kinase–enhanced low-molecular-weight phosphoty-
rosine phosphatase activity and inhibition of Rho-GAP.71

EphA2 mediates thrombin-induced up-regulation of inter-
cellular adhesion molecule 1; therefore, EphA2 may be re-
sponsible for changes to the endothelial cell surface in
addition to the change in permeability of the endothelial
cell–cell junctions.70 In addition, monocyte migration is
partly mediated through interaction of monocyte-expressed
EphB receptors with endothelial ephrin-B2, and endothelial
cells overexpressing ephrin-B2 displayed stronger adhe-
sions with monocytes than endothelial cells expressing trun-
cated ephrin-B2 or no ligand.96 The evidence suggests that
EphA2/ephrin-A1 signaling on the vascular endothelial cell,
possibly in response to inflammation-induced up-regulation
of TNF-�, thrombin, and other inflammatory mediators, in-
fluences both the integrity of endothelial junctions and cy-
toskeleton structure, resulting in a vascular leak.70,71,95 In
summary, Eph/ephrin receptor–ligand interactions may
be (partly) responsible for vascular endothelial cell
layer leakiness (to fluid and proteins)70,71,95 and stick-
iness (to inflammatory cells).96 Both of these changes
to the phenotype of vascular endothelium are funda-
mental to the response to injury and the pathogenesis
of systemic inflammation (Figure 4).

The Future

The role of the Eph/ephrin proteins in human disease is
an emerging field. Although much remains to be ex-
plored, the evidence raises hopes for the development of
novel therapies that precisely modulate the molecular
mechanisms of disease through the administration of
specifically targeted molecules, such as Eph-Fc or eph-
rin-Fc, which disrupt Eph/ephrin signaling interactions.97

The intramyocardial administration of ephrin-A1-Fc pro-
moted tissue salvage in a model of myocardial infarction
in mice.98 Furthermore, in another mouse model of myo-
cardial infarction, EphA2/ephrin-A1 signaling promoted
cardiac stem cells to migrate into the injured tissue.99 The
ability to influence the migration of stem cells to restore
tissue integrity after ischemia-reperfusion events, such as
myocardial infarction and stroke, is a particularly exciting
prospect.99 In rodent models of spinal cord injury, the
administration of EphA4 antagonists reduces astrocytic
glial scarring and encourages spinal cord axons to re-
generate across an area of spinal cord injury and pro-
mote functional recovery.56 The postmortem analysis of
human brains (n � 19) after traumatic brain injury re-
vealed up-regulation of EphA4 expression, again sug-
gesting that blocking EphA4 activation may represent a
therapeutic approach to improving recovery after brain
trauma.100 The release of soluble ephrin-A1 from tumor
cells may contribute to the vascular leak in cancer syn-
dromes, which could respond to specific inhibitors.101

The increased vascular permeability that results in fluid
leakage plays a significant role in the pathogenesis of the

circulatory failure (shock) that complicates sepsis/sys-
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temic inflammatory response syndrome68 and, in combi-
nation with neutrophil infiltration, directly contributes to
impaired organ function and multiple organ dysfunction
syndrome.68 In fact, the restoration of endothelial barrier
function by treatment with a recombinant Slit receptor
fragment improved mortality in a mouse model of sys-
temic inflammation, suggesting that endothelial barrier
function is a potential therapeutic strategy.102 A further
understanding of the role of the Eph/ephrin proteins in the
trafficking and maturation of lymphocytes may allow us to
modify the natural history of chronic inflammatory and
degenerative disorders.84
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