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Abstract

We classify unital monomorphisms into certain simple Z-stable C*-algebras up to approximate unitary
equivalence. The domain algebra C is allowed to be any unital separable commutative C*-algebra, or any
unital simple separable nuclear Z-stable C*-algebra satisfying the UCT such that C ® B is of tracial rank
zero for a UHF algebra B. The target algebra A is allowed to be any unital simple separable Z-stable C*-
algebra such that A ® B has tracial rank zero for a UHF algebra B, or any unital simple separable exact
Z-stable C*-algebra whose projections separate traces and whose extremal traces are finitely many.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Consider unital monomorphisms ¢,y : C — A from a C*-algebra C to a simple C*-
algebra A. In this paper we study the problem to determine when ¢ and i are approxi-
mately unitarily equivalent, i.e. when there exists a sequence of unitaries (u,), in A such that
@(x) = limu, ¥ (x)u holds for any x € C. This problem is known to be closely related to
the classification problem for the simple C*-algebra A. In the recent progress of Elliott’s pro-
gram to classify nuclear C*-algebras via K -theoretic invariants (see [30] for an introduction
to this subject), the Jiang—Su algebra plays a central role. The Jiang—Su algebra Z, which was
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introduced by X. Jiang and H. Su in [12], is a unital, simple, separable, infinite-dimensional,
stably finite and nuclear C*-algebra KK-equivalent to C. A C*-algebra A is said to be Z-stable
if A® Z is isomorphic to A. Z-stability implies many nice properties from the point of view of
classification theory. Among other things, if A is a unital separable simple Z-stable C*-algebra,
then A is either purely infinite or stably finite. If, in addition, A is stably finite, then A must
have stable rank one and weakly unperforated Ko(A) (see [12,9,31]). All classes of unital simple
infinite-dimensional C*-algebras for which Elliott’s classification conjecture is confirmed con-
sist of Z-stable algebras. It is then natural to consider classification of unital monomorphisms
from certain C*-algebras into simple Z-stable C*-algebras which are not necessarily of real
rank zero. In the present paper we give a positive solution for large classes of unital stably finite
C*-algebras (Theorem 6.6, Corollary 6.8, Theorem 7.1).

Classification of homomorphisms from C(X) into a unital simple algebra has a long history.
The earliest result for this subject is the classical Brown-Douglas—Fillmore theory [3]. They
showed that two unital monomorphisms ¢ and ¥ from C(X) to the Calkin algebra B(H)/K (H)
are unitarily equivalent if and only if KK(¢) = KK(i). M. Dadarlat [4] showed that two
monomorphisms from C(X) to a unital simple purely infinite C*-algebra are approximately
unitarily equivalent if and only if they give the same element in KL(C(X), A). In the case that
the target algebra A is stably finite, G. Gong and H. Lin [7] showed that for a unital simple
separable C*-algebra A with real rank zero, stable rank one, weakly unperforated Ko(A) and
a unique quasitrace t, two unital monomorphisms ¢, ¥ : C(X) — A are approximately unitar-
ily equivalent if and only if KL(¢) = KL(y) and T o ¢ = t o ¢. H. Lin [17] obtained the same
result for the case that the target algebra A is of tracial rank zero. P.W. Ng and W. Winter [26]
also obtained the same result for the case that X is a path connected space and A is a Z-stable
C*-algebra of real rank zero. Similar classification up to approximate unitary equivalence is also
known for more general domain algebras. G.A. Elliott [6] showed that two homomorphisms ¢
and Y between AT algebras of real rank zero are approximately unitarily equivalent if and only
if K;(¢) = K;(¢) for each i =0, 1. K.E. Nielsen and K. Thomsen [25] obtained the analogous
result for general AT algebras. H. Lin [17,20] classified unital homomorphisms from AH alge-
bras into simple separable C*-algebras of tracial rank no more than one. Classification up to
asymptotic unitary equivalence is also studied in [27,13,18].

It should be noted that all the target algebras in these results are assumed to have many non-
trivial projections (and most of them are of real rank zero). Indeed almost nothing is known so
far when the target algebra does not contain non-trivial projections. The present paper gives a
first non-trivial general result for this subject. Our target algebras consist of two classes C and C'.
The class C is the family of all unital simple separable Z-stable C*-algebras A such that A ® Q
has tracial rank zero, where Q denotes the universal UHF algebra. The classification theorems
in [35,21] assert that any nuclear C*-algebras A, B € C satisfying the UCT are isomorphic if
and only if their K-groups are isomorphic as graded ordered groups. The other class C’ is the
family of all unital simple separable stably finite Z-stable exact C*-algebras whose extremal
traces are finitely many and whose projections separate traces. The Jiang—Su algebra Z itself
is in C N C’ and any unital simple separable Z-stable exact C*-algebra with a unique trace is
in C’. In order to extend the target to C*-algebras not necessarily of real rank zero, we need a
new invariant ®,, y , which is a homomorphism from K (C) to Aff(T'(A))/Im D4 (Lemma 3.1).
Roughly speaking, if A is of real rank zero, then the range of the dimension map D4 is uniformly
dense in Aff(7T (A)). Therefore this invariant trivially vanishes. When A is not of real rank zero,
it is not the case that Im Dy is dense in Aff(7'(A)), and so the homomorphism &, y must be
taken into account.
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The paper is organized as follows. In Section 2 we collect preliminary material. The most
important one is the notion of Bott(¢, u). In Section 3 we introduce the homomorphism &, y
for a pair of unital monomorphisms ¢, ¥ : C — A. In Section 4 we give a classification theorem
of unital monomorphisms from commutative C*-algebras to certain unital simple C*-algebras
of real rank zero. The results in Section 4 (especially Theorem 4.5) partly overlap with those
obtained in [17]. But the proof given in [17] is quite lengthy, and so we provide a simpler and
self-contained proof for the reader’s convenience. Section 5 is devoted to the proof of a version of
the so-called basic homotopy lemma (see [19]). In Section 6 we prove the classification theorem
for the case that the domain algebra is commutative (Theorem 6.6) by combining the results
obtained in Sections 4 and 5. We also extend the classification theorem to the case that the
domain is a unital AH algebra (Corollary 6.8). In Section 7 we prove the classification theorem
for the case that the domain is a nuclear C*-algebra in C satisfying the UCT (Theorem 7.1).

2. Preliminaries
2.1. Notations

We let log be the standard branch defined on the complement of the negative real axis. For a
Lipschitz continuous function f, we denote its Lipschitz constant by Lip(f). We denote by K
the C*-algebra of all compact operators on ¢2(Z). The normalized trace on M,, is written by tr
and the unnormalized trace on M, or K is written by Tr. The finite cyclic group of order n is
written by Z, = Z/nZ.

Let A be a C*-algebra. For a, b € A, we mean by [a, b] the commutator ab — ba. We write
a ~; b when |la — b|| < . The set of tracial states on A is denoted by T (A) and the col-
lection of all continuous bounded affine maps from 7' (A) to R is denoted by Aff(T(A)). We
regard Aff(7'(A)) as a real Banach space with the sup norm. The dimension map D4 : Ko(A) —
Aff(T (A)) is defined by D4 ([p])(r) = t(p). For a unital positive linear map ¢ : A — B between
unital C*-algebras, T (¢) : T(B) — T (A) denotes the affine continuous map induced by ¢. We
say that a C*-algebra A has strict comparison of projections if for projections p,q € A @ K,
(t®Tr)(p) < (r ® Tr)(q) for any T € T (A) implies that p is Murray—von Neumann equivalent
to a subprojection of ¢g. When ¢ is a homomorphism between C*-algebras, Ko(¢) and K (¢)
mean the induced homomorphisms on K -groups.

A unital completely positive linear map is called a ucp map for short. Aucpmap ¢ : A — B
is said to be (G, §)-multiplicative if

leab) — o)) | <5

holds for any a, b € G, where G is a subset of A. For two ucp maps ¢, : A — B, we write
¢ ~g.s ¥, when there exists a unitary u € B such that

H(p(a) — ul/f(a)u*” <4
holds for any a € G.
2.2. The entire K -group

We recall the mod p K -theory introduced by C. Schochet [33]. The K;-group of a C*-algebra
A with the coefficient module Z,, fori =0, 1, n € N is defined by
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Ki(A; Zyp) = Ki (A Q On+1),

where 0,4 is the Cuntz algebra. For notational convenience, we set K;(A; Zg) = K;(A). Al-
though our definition looks different from the original one in [33], it gives an equivalent theory
to the conventional one [33, Theorem 6.4]. The entire K-group K (A) of A is defined by

o0

K(4) = P (Ko(A: Zn) @ K1 (A Zy)).
n=0

For eachi =0, 1 and n € N, we have the Kiinneth exact sequence
0—> K (A)QZ, — K;(A;Z,) — Tor(K,-(A), Z,,) — 0.

It is known that this exact sequence splits unnaturally. For C*-algebras A, B, we denote by
Hom /4 (K (A), K(B)) the set of all homomorphisms from K (A) to K (B) preserving the direct
sum decomposition and commuting with natural coefficient transformations and the Bockstein
operations (see [5,14] for details). M. Dadarlat and T.A. Loring [5] proved the following universal
multicoefficient theorem.

Theorem 2.1. Let A be a C*-algebra satisfying the UCT and let B be a o-unital C*-algebra.
Then there exists a short exact sequence

0— @D Pext(Ki(A). K1_i(B)) — KK(A, B) - Hom (K (A), K (B)) — 0,
i=0,1

where Pext(K;(A), K1—;(B)) is the subgroup of Ext(K;(A), K1—;(B)) consisting of the pure
extensions. The sequence is natural in each variable.

Let A and B be C*-algebras. Suppose that A satisfies the UCT and B is o-unital. In
[30, Section 2.4], the KL-group KL(A, B) is defined as the quotient of KK(A, B) by the
image of Pext(K.(A), Ki—«(B)). Thus, by the theorem above, KL(A, B) is identified with
Hom /4 (K (A), K(B)). Throughout this paper we keep this identification. For a homomorphism
¢ : A — B, we denote by K;(¢; Z,) the homomorphism from K;(A; Z,) to K;(B; Z,) induced
by ¢. We set

KL(p) = (Ki(g: Zn))i’n € Hom, (K (A), K(B)).
Ifp:A— Bandy : A— B are approximately unitarily equivalent, then KL(¢) = KL() holds
(see [30]). For k € KL(A, B) =Hom 4 (K (A), K(B)) and i =0, 1, we denote its K;-component
by Ki(k) € Hom(K;(A), K;(B)).

2.3. Almost multiplicative ucp maps

For a C*-algebra A, we mean by P(A) the set of all projections of A. When A is unital, we
mean by U (A) the set of all unitaries of A. The connected component of the identity in U (A) is
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denoted by U(A)g. Let Uso(A) be the union of U (A & M;,)’s via the embedding

U(A®Mn)9ur—><g (])

) ceUAQ® My41).
Likewise, we let Uso (A)g denote the union of U (A ® My)g’s.
For a unital C*-algebra A, we set

Ko(4)=P(A®K) U J P(A® Opi),

n=1

Ki(A) = Us (M) U JUMA® Opy1)

n=1

and K(A) =Ko(A)UK(A). Letp: A — B be a (G, §)-multiplicative ucp map. For p € Ky(A),
if G is sufficiently large and § is sufficiently small, then (¢ ® id)(p) is close to a projection and
one can consider its equivalence class in Ko(B; Z,). We denote this class by ¢4(p). In a similar
fashion, for u € IC;(A), if G is sufficiently large and § is sufficiently small, then (¢ ® id)(u)
is close to a unitary and one can consider its equivalence class in Ki(B; Z,). We denote this
class by @#(u). Thus, for any finite subset L C KC(A), if ¢ is a sufficiently multiplicative ucp
map, then gx|L : L — K (B) is well defined. In this paper, whenever we write ¢u(x) or ¢g|L,
the ucp map ¢ is always assumed to be sufficiently multiplicative so that they are well defined.
When ¢ is sufficiently multiplicative, we can verify the following easily: ¢u(p) = gu(q) for
Murray—von Neumann equivalent projections p,q € Ko(A), ps(p + q) = p4(p) + pu(q) for
orthogonal projections p,q € Ko(A), @u(u) =0 for any u € Uso(A)o U U(A ® Op41)9 and
o#(uv) = u(u) + u(v) for any u, v € K1 (A). Therefore gy gives rise to a ‘partial homomor-
phism’ from K (A) to K(B).

Next, we would like to recall the notion of Bott(¢, w) introduced in [19]. Let ¢ : A — B be a
unital homomorphism between unital C*-algebras and let w € B be a unitary satisfying

[[e@. w| <8

for every a € G, where G is a large finite subset of A and § > 0 is a small positive real num-
ber. For a projection pe A® C, (w ® 1)(¢ ® id)(p) + (¢ ® id)(1 — p) in B ® C is close
to a unitary, where C is M, or O,4;. We denote the equivalence class of this unitary by
Bott(¢, w)(p) € K1(A ® C). Next, we would like to introduce Bott(¢, w)(u) € Ko(A ® C) for
a unitary u € A ® C. To this end we need to recall the notion of Bott elements associated with
almost commuting unitaries [19, 2.11]. There exists a universal constant §y > 0 such that for any
unitaries vy, vy in a C*-algebra D satisfying ||[v, v2]|| < &9, the self-adjoint element

f) gy +h(v)v;

e(vi,v2) = <g(v1) + v3h(vy) 1= f(v1)

) € M>(D)

has a spectral gap at 1/2, where f, g, h are certain universal real-valued continuous functions on
T [22, Section 3]. Then one can consider the Kg-class
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[11/2.00 (w1, v2))] - [(é 8)] & Ko(D)

and call it the Bott element associated with vy, v2. In our setting, for a unitary u € A ® C, we
can consider the Bott element in Ky(A ® C) corresponding to the almost commuting unitaries
(¢ ®id)(#) and w ® 1. We denote it by Bott(¢, w)(u) € Ko(A & C). Thus, for a finite subset
L C K(A), when G is large enough and § is small enough, then Bott(¢, w)|L : L — K(B) is
well defined. In this paper, whenever we write Bott(¢, w)|L, G and § are always assumed to be
chosen so that Bott(¢, w)|L is well defined. In the same way as above, we can see that Bott(¢, w)
gives rise to a ‘partial homomorphism’ from K; (A ® C) to K|_;(B ® C).

2.4. The target algebras

We denote the Jiang—Su algebra by Z [12]. When a C*-algebra A satisfies A = A ® Z, we
say that A is Z-stable. We let O denote the universal UHF algebra, that is, Q is the UHF algebra
satisfying Ko(Q) = Q.

We introduce four classes 7, 7, C and C’ of unital simple separable stably finite C*-algebras
as follows.

Definition 2.2. We define 7 to be the class of all infinite-dimensional unital simple separable
C*-algebras with tracial rank zero. Let 7' be the class of infinite-dimensional unital simple
separable exact C*-algebras A with real rank zero, stable rank one, weakly unperforated Ko(A)
and finitely many extremal tracial states. We let C be the class of unital simple separable Z-stable
C*-algebras A such that A® Q isin 7. Let C’ be the class of unital simple separable stably finite
Z-stable exact C*-algebras A whose projections separate traces and whose extremal traces are
finitely many.

Remark 2.3.

(1) Any A €7 has real rank zero, stable rank one, weakly unperforated K¢(A) and strict com-
parison of projections (see [14, Chapter 3]).

(2) Exactness of A € 7" is assumed only for the purpose of using the fact that any quasitrace on
an exact C*-algebra is a trace [10]. By [1, Corollary 6.9.2], any A € 7" has strict comparison
of projections.

(3) If A €C, then A ® B has tracial rank zero for any UHF algebra B by [24, Lemma 2.4], that
is, A ® B belongs to 7.

(4) Let A € C’ and let B be a UHF algebra. Then A ® B has real rank zero by [2, Theorem 1.4(f)]
and has stable rank one by [28, Corollary 6.6] (or [31]). By [29, Theorem 5.2] (or [9]),
Ko(A ® B) is weakly unperforated. It follows that A ® B is in 7.

(5) Of course, Z itselfisinCNC'.

To continue, we fix a notation. Let A and B be unital stably finite C*-algebras and let & €
Hom(K((A), Ko(B)). We say that £ is unital when £([1]) = [1]. We say that & is positive (resp.
strictly positive) when & (Ko(A)+) C Ko(B)4 (resp. £(Ko(A)4 \ {0}) C Ko(B)4 \ {0}). Assume
further that A satisfies the UCT. We denote by KL(A, B) 1 the set of all k € KL(A, B) such that
Ko(k) is unital and strictly positive.
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Lemma 2.4. Let X be a connected compact metrizable space and let B be a unital stably finite
C*-algebra. For ¢ € Hom(Ky(C (X)), Ko(B)) the following are equivalent.

(1) & is unital and strictly positive.
(2) & is unital and positive.

If Ko(B) is simple and weakly unperforated, then the two conditions above are equivalent to the
following condition.

(3) & is unital and &(Ker Dc(x)) C Ker Dp.

Proof. (1) = (2) is clear. To show (2) = (1), assume that £ is unital and positive. By [1, Corol-
lary 6.3.6], Ko(C (X)) is a simple ordered group. Hence for any x € Ko(C (X))+ \ {0} there exists
n € N such that [1] < nx. Then [1] < n&(x) in Kg(A), and so £(x) #0O.

Assume that Ko(B) is simple and weakly unperforated. Let us show (2) = (3). Take x €
Ker Dc(x) and © € T(B). The composition of 7 and £ is a state on Ko(C(X)). By [1, Corol-
lary 6.10.3(e)], any state on Ko(C (X)) comes from a trace. Therefore t(£(x)) = 0. It remains to
show that (3) implies (1). Take x € Ko(C(X))+ \ {0}. Let p be a state on Ko(B). The compo-
sition of p and £ is a state on Ko(C(X)). By [1, Corollary 6.10.3(e)] it comes from a trace on
C(X), and so p(§(x)) > 0. By [1, Theorem 6.8.5], Ko(B) has the strict ordering from its states.
It follows that £(x) isin Ko(B) \ {0}. O

We recall the following three theorems from [15,26].

Theorem 2.5. (See [15, Corollary 4.6].) Let A be a unital simple separable C*-algebra with real
rank zero, stable rank one and weakly unperforated Ko(A). Then there exist a unital simple sepa-
rable AH algebra B with real rank zero and slow dimension growth and a unital homomorphism
¢ : B — A which induces a graded ordered isomorphism from K. (B) to K.(A).

Theorem 2.6. (See [26, Theorem 0.1].) Let X be a path connected compact metrizable space
and let A be a unital simple separable exact C*-algebra with real rank zero, stable rank one and
weakly unperforated Ko(A). Let k € KL(C(X), A)+ 1 andlet 1 : T(A) — T(C(X)) be an affine
continuous map such that A(t) gives a strictly positive measure on X for any t € T (A). Then
there exists a unital monomorphism ¢ : C(X) — A such that KL(¢) =k and T (¢) = A.

Theorem 2.7. (See [26, Theorem 0.2].) Let X be a path connected compact metrizable space
and let A be a unital simple separable exact Z-stable C*-algebra with real rank zero. Let
¢, ¥ : C(X) — A be unital monomorphisms. Then ¢ and  are approximately unitarily equiva-
lent if and only if KL(¢p) = KL(y) and t oo =t o) forall T € T(A).

Remark 2.8.

(1) The proof of [26, Theorem 0.1] uses [15, Corollary 4.6], and in the statement of [15, Corol-
lary 4.6] A is assumed to be nuclear. But the proof given there does not use nuclearity, and
so we omit it. In the statement of [26, Theorem 0.2], A is also assumed to be nuclear. But its
proof needs only exactness of A.
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(2) The condition (b) of [26, Theorem 0.1] automatically follows from other assumptions, be-
cause any traces on C(X) induce the same state on Ko(C (X)) [1, Corollary 6.10.3(a)] and
Ko(C (X)) has no other states [1, Corollary 6.10.3(e)].

We give a generalization of Theorem 2.6 for later use.

Corollary 2.9. Let C = @;’21 pi(C(X;) ® My,)pi, where X; is a path connected compact
metrizable space and p; € C(X;) ® My, is a projection. Let A be a unital simple separable
exact C*-algebra with real rank zero, stable rank one and weakly unperforated Ky(A). Let
k € KL(C, A)y 1 andlet . : T (A) — T(C) be an affine continuous map such that A(7) is a faith-
ful trace for any Tt € T (A). Suppose that A(t)(p;) = ©(Ko(k)([p;i])) holds for any t € T (A) and
i=1,2,...,n. Then there exists a unital monomorphism ¢ : C — A such that KL(¢) = k and
T(p) =1

Proof. It is clear that the case C = C(X) ® My, follows immediately from Theorem 2.6. Let us
consider the case C = p(C(X) ® My)p, where X is a path connected compact metrizable space.
Let m € N be the rank of p. There exist / € N and a projection g € C @ M; C C(X) ® My,
such that p ® e is a subprojection of ¢ and g is Murray—von Neumann equivalent to 1¢c(x) ® r,
where e € M; is a minimal projection of M; and r € My; is a projection of rank k. We can find
a projection § € A ® M; such that Ko(¢)([g]) = [§]. Set Co = ¢(C ® M))g = C(X) ® My and
Ag=¢qg(A® Mj)q. For any tracial state 7 € T'(A), mk~'(t @ Tr) gives a tracial state on Ag, and
this correspondence induces a homeomorphism between 7 (A) and 7T (Agp). Likewise there exists
a natural homeomorphism between 7' (C) and T (Cp). The identifications

KL(C, A)+ 1 =KL(Cy, Ap)+,1, T(A)=T(Ap) and T(C)=T(Cp)

allow us to regard « as an element of KL(Co, Ag)+,1 and XA as an affine continuous map from
T (Ap) to T(Cp). Therefore the previous case shows that there exists ¢ : Co — Ao realizing «
and A. From [p(p ® )] = Ko(k)([p ® e]) =[14 ® e], there exists a unitary u € A @ M; such
that up(p Q@ e)u* = 14 ® e. The restriction of Aduog to (p ® ¢)Co(p ® e) gives a desired unital
monomorphism from C to A.

We now turn to the general case. Let C = @?:1 pi(C(X;) ® My,)pi, k and A be as in
the statement. Let y; : p; (C(X;) ® My,)pi — C be the canonical embedding. Choose projec-
tions pp, p2,..., pn € A so that Ko(k)([p;]) = [pi] and p; + p2 + --+ + p, = 1. For each
i=1,2,...,n, k o KL(y;) is regarded as an element of KL(p;C, p;Api)+.1. For T € T(A),
the restriction of 7/7(p;) to p;Ap; is a tracial state. Similarly the restriction of A(7)/7(p;) to
piC is also a tracial state, because A(7)(p;) = t(Ko(x)([pi])) = t(p;). It is not so hard to check
that

Ai 1 T/T(pi) = M) /T(Pi)

gives rise to an affine continuous map from 7 (p;Ap;) to T(p;C). We have already shown
that ¥ o KL(y;) and A; are realized by a unital monomorphism ¢; : p;C — p;Ap;. Then
¢ =¢1 + @2+ -+ @, is a unital monomorphism from C to A satisfying KL(p) = « and
T)=r O
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3. Determinants of unitaries

In this section, we would like to introduce a homomorphism
Oy Ki(C) — Aff(T(A))/Im Dy,

which plays an important role in the main theorems of this paper (Theorem 6.6, Corollary 6.8,
Theorem 7.1).

Let A be a unital C*-algebra. For 7 € T(A), the de la Harpe-Skandalis determinant [11]
associated with t is written by

Az 1 Uso(A)o = R/Da(Ko(A)) ().
It is well known that A 4 (u)(t) = A (u) gives a homomorphism
Ap:Uso(A)g — Aff(T(A))/Im Djy.

Let C, A be unital C*-algebras and let ¢,y : C — A be unital homomorphisms satisfying
Ki(p) = K1(¢¥) and T(p) = T (). In what follows, we use the same notation ¢, Y for the
homomorphisms from C ® M, to A ® M,, induced by ¢, V. For u € U5 (C), we can consider
Aplpu™) Y (u)), as ™)y (u) belongs to Us(A)o.

Lemma 3.1. In the setting above, we have the following.

(1) There exists a homomorphism
Oy,y : K1 (C) — Aff(T (A))/Im Dy

such that Oy y ([u]) = Aa(eW™) Y (w)) for any u € Uso(C).

(2) Forany w € U(A), Op Adwoy = Oy, y-

(3) If ¢ and y are approximately unitarily equivalent, then Im ©y y CIm Da4.

4) If C satisfies the UCT and KL(¢) equals KL(Y), then the homomorphism O, y factors
through K(C)/ Tor(K(C)).

Proof. (1) We first show that A4 (@ ™)y (1)) equals Ag(@(v*)¥ (v)) when u, v € Us(C) sat-
isfy uv* € Uso(C)g. We can find n € N and piecewise smooth paths of unitaries x : [0, 1] —
UARM,), y:[0,1] > ULA® M,) and z: [0,1] - U(C ® M,) such that x(0) = ¢(u),
x(D)=v(u), y(0)=¢Ww), y(1) =¥ (v) and z(0) = u, z(1) = v. Define h : [0, 1] > U(A® M,))
by

x(41), 1< <1/4,

ht) = Y(z(4r—1)), 1/4<1<1/2,
YB—40),  1/2<1<3/4,
oz —41)), 3/4<t<1.

Since £ is a closed path of unitaries, one has
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1
1 , .
T O/(T ® Tr) (h()h(1)*) dt € Ds(Ko(A))(7)

for any 7 € T(A). It is easy to see that the contribution from ¢ +— 1 (z(4t — 1)) and ¢
@(z(4 — 4t)) cancels out, because of T (¢) = T (). It follows that

1 1
1
e ( O/(r ® To) (i (1)x(1)*) dt — Of(r ® To) (5 (1) y (1)) dt) € Da(Ko(A))(v)

for any 7 € T(A), which implies A4(eu*)Y(u)) = As(p*)Y(v)). It follows that
Op,y 1 K1(C) — Aff(T(A))/Im D is well defined as a map by @y, y ([u]) = A (@@*) Y (u))
for any u € Ux (C).

For any u, v € Ux(C), diag(uv, 1) is homotopic to diag(u, v), and so

A4 (diag(@uv)* ¥ (uv), 1)) = A (diag(e ) * ¥ (1), p(0)* ¥ (v)))
= Aa(e(*) Y @) + As(p(v*) ¥ ).

Hence we can conclude that ®, y is a homomorphism.
(2) can be shown in a similar fashion to the proof of (ii) = (i) of [13, Theorem 3.1]. We leave
the details to the reader.

(3) follows from (1) and (2).
(4) Let

Mgy ={f €C([0,1], A) | F(0)=9(c), f(1)=1(c) for some c € C}

be the mapping torus of ¢, 1 : C — A. Since K;(¢) = K; () for i =0, 1, from the short exact
sequence

0—>SA—>Myy >C—0

of C*-algebras, we obtain the following short exact sequence of abelian groups:

0— Ko(A) > K1 (M) 2% K(C) — 0.

By KL(p) = KL(), this exact sequence is pure (see Theorem 2.1). Thus, the quotient map
K () has aright inverse on any finitely generated subgroup of K1(C). Let Ry y : K1 (Mg y) —
Aff(T (A)) be the rotation map introduced in [19, Section 2] (see also [13, Section 1]). It is easy
to verify that

Ry (x) +ImDs = Oy 4 (K1 (7)(x))

holds for every x € K1(My, y ). Therefore ©, y kills torsion of K1(A), because Aff(T (A)) is
torsion free. In other words, ®, y factors through K1 (C)/Tor(K(C)). O
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4. C*-algebras of real rank zero

In this section we give a classification result of unital monomorphisms from C(X) to a C*-
algebra in 7 U 7' (Theorem 4.8). We begin with the following lemma, which is a variant of
[7, Lemma 2.2]. A similar argument is also found in [14, Lemma 6.2.7].

Lemma 4.1. Let X be a compact metrizable space. For any finite subset F C C(X) and ¢ > 0,
there exist a finite subset G C C(X) and § > 0 such that the following hold. Let ¢ and  be
(G, 8)-multiplicative ucp maps from C(X) to M,, such that

le(p(f)) —w(w(f)| <8, VfeG.

Then there exist a projection p € My, (F, ¢)-multiplicative ucp maps ¢', ¥’ : C(X) — pM,p
and a unital homomorphism o : C(X) — (1—p)M,(1—p) such that ¢ ~pc ¢ ® 0o, ¥ ~F;
Y @ o and tr(p) < s.

Proof. Suppose that we are given a finite subset F C C(X) and ¢ > 0. We may assume that
elements of F are of norm one. The proof is by contradiction. If the lemma was false, then we
would have a sequence of pairs of ucp maps ¢, and ¥, from C(X) to M,,, such that

len(f2) — en(Hen(g)| — O, 1¥n(f8) = ¥n (¥ ()] — O

and

|tr(en (f)) — (¥ ()| — 0

as n — oo for any f, g € C(X), and the conclusion of the lemma does not hold for any ¢,, ¥,.
Let w € BN\ N be a free ultrafilter on N. Define

D M, ={ @ € [T M, | lim llas]l =0}.

We set A =[] M,/ P, Mn, andlet 7 : [[ M,,, — A be the quotient map. Define ucp maps ¢
and § from C(X) t0 [T Mo, by $(f) = (@a (/) and ¥ (f) = (Yn (f ) for f € C(X). Clearly
o @ and 7 o ¢ are unital homomorphisms from C(X) to A. One can define a tracial state
Tt €T(A) by

T (7T ((an)n)) = 1111—I>I}u tr(ay)

for (an)y, € [ Mm,- Thenwe have tor o =tomo 1} Let u be the probability measure on X
corresponding to Tom o =T o 0 V.

Any x € X has an open neighborhood U, such that u(U, \ Uy) =0and | f(y) — f(y)| < &/3
for any y,y’ € Uy and f € F. (Such U, exists by the following reason. Let d(:,-) be a metric
compatible with the topology of X and let C, = {y € X | d(x, y)=r} for r > 0. There exist only
countably many r such that u(C,) > 0, because p is a probability measure. Hence it is easy
to find r > 0 so that u(C,) =0 and |f(x) — f(y)| < &/6 for any y € X with d(x, y) <r and
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feF.Then U, ={y € X |d(x,y) < r} meets the requirement.) Since X is compact, we can
find x1, x2,...,xx € X such that Uy, U ---U Uy, = X. Consider open subsets of the form W =
VinVvyn...N Vg satisfying w(W) > 0, where V; is either Uy, or X \ U_x, Let Wi, Wo, ..., W,
be these open subsets. Evidently W;’s are pairwise disjoint. Then we have

p(X\ (W UWoU---UW))=0

and | f(y) — f(y)| <e/3 forany y,y’ € W; and f € F.Choose z; € W; foreachi =1,2,...,1.
The C*-algebra [ | My, has real rank zero and so does A. Accordingly, the hereditary subalge-
bra of A generated by 7 (¢(Co(W;))) contains an approximate unit consisting of projections. It
follows that there exists a projection

pi € (@(Co(W)) At (¢(Co(W)))

satisfying t(p;) > u(W;) —e/1.Itis easy to see that || (@(f)) pi — f(zi) pill < &/3 holds for any
f € F.Extend 7 o ¢ to a unital homomorphism from C (X)** to A** and define p; = 7 (¢(1w;)).
Then p; commutes with 7 (¢(C(X))) and p; < p;. Similarly one can find projections ¢; in the
hereditary subalgebra generated by 7 (1 (Co(W;))) and g; in A** Nz (¥ (C(X)))’ satisfying anal-
ogous properties.

It is not so hard to find projections p; < p;, g/ < g; and a unitary u € A such that p! = ug/u*
and

©(p}) = t(q}) =min{z(p:). T(q1)}

foranyi=1,2,...,0.Setp=1—(pj+p)+---+p)andg=1—(q) +g,+---+q)). We
have

l I

t(p)=1-Y t(p}) <1=> (W) —e/l)=

i=1 i=1
Moreover,

l 1 l

(= p)m(¢(f)) Z 7 (@) =Y pipim (P(£)) Z (@) P

l l
~epy ) f@pipi =) f@)p]
i=1

i=1

holds for any f € F. Similarly one has |[(1 — DT (f)) — Zgzl f(zi)qi’|| < ¢/3 for any
f € F. It is well known that the projections plf , p in A lift to projections (plf s (Pn)n In
[ My, satistying p, + pj, +---+ p;, = 1. Similarly the unitary u € A lifts to a unitary
(Un)n € [1 My, . Define ucp maps ¢, ¢, : C(X) = pyM,;,, p, and a unital homomorphism
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on : C(X) = (1=pn) My, (1—=py) by

l

O ()= Pun(H)Pns Un(f) = putta¥u(Puipn and o, (f)=Y_ f@)P],-

i=1

It follows that there exists n € N such that ¢, and v, are (F,2¢/3)-multiplicative, @, ~F. ¢
¢, ® o, and ¥, ~pe ¥, ® o,. This contradicts the assumption, and so the proof is com-
pleted. O

We can prove the following lemma in the same way as above.

Lemma 4.2. Let X be a compact metrizable space. For any finite subset F C C(X), € > 0 and
m € N, there exist a finite subset G C C(X) and § > 0 such that the following hold. Let A € T’
be a C*-algebra with at most m extremal tracial states. Let ¢ and v be (G, §)-multiplicative ucp
maps from C(X) to A such that

lt(e(N)) —t(w(N)| <8, VfeG, teT(A).

Then there exist a projection p € A, (F, &)-multiplicative ucp maps ¢', vy’ : C(X) — pAp and
a unital homomorphism o : C(X) — (1—p)A(1—p) with finite-dimensional range such that
O~Fe 0 @0, Y ~F. V¥ @0 and t(p) < ¢ forany v € T(A).

Proof. Suppose that we are given a finite subset F C C(X), € > 0 and m € N. We may as-
sume that elements of F' are of norm one. The proof is by contradiction. If the lemma was
false, then we would have a sequence of C*-algebras (A,), in 7’ and a sequence of pairs
of ucp maps ¢, and ¥, from C(X) to A, as in the proof of Lemma 4.1. Define ¢, v,
B=1]]A,/@®,An and 7 : [[A, — B in the same way. For each n, choose extremal tracial
states T1 ,, 2.5, ---» Tm.n € T(Ay) so that {t1 ,, T2.n, ..., Tm,n} €xhausts all the extremal traces
on A,. Foreach j =1,2,...,m, one can define 7, € T(B) by

fj,a)(f[ ((an)n)) = nh—r>r¢19 Tj,n(an)'

We obtain a probability measure 1 ; on X corresponding to Tj , 0T 0§ =Tj, 0T © V. In the
same way as in Lemma 4.1, we can find pairwise disjoint open subsets Wi, W, ..., W; of X
such that

max u;(W;)) >0, Vi=1,2,...,1, max,u,j(X\(Wl UW2U~--UW1))=O
J j

and | f(y) — f(y)| <e/3forany y,y € W; and f € F.Choose z; € W; foreachi =1,2,...,1.
In the same way as in Lemma 4.1, we also get a family of mutually orthogonal non-zero projec-
tions pi, p2, ..., prin B such that 7; ,,(p;) > u;j(W;) —e/2l and |7 (@(f)) pi — f(zi)pill < &/3
for all f € F. Similarly one can find mutually orthogonal non-zero projections g1, g2, ..., g in
B for . It is well known that the projections p; (resp. g;) lift to mutually orthogonal projections
(Pi.n)n (resp. (gin)n) in [ A,. Then there exists N € w such that
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Pin 7Z0, qin#0,  Tja(pin) > pu;(W;)—e/2, Tjn(qin) > nj(Wy) —e/2l

holds forevery i =1,2,...,1, j=1,2,...,m and n € N. For each n € N, the image of D4, is
dense in Aff(T'(A,)) by [1, Theorem 6.9.3]. It follows that for eachn € N andi =1,2,...,1
there exist projections r; , € A, such that

Mj(Wi) —¢&/2l < Tj,n(ri,n) < min{fj,n (Pin), Tj,n(Qi,n)}v Vi=12,...,m.

Besides A, satisfies strict comparison of projections (see Remark 2.3(2)). Therefore, forn € N,
we can find projections plf’n < Pins q;’n < ¢i,, and a unitary u, € A, such that 7, (plf’n) >
wj(Wi) —e/2l and p;  =ungq; ,u,.Forn ¢ N,setp; =gq; =0andu, =1.Letp;,q;,u€B
be the image of (p] ,)n. (q; ,,)n and (uy), by 7. Then we have p; < p;, g; < qi, p; = ugju* and
tj,w(plf) > j(W;) —¢e/l. The rest of the proof is exactly the same as Lemma 4.1. O

We can show the same statement for the case that the target algebra is of tracial rank zero.

Lemma 4.3. Let X be a compact metrizable space. For any finite subset F C C(X) and € > 0,
there exist a finite subset G C C(X) and § > 0 such that the following hold. Let A € T and let ¢
and ¥ be (G, §)-multiplicative ucp maps from C(X) to A such that

(o)) —t(¥(NH)| <8, VfeG, teT(A).

Then there exist a projection p € A, (F, ¢)-multiplicative ucp maps ¢', v : C(X) — pAp and
a unital homomorphism o : C(X) — (1—p)A(1—p) with finite-dimensional range such that
O~Fe @ @0, Y ~p. ¥ ®oc and t(p) < ¢ for any v € T(A).

Proof. Suppose that we are given a finite subset F C C(X) and ¢ > 0. Applying Lemma 4.1 for
F and ¢, we obtain G C C(X) and § > 0. Let A be a unital simple separable C*-algebra with
tracial rank zero and let ¢ and v be (G, §)-multiplicative ucp maps from C(X) to A such that

lt(e(N) — (v ()| <8

forany f € G and v € T(A). Since A has tracial rank zero, there exist a sequence of projections
e, € A, a sequence of finite-dimensional subalgebras B, of A with 1p, = e, and a sequence of
ucp maps m, : A — B, such that the following hold.

e ||[a,ey]ll > 0asn — oo forany a € A.
e ||m,(a) —epae,|| — 0 asn — oo forany a € A.

e 7(1 —e,) — 0as n — oo uniformly on 7'(A).

It is easy to see that , o ¢ and 7, o ¥ are (G, §)-multiplicative for sufficiently large n € N. We
would like to show that

|7 (rale () = T (ma (¥ (N))] <8

holds for every f € G, t € T(B,) and sufficiently large n € N. To this end, we assume that there
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exist 7, € T (B,,) such that
r;r,leaé|rn (T (2(N)) = Tl(ma (¥ ()] = 6.

Let T € A* be an accumulation point of t, o m,. Clearly 7 is a tracial state of A and
[T(p(f)) — (¥ (f))| = 6 for some f € G, which is a contradiction.

Hence, Lemma 4.1 implies that, for sufficiently large n € N, there exist a projection
Pn € By, (F, ¢)-multiplicative ucp maps ¢,,, ¥, : C(X) — pp By, pn and a unital homomorphism
0, : C(X) = (en—pn)By(en,—pp) such that

Th OQY ~Fe %Z@Un, nnol//'\’F,s W,;@Un
and 7(p,) < ¢ for any t € T'(B,,). Therefore the proof is completed. O
The following is taken from [8, Theorem 3.1]. We remark that its origin is found in [4].
Theorem 4.4. (See [8, Theorem 3.1].) Let X be a compact metrizable space. For any finite subset
F C C(X) and ¢ > 0, there exist a finite subset G C C(X), § > 0, | € N and a finite subset L C
KC(C (X)) satisfying the following: For any unital C*-algebra A with real rank zero, stable rank

one and weakly unperforated Ko(A) and any (G, §)-multiplicative ucp maps ¢, ¥ : C(X) — A
satisfying ou|L = Yg|L, there exist a unitary u € Mj+1(A) and {x1, x2, ..., x1} C X such that

|udiag(o(f). £ @), f(x2). ., fOD)u* —diag(¥ (), fx1), f@x2), ..., f)| <&
forany f € F.

The following theorem is a variant of [17, Theorem 4.6].
Theorem 4.5. Let X be a compact metrizable space, let F C C(X) be a finite subset and let
& > 0. Then there exist a finite subset L C IC(C (X)) and a family of mutually orthogonal positive
elements hy, ha, ..., hi € C(X) of norm one such that the following holds. For any v > 0, one
can find a finite subset G C C(X) and § > 0 satisfying the following. For any A € T and any
(G, §)-multiplicative ucp maps ¢, ¥ : C(X) — A such that p4|L = y|L,

t(phi) =v, VTeT(A), i=1,2,....k

and

[t(e(f) —t(W ()| <8, VTeT(A), feq,

there exists a unitary u € A such that

lup(Hu* =y ()| <e

holds for any f € F.
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Proof. We say that a subset ¥ C X is (F, €)-dense if for any x € X there exists y € Y such that
|f(x) — f(y)| < ¢ forevery f € F. Choose an (F, ¢/7)-dense finite subset {y1, y2, ..., yx} C
X. For each i = 1,2,...,k, choose an open neighborhood U; of y; so that x € U; implies
|f(x) — f(yi)| <¢&/7 for any f € F and that Uy, Us, ..., Uy are mutually disjoint. Choose a
positive function h; € Co(U;) of norm one. By applying Theorem 4.4 to F' and /7, we obtain
a finite subset G| C C(X), §;1 > 0, € N and a finite subset L C KC(C(X)). There exist a finite
subset G, C C(X) and &3 > 0 such that the following holds: For any unital C*-algebra A and any
(G2, 87)-multiplicative ucp maps ¢, ¥ : C(X) — A, if |lo(f) — ¥ ()] < &2 for every f € G2,
then @u|L = yg|L. Suppose that v > 0 is given. Let

G3=FUG UGyU{hi,hy, ..., W}

and
83 = min{8/7, 81,62, v/(l+2)}.

By applying Lemma 4.3 to G3 and 83, we obtain a finite subset G C C(X) and § > 0.
Suppose that A is a unital simple separable C*-algebra A with tracial rank zero and that
¢, ¥ : C(X) — A are (G, §)-multiplicative ucp maps satisfying ¢4|L = ¥#|L,

t(phi) =v, VteT(A), i=1,2,....k

and

lt(e() — (¥ ()| <8, VreT(A), feG.

By Lemma 4.3, there exist a projection p € A, (G3, §3)-multiplicative ucp maps ¢, ¥ : C(X) —
pAp, a unital homomorphism o : C(X) — (1—p)A(1—p) with finite-dimensional range such
that ¢ ~G,.5, ¢’ D0, ¥ ~Gs.5, ¥ ® 0o and t(p) < 83 for any v € T (A). Since G is contained
in G3 and &, is not greater than &3, by the choice of G, and 8, we obtain (¢’ @ o)u|L =
(¥' @ 0)4|L, and hence @y|L = v,|L. Besides, ¢’ and ¢’ are (G1, §;)-multiplicative, because
G is contained in G3 and §; is not greater than §3. By Theorem 4.4, there exist a unitary u €
Mij1(pAp) and {x, x2, ..., x;} C X such that

|udiag(e'(f). £x1). f(x2), ..., fn))u* —diag(y'(f), fx0), fx2), ... fO)| <e/7

for any f € F.In what follows, for a positive linear functional p on C(X), we let u, denote the
corresponding measure on X. Forany t € T(A) andi =1,2,...,k, one has

Iroo (Up) > T(0 (hi)) > T(p(hi) — (¢ (hi)) — 83 > v — 283 > 163.

It follows that there exists a unital homomorphism ¢’ : C(X) — (1—p)A(1—p) with finite-
dimensional range such that

lo() =o' ()] <e/7
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forany f € F and p;oo’({yi}) > 163 forany t € T(A) andi = 1,2,..., k. Since {y1, y2, ..., Yk}
is (F, ¢/7)-dense, we can find a unital homomorphism ¢” : C(X) — (1—p)A(1—p) with finite-
dimensional range such that

o’ (f) =" ()| <e/7

forany f € F and ;oo ({x;}) > 83 forany t € T(A) and j =1,2,...,[. Then itis not so hard
tosee ¢’ ®c” ~p /7Y @ o”. Consequently we have

O~Fe)19 @0 ~Fey1 @ D0 ~p 19 @0
~pes1 V¥ @ ~p eV DO ~E 1Y BO~F Y. O

In the same fashion as above, one can prove the following by using Lemma 4.2 instead of
Lemma 4.3 (see also [7, Corollary 2.17]).

Theorem 4.6. Let X be a compact metrizable space, let F C C(X) be a finite subset and let
& > 0, m € N. Then there exist a finite subset L C KC(C (X)) and a family of mutually orthogonal
positive elements hy, ha, ..., hy € C(X) of norm one such that the following holds. For any
v > 0, one can find a finite subset G C C(X) and § > 0 satisfying the following. Let A € T'
be a C*-algebra with at most m extremal tracial states. For any (G, 8)-multiplicative ucp maps
o, ¥ : C(X) — A such that pg|L = Y|,

t(phi)) =v, VTeT(A), i=1,2,....k
and
[7(e(N)) —T(v(N)| <8, YreT(A), feG,
there exists a unitary u € A such that
|lug(fru* —w(H)] <e
holds for any f € F.
By using the theorems above, we obtain the following generalization of [17, Theorem 3.3].

Theorem 4.7. Let X be a compact metrizable space and let A€ T UT'. Let ¢ : C(X) - A
be a unital monomorphism. Then for any finite subset F C C(X) and ¢ > 0, there exist a fi-
nite subset L C KC(C (X)), a finite subset G C C(X) and § > 0 such that the following hold. If
Y C(X)— Aisa (G, d)-multiplicative ucp map satisfying gL = ¥4|L and

[7(e(N) —t(W(N)] <3
forany T € T(A) and f € G, then there exists a unitary u € A such that

up(Hu* —v ()| <e

holds for any f € F.
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Proof. Applying Theorem 4.5 or Theorem 4.6, we obtain a finite subset L C X(C (X)) and
positive elements A1, ha, ..., hy € C(X) of norm one. Since A is simple and ¢ is injective,

v=min{t(p(h)) |t € T(A), i=12,....k}

is positive. Using Theorem 4.5 or Theorem 4.6 for v, we find a finite subset G C C(X) and § > 0.
It is clear that G and § meet the requirement. O

The following is an immediate consequence of the theorem above.

Theorem 4.8. Let X be a compact metrizable space and let A€ TUT' . Let ¢, : C(X) > A
be unital monomorphisms. Then ¢ and W are approximately unitarily equivalent if and only if
KL(p) =KL({) andtop =t o forall t € T(A).

Corollary 4.9. Let C be a unital AH algebra and let A€ T UT'. Let ¢, : C — A be unital
monomorphisms. Then ¢ and  are approximately unitarily equivalent if and only if KL(¢) =
KL(Y)andtop =10 forallt € T(A).

Proof. Although the proof is essentially the same as [17, Corollary 4.8], we present it for com-
pleteness. Without loss of generality, we may assume C = p(C(X) ® My)p, where X is a
compact metrizable space and p € C(X) ® M is a non-zero projection. We may further assume
that the rank of p(x) € My is strictly positive for every x € X.

We first consider the case p =1 € C(X) ® M. It is easy to see that there exists a unitary
u € A such that (1 ® @) = uyy (1 ® a)u™ holds for any a € My. Let e be a minimal projection
of My. Then ¢'(f) = ¢o(f ® ) and ¥'(f) = uyr(f ® e)u* are unital monomorphisms from
C(X) to p(e)Ap(e). By Theorem 4.8, they are approximately unitarily equivalent. Hence ¢ and
Y are approximately unitarily equivalent.

Let us consider the general case. There exist/ € N and a projectiong € CQ M; C C(X) ® My
such that p ® e is a subprojection of ¢ and g is Murray—von Neumann equivalent to 1¢(x) ® r,
where e € M; is a minimal projection of M; and r € M}, is a projection of rank k. By the ar-
gument above, the restrictions of ¢ ® idy, and ¥ ® idy;, to ¢(C ® M;)q are approximately
unitarily equivalent. It follows that their restrictions to (p ® ¢)(C ® M;)(p ® e) = C are also
approximately unitarily equivalent, which completes the proof. O

In Section 6 we will generalize the results above to the case that the target algebra A belongs
toCUC.

5. Homotopy of unitaries

In this section, we prove the so-called basic homotopy lemma for A in 7 U 7’ (Theo-
rem 5.3 and Theorem 5.4). The basic idea of the proof is similar to that of [19, Theorem 8.1],
but there are two main differences. One is the use of Theorem 2.6, which claims the exis-
tence of a unital monomorphism ¢ : C(X) — A realizing the given « € KL(C(X), A)+,1 and
A:T(A) - T(C(X)). The other point is that we allow G C C(X) and § > 0 in Theorem 5.3 to
depend on the given homomorphism ¢ : C(X) — A. Although, as shown in [19], it is possible
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to state the theorem in a more general form, we do not pursue this here because the actual ap-
plication discussed in Section 6 does not need that general form. These two points enable us to
simplify the proof given in [19].

We let T denote the unit circle in the complex plane and let z € C(T) be the identity function
z(exp(m/—1t)) = exp(r~/—1t). The following is a variant of [19, Lemma 6.4].

Lemma 5.1. Let X be a compact metrizable space and let A € T U T'. For any finite subsets
F Cc C(X), FcC C(X x T) and e > 0, there exist a finite subset G C C(X) and § > 0 such that
the following hold. For any k € N, any unital monomorphism ¢ : C(X) — A and a unitaryu € A
satisfying |[le(f), ul|l < 8 for any f € G, there exist a path of unitaries w : [0, 1] — A and an
(I?, &)-multiplicative ucp map v : C(X x T) — A such that

[w(©) —u| <e, [w)—v(d®)| <e, Lip(w) <,
e(H. wd]]| <e.  [v(fe)—e(NH)]<e

hold for any f € F and t € [0, 1], and

lt(v(f ®2))| <elfl

holds for any t € T(A), f € C(X) and j € Z with 1 < |j| <k.

Proof. Without loss of generality, we may assume that all the elements of F are of norm one.
Applying Lemma 4.2 or Lemma 4.3 to

Gi=FU[{f®1|feFIU{l®z}CC(X xT)

and §; = min{e/8, 82}, we obtain a finite subset G, C C(X x T) and §; > 0. We may assume
that G, contains G and that §; is less than 6. Clearly there exist a finite subset G C C(X) and
8 > 0 such that the following holds: If ¢ : C(X) — A is a unital monomorphism and u € A is
a unitary satisfying ||[¢(f), u]|| < for any f € G, then one can find a (G2, §;)-multiplicative
ucp map ¢p : C(X x T) — A such that

ool ® 2) — ul| < 82, leo(f @ D —(H)| <8

for every f € Ga.

Suppose that we are given k € N, a unital monomorphism ¢ : C(X) — A and a unitary u € A
satisfying |[[¢(f),u]|| < 6 for every f € G. We find ¢y : C(X x T) — A as above. By using
Lemma 4.2 or Lemma 4.3, there exist a projection p € A, a (G1, §;)-multiplicative ucp map
¢, : C(X xT) — pAp and a unital homomorphism o : C(X x T) — (1—p)A(1—p) with finite-
dimensional range such that

leo(f) = (go @ o) ()| <81, VfeG

and t(p) < 81 forany T € T (A). We may further assume that there exists a unitary u’ € pAp such
that ||u’ — <p(’)(1 ®2z)|| < 81. Since o has finite-dimensional range, one can find x1, x2, ..., x; € X,
Y1, Y2, ...,y € T and projections py, p2, ..., p; € A such that
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[ [
Yopi=l-p.  o(f® =) fx)gi)pi
i=1

i=1

holds for any f € C(X) and g € C(T). By replacing each p; with its subprojection if necessary,
we may assume that D4([p;]) belongs to kIm(Dy), because Im D4 is dense in Aff(T(A)).
Choose projections ¢g;,j fori =1,2,...,land j =1,2, ..., k so that

k
Z%‘,j = pi, kD4(lgi ;1) = Da(lpil). Vj=1.2,....k
=1

Define a homomorphism ¢’ : C(X x T) — (1—p)A(1— p) with finite-dimensional range by
Ik '
=YY feg(t!)a;,
i=1j=1

where ¢ = exp(2+/—1/k). Define a ucp map ¢ : C(X x T) — A by ¢ = ¢, @ o'. It is clear
that ¥ is (G, §1)-multiplicative, and hence is (F', €)-multiplicative. Moreover, one has

V(D =¢,(fRDB'(fRD=¢,(fRDDo(f Q1) ~s @o(f ®1)=~s, o(f)
forany f € F.Forany t € T(A), f € C(X) and j € Z with 1 < |j| <k, itis easy to see
le(w (f @) < |t(wo(f @) +|e(o'(f @27))|
=|e(eo(f ®2)))|
<Iflie'? <ell fl.

We construct a path of unitaries w : [0, 1] — A. By the definition of ¢’, we can find a path of
unitaries v : [0, 1] = (1—p)A(1—p) such that

v(0)=0(1®2), v()=0'(1®72), Lip(v) <7

and [g;,j, v(t)] =0 for any i, j and ¢ € [0, 1]. Define w : [0, 1] — U(A) by w(t) = u' ®v).
Evidently we have

w0)=u'®o(1®2)~s ¢r(1Q2) ®o(l1®z)~s go(l ®z)~s, u,
w()=u'@0' (1®2)~s g1 ®2) @' (1®2)=9%(1Q2),
and Lip(w) < &. Besides, for any f € F and ¢ € [0, 1], one can verify
[0(f). w(®)] ~as, [wo(f ® 1), w(t)] ~as, [(0) @ 0)(f @ 1), u’ D v(1)]
=[eo(f ® ), u'] 225, [0 (f ® 1), 95 (1 ® 2)] ~25, 0,

thereby completing the proof. O
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Remark 5.2. In the lemma above, for A in 7, one can see that G C C(X) and § depend only on
FcC(X)ande.For Ain7’, G Cc C(X) and é depend only on F C C(X), ¢ and the cardinality
of extremal tracial states on A.

The following is a generalization of [19, Corollary 8.4].
Theorem 5.3. Let X be a path connected compact metrizable space and let A € T UT'. Let
¢ : C(X) — A be a unital monomorphism. For any finite subset F C C(X) and € > 0, there exist
a finite subset L C KC(C (X)), a finite subset G C C(X) and & > 0 such that the following hold.
If u € A is a unitary satisfying

I[e().u]|| <8, VfeG and Bott(p,u)(x)=0, VxelL,

then there exists a path of unitaries w : [0, 1] — A such that

w(0) =u, w(l)=1, Lip(w) <2m +¢

and

I[e(hH), w®)]| <e, ¥feF, teo,11.

Proof. Let p : C([—1,1]) — C be the point evaluation at 1 € [—1,1] and let g : C(T) —
C([—1, 1]) be the unital monomorphism defined by g(f)(t) = f(exp(m~/—1t)).

By Lemma 2.4, KL(¢) o KL(id®p) belongs to KL(C(X x [—1,1]), A)+, 1. Define 19 €
T(C([—1,1D) by

1
1
W=7 / F@Odu),
—1

where p is the Lebesgue measure on R. Let A : T(C(X)) — T(C(X x [—1, 1])) be the affine
continuous map defined by A(7) = v ® 1. By applying Theorem 2.6 to KL(¢) o KL(id ® p)
and X o T(p), we get a unital monomorphism o : C(X x [—1,1]) - A such that KL(o) =
KL(¢) o KL(id®p) and T(c) = A o T(¢). Then ¢’ =0 o (id ® ¢) is a unital monomorphism
from C(X x T) to A such that

KL(0') =KL(0 0 (id® q)) = KL(¢) o KL(id®(p 0 q))
and T (6") =T (id ® q) o A o T (¢). Under the canonical isomorphism

K(C(X xT)) = K(C(X))®K(Co(X x (T\{-1}))),
KL(c") € HomA (K (C(X x T)), K(A)) corresponds to KL(p) @ 0. It is also easy to see that
T(o')(t) = (t o) ® 7 for any T € T (A), where 7 € T (C(T)) is the tracial state corresponding

to the Haar measure on T. From the construction, there exists a path of unitaries wy : [0, 1] > A
such that
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wi1(0)=1, wi()=0¢'(1®2), Lip(wy) =n
and [6'(f ® 1), w(t)] =0 forany f € C(X) and ¢ € [0, 1].

By applying Theorem 4.7to 6’ : C(X xT) - A, {f ® 1| f € F}U{l ® z} and ¢/4, we
obtain a finite subset L C IC(C(X x T)), a finite subset G| C C(X x T) and §; > 0. Choose a
sufficiently large finite subset Ly C KC(C (X)), a sufficiently large finite subset G, C C(X) and a
sufficiently small real number 8, > 0. By applying Lemma 5.1 to G, C C(X), G1 CC(X x T)

and 8, > 0, we obtain a finite subset G C C(X) and § > 0.
Suppose that we are given a unitary u € A satisfying

le(f).u]| <8, VfeG and Bott(p,u)(x)=0, Vxe€ Ly.

Let k € N be a sufficiently large natural number. By Lemma 5.1, one can find a path of unitaries
wo : [0, 1] > A and a (G, 67)-multiplicative ucp map v : C(X x T) — A such that

[wo(@) —ul <8,  |wo() =¥ (1®2)| <8,  Lip(wo) <7,
e (). wo®]]|| < 2. lv(feD —eN)| <

hold for any f € G, and ¢ € [0, 1], and

(v (f®2'))| <slfl

holds for any 7 € T(A), f € C(X) and j € Z with 1 < |j| < k. Hence, if Ly C K(C(X)) is
large enough, G, C C(X) is large enough and §, > 0 is small enough, then one can conclude
V4L = 0,|L. In addition, if k € N is chosen to be large enough, then we may assume

lt(v () —t(0'(f))| <81, VT eT(A), feG.
It follows from Theorem 4.7 that there exists a unitary v € A such that
[vo' 1@ v* —y(1®2)| <e/4, [vo’(f @ Dv* —y(f@1)| <e/4, VfeF.
We define w : [0, 1] — U(A) by w(t) = wo(t)vw; (¢)*v*. Clearly one has Lip(w) < 27,
[w(©0) — u| <6, Jw@) — 1| <82+ /4
and
[le(H) . w®]| <382+¢/2, VfeF, t€[0,1].
It is easy to perturb the path w : [0, 1] — A alittle bit so that w(0) =u and w(1) =1. O

The following is an easy generalization of the theorem above.
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Theorem 5.4. Let C be a unital C*-algebra of the form @?:1 piMy, (C(X;))pi, where X; is a
path connected compact metrizable space and p; is a non-zero projection of My, (C(X;)). Let
AeTUT'. Let ¢ : C — A be a unital monomorphism. For any finite subset F C C and ¢ > 0,
there exist a finite subset L C K(C), a finite subset G C C and § > 0 such that the following
hold. If u € A is a unitary satisfying

||[<p(f),u]||<3, VfeG and Bott(p,u)(x)=0, VxelL,

then there exists a path of unitaries w : [0, 1] — A such that

w(0) =u, w(l) =1, Lip(w) <2m +¢

and

I[e(r), w®)]| <e, VfeF, telo,1].

Proof. We can prove this in a similar fashion to [19, Lemma 17.5] by using the theorem above.
We omit the detail. It is worth noting that if A isin 7 U7’ and e € A is a non-zero projection,
then eAe is also in 7 U 7. See also the proof of Corollary 4.9. O

Remark 5.5. In the theorems above, if the target algebra A satisfies A = A ® Q (i.e. A is
Q-stable), then K;(A;Z,) =0 for any i = 0,1 and n > 1 because K;(A) is torsion free and
divisible. Therefore the entire K-group K (A) is canonically isomorphic to Ko(A) & K1(A).
Consequently we may assume that the finite subset L C KC(C (X)) in the statement is actually a
finite subset of P(C(X) ® K) U Uy (C(X)).

6. Z-stable C*-algebras

In this section we prove Theorem 6.6 and Corollary 6.8. When X is a finite CW complex, it
is well known that K, (C (X)) is finitely generated.

Lemma 6.1. Let C be a C*-algebra of the form p(C(X) ® My) p, where X is a finite CW complex
and p € C(X) ® My is a projection. Let A€ T UT'. Let L C Uxo(C) be a finite subset which
generates K1(C) and let ¢ : C — A be a unital monomorphism. For any finite subset F C C

and ¢ > 0, there exists § > 0 such that the following holds. If & : K1(C) — Ko(A) satisfies
DA (w])|l < 8 for any w € L, then there exists a unitary u € A such that

llo(H.u]| <e

forevery f € F and

Bott(p, u)(w) = & ([w])

for every w € L.
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Proof. When A is in 7, this lemma is contained in [18, Lemma 6.11]. Assume A € 7'. By
Theorem 2.5, there exist a unital simple AH algebra B with real rank zero and slow dimension
growth and a unital homomorphism ¢ : B — A such that K, (¢) gives a graded ordered iso-
morphism. The tracial simplexes 7' (A) and 7 (B) are naturally isomorphic to the state spaces of
Ko(A) and Ko(B), respectively. Hence T (1) induces an affine isomorphism from 7 (A) to T (B).
It follows from Corollary 2.9 that there exists a unital homomorphism ¢g : C — B such that
KL(po) = KL(¥)™' o KL(¢) and T (¢g) = T (¢) o T(y)~!. By Corollary 4.9, 1 o ¢y and ¢ are
approximately unitarily equivalent. As B is in 7, we have already known that the lemma holds
for ¢g : C — B. Therefore the lemma holds for ¥ o ¢g : C — A, and hence forp : C — A. O

Remark 6.2. In the lemma above the finite subset L C Uso(C) is allowed to be any finite subset
which generates K (C), though this point is not clearly mentioned in [18, Lemma 6.11]. This
readily follows from the fact that (if F is large enough and ¢ is small enough, then) Bott(¢p, u)

gives rise to a ‘partial homomorphism’ from K{(C) to Ky(A), as mentioned in Section 2.3.

In what follows, we frequently omit ‘®id’, ‘®1’ and ‘®QTr’ to simplify notation. For example,
u®1leA®M, is denoted by u.

Lemma 6.3. Let C be a C*-algebra of the form p(C(X) ® My)p, where X is a finite CW com-
plex and p € C(X) ® My, is a projection. Let A € T UT'. Suppose that unital monomorphisms
¢,V : C — A satisfy KL(¢) = KL(Y¥), T(p) =T (). Let L C Uso(C) be a finite subset which
generates K1(C). For any finite subset F C C and € > 0, there exists § > O such that the follow-
ing holds. If n : K{(C) — Aff(T (A)) is a homomorphism satisfying

nx)+ImDy =0y y(x), VxeKi(C)
and

[n(lw])| <8, YwelL,

then there exists a unitary u € A such that

le(f) —up(fru*| <e, VfeF

and

L (tog(pw) uy () = n([w)) (1), Ve eT(A), wel
27“/__17:01(;(/)111u w)u*)) =n([w , ¥Vt , W )

Proof. Applying Lemma 6.1 to v, F' and &/2, we obtain § > 0. Suppose that € Hom(K(C),
Aff(T (A))) satisfies
n(x) +ImDg = By (x), Vx € Ki(C)

and

In(tw)| <8/2, YwelL.
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Choose a large finite subset Fy C C and a small real number gy > 0. By virtue of Corollary 4.9,
there exists a unitary u; € A such that

le(f) —uryr (fHut| < min{eo, e/2}, VfeFyUF.

Put ' = Adu; o . For each w € Uy (C) satisfying |l @(w) — ¥/ (w)]|| < 2, the function

Zw T >

1 ES /
ﬁr(log(¢(w) V' (w)))

gives an element of Aff(7 (A)). By [11, Lemma 1], we can see the following (see also the proof
of Lemma 3.1).

o If wi,wy € Uso(C) satisty [lp(wi) — ¢ (wi)ll + llp(w2) — ¢'(w2)ll < 2, then zy,u, =
Zw; + Zw,-
o If w:[0,1] - U(C ® M,) is a path of unitaries satisfying |lo(w(t)) — ¥’ (w(r))|| < 2, then

Zw(0) = Zw(1)-
Therefore, if Fy is large enough and &g is small enough, then there exists a homomorphism

¢ : K1(C) — Aff(T(A)) such that

;([w])(r) =zu(1) = r(log(go(w)*w’(w))), YVteT(A), welL.

1
2m/—1
Clearly we may further assume that ¢ (w) and u v (w)uj are close enough to imply [|¢([w])]| <
8/2 for every w € L. We also have n([w]) — ¢ ([w]) € Im D4 by Lemma 3.1(2). Hence there ex-
ists § € Hom(K(C), Ko(A)) such that D4 (§(x)) = n(x)—¢(x) forany x € K1(C) and &(x) =0
for any x € Tor(K(C)). Moreover one has ||Da(§([w])| < /2 + 6/2 = 4. It follows from
Lemma 6.1 that there exists a unitary uy € A such that

[ () u]| <e/2, VfeF
and
Bott(y, u2)(w) = £([w]), YwelL.

Set u = uju;. It is straightforward to check that

lo(f) —up(fHHu*| <e

holds for any f € F. Besides, forany T € T(A) and w € L,

7 (log(e(w) uy (wu*)) = 7 (log((w) urury (wusuy))
7 (log (@ (w)*u1 ¥ (w)ufur ¥ (w) *uzyr (Wiuiut))
7 (log(o(w)*ur1y (w)uf)) + 7 (log (v (w)*uryr (w)u3))

27 /= 1(¢ ([w]) (2) + Da(Bott(y, uz)(w))(v))
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=27/=1(¢ ([w]) (@) + Da(&([w])) (©)
— 2/ T ([w) (0,

where we have used [18, Theorem 3.6]. O
The following lemma is an easy exercise and we leave it to the reader.

Lemma 6.4. Let L be a finitely generated abelian group and let M be an abelian group. Let Ng
and Ny be subgroups of Q and let N C Q be the subgroup generated by No, N1. Then for any
& e Hom(L, M ® N), there exist §; € Hom(L, M ® N;) such that § =& — &.

For each infinite supernatural number p we let M}, denote the UHF algebra of type p. Let p, q
be relatively prime infinite supernatural numbers such that My, ® My = Q. As in [32], define a
C*-algebra Z by

Z={feC(0,1,My®Mq) | f(0)e My ®C, f(1) e C® Mg}.
The following proposition is the main part of the proof of Theorem 6.6.

Proposition 6.5. Let X be a connected finite CW complex and let A € C U C'. Suppose that two
unital monomorphisms ¢, : C(X) — A satisfy KL(¢) = KL({r), T (¢) =T () and Im Oy, y C
Im Dy. Then for any finite subset F C C(X) and ¢ > 0, there exists a unitary u € A ® Z such
that

leH @1 —u(yHe)u*]|<e
holds for any f € F.

Proof. We write Q = M, ® My, Bo = M, ® C and B = C® M. By Remark 2.3, A ® O,
A®Byand AQ ByareinTUT".Set (f) =¢(f)® 1 and ¥ (f) = ¥ (f) ® 1. We regard ¢ and
¥ as homomorphisms from C(X) into A® Q or A ® Bj. We identify T(A ® Q), T(A ® B))
with T (A). In the same way as Lemma 6.3, to simplify notation, for u € A we denote u ® 1 €
A ® M, by u. Similarly, for r € T(A), T @ Tron A ® M, is written by t for short.

Applying Theorem 5.3 to ¥ : C(X) — A ® Q, F and &/2, we obtain a finite subset L C
K(C (X)), a finite subset G; C C(X) and §; > 0. By Remark 5.5, we may and do assume that
L is written as L = Lo U L1, where Lg is a finite subset of P(C(X) ® K) and L is a finite
subset of Uy (C(X)). We may further assume that L generates K1(C(X)). Since K; (C(X)) is
finitely generated, one can find a finite subset G, C C(X) and 8> > 0 such that the following
holds: For any unitary w € A ® Q satisfying ||[¥(f), w]|| < & for any f € G, there exist & €
Hom(K; (C(X)), K1_;(A ® Q)) such that & ([s]) = Bott(ys, w)(s) for any s € L; and i =0, 1
[19, Section 2]. We may assume that G, contains F'U G and that §; is less than min{e /2, 61 /2}.
By applying Lemma 6.3 to ¢, ¥ : C(X) > A ® Bj, G, C C(X) and 8,/2, we get 83 ; > 0 for
each j =0, 1.

Since K;(C(X)) is finitely generated and the homomorphism ©, y factors through
K1(C(X))/ Tor(K1(C(X))) by Lemma 3.1(4), there exists n € Hom(K(C (X)), Aff(T(A)))
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such that
n(x) +ImDy = Oy 4 (x), VxeKl(C(X)).
Moreover, we may assume [|n([w])|| < min{d3, 63,1} for all w € L because Im @, y is con-

tained in the closure of Im D 4. It follows from Lemma 6.3 that there exists a unitary u; € A® B
such that

|e(f) —ujb (N5 <82/2, VfeGa

and

1 - * 7 *
2nﬁr(log(¢(w) uj(wyus)) =n(wl)(x), VreT(A®Bj)), weL.

In particular one has || [&(f), u*l‘uo] || < &> for f € G,. From the choice of G, and §,, we can find

& € Hom(K; (C(X)), K1—i (A ® Q)) such that & ([s]) = Bott(y, uiuo)(s) holds for any s € L;
and i =0, 1. By [18, Theorem 3.6],

Dago(&1(lw]))(r) = Dago (Bott(V, ufug)(w))(r)

1 _ _
27“/__11 (log(uTuol//(w)uE‘)ul w(w)*))

= (v (log(6(w) w0 (whug)) — 7 (log(¢(w) ¥ (wyu7)))

( () = n([wl)(x) =0
for any 7 € T(A ® Q). Thus Im&; is contained in Ker Dygp. By Lemma 6.4, we can find
&1,j 1 K1(C(X)) — Ker DA®B]. such that §; = &1 —&1,0, where Ker D4 is naturally identified
with (Ker D4) ® Ko(C) for C = Q, By, B;. In the same way, one obtains & ; : Ko(C(X)) —
K1(A ® Bj) such that &y = &p 1 — &o,0-

We consider the following exact sequence of C*-algebras:

0— CO(X X (T\{—l})) LocxxME CX)—0,
where 7 is the evaluation at —1 € T. We write S = Co(T \ {—1}) for short. Let p : C(X) —

C(X x T) be the homomorphism defined by p(f) = f ® 1. Then o p is the identity on C(X).
This split exact sequence induces the isomorphism

(a, b) = KL(p)(a) + KL(1)(D)
from K(C(X) P K(C(X)®S)to K(C(X xT)).Letw; : Ki(C(X)®S) —> K1—;(C(X)) be the
canonical isomorphism for each i =0, 1. For each j =0, 1, choose k; € KL(C(X) ® S, A® B})
such that K; (Kj) = fl—i,j o w;. Define IZJ' eKL(C(X xT),A® Bj) by

KjoKL(p)=KL(¥) and &joKL(t)=x;.
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Clearly Kq(k;) is unital. Also, Ko(k;) o Ko(p) = K()(l/;‘) is (strictly) positive and the image of

Ko(kj) o Ko(t) = Ko(kj) =&1,j oy

is contained in Ker DA®Bj. It follows from Lemma 2.4 that Ko(k;) is unital and (strictly)
positive. Thus, «; is in KL(C(X x T), A ® Bj)4 1. Let 79 € T(C(T)) be the tracial state cor-
responding to the Haar measure on T and define the affine continuous map A : T'(A ® B;) —
T(C(X xT)) by A(t) =T (¥)(r) ® 19. Thanks to Theorem 2.6, there exists a unital monomor-
phism o; : C(X x T) = A ® B; such that KL(0j) =i; and T(o;) = A. Since KL(oj o p) =
KL(Y) and T(0j o p) =T (), ¥ and o0} o p are approximately unitarily equivalent by Theo-
rem 4.8. Hence there exists a unitary v; € A ® B; such that

[ vi]l <8272, VfeGa
and
Bott(¥/, v))(s) = (K1_1(07) 0 K11 () o i, )(Is1)
= (K1-i(kj) o i) (Is])
= (6. o w1 o wp;)(Is))
=¢(Is])

foranyse L;andi =0, 1.
It is easy to see that

@) —ujvjb (HHviut|| <82/2482/2 =68
holds for any f € G». In particular one has
[[¥ (). viutuovo]|| <282 <81, Vf €Ga.

Besides, when G, is sufficiently large and §; is sufficiently small, we get

Bott(¥, viufuovo) ([s1) = Bott(¥, vi)(Is1) + Bott(¥, uluo)([s])+B0tt(1ﬁ vo) ([s1)
= —&.1([s1) + & ([s]) + &i0([s]) =

forany s € L; and i =0, 1, where we have used [18, (¢2.6)]. Therefore, by Theorem 5.3, we can
find a path of unitaries w : [0, 1] — A ® Q such that w(0) = vjujuovo, w(l) =1 and

I[v(H),we)]| <e/2, YfeF, tel0,1].

Define a unitary U € Z by U (t) = ujviw(t). It is easy to see that

le(Hhe1—UW(H@NU*| <e/2+8<e

holds forany f € F. O
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Theorem 6.6. Let X be a compact metrizable space and let A € C U C'. For unital monomor-
phisms ¢, ¥ : C(X) — A, the following two conditions are equivalent.

(1) @ and r are approximately unitarily equivalent.
(2) KL(¢) =KL({), top =10y foranyt € T(A) and Im Oy y, CIm D4.

Proof. It is straightforward to check that (1) implies (2). Indeed, KL(¢) = KL() and T (p) =
T () are clear. By Lemma 3.1, Im ®,_y, C Im D4 also follows.

We would like to show the other implication. We first consider the case that X is a connected
finite CW complex. Let ¢, ¢ : C(X) — A be unital monomorphisms satisfying KL(¢) = KL({),
T(p)=T(¥) and Im B, y C Im D 4. We may replace the target algebra A with A ® Z, because
A is Z-absorbing. Since Z is strongly self-absorbing [34], there exists an approximately inner
endomorphism 7 : A® Z — A ® Z such that 7 (A ® Z) = A ® C. Hence ¢ and 7 o ¢ (resp. ¢
and 7 o v) are approximately unitarily equivalent. By [32, Proposition 3.3], the C*-algebra Z
embeds unitally into Z. It follows from Proposition 6.5 that 7 o ¢ and 7 o ¥ are approximately
unitarily equivalent. Therefore ¢ and i are approximately unitarily equivalent.

A general finite CW complex is a finite union of pairwise disjoint connected finite CW com-
plexes. Since A has cancellation by [31, Theorem 6.7] and eAe is in C U C’ for any non-zero
projection e € A, the conclusion follows from the previous case.

Let X be a compact metrizable space. Let {f1, f2,..., fu} be a finite subset of C(X) and
let £ > 0. By [23, Lemma 1], there exist a finite CW complex (actually a finite simplicial com-
plex) Y, a finite subset {g1, g2, ..., gn} of C(Y) and a unital monomorphism o : C(Y) — C(X)
suchthat || f; —o(gi)|| <e/3foranyi =1,2,...,n.Clearly KL(¢oo) =KL(Y00), T(poo) =
T (Y o0) and Im Opos, yoo is contained in the closure of Im D 4. It follows from the argument
above that ¢ o 0 and v o o are approximately unitarily equivalent. Hence there exists a uni-
tary u € A such that ||¢ (o (g;)) —uy (o (g))u*| < &/3, which implies ||¢(f;) —uyr (fi)u*|| < e.
Thus, ¢ and  are approximately unitarily equivalent. O

Remark 6.7. In the theorem above, if A has real rank zero, then the image of D4 is dense in
Aff(T (A)). Hence the condition Im & y C Im Dy, is trivially satisfied.

Corollary 6.8. Let C be a unital AH algebra and let A € C U C'. For unital monomorphisms
o, ¥ : C — A, the following two conditions are equivalent.

(1) @ and ¥ are approximately unitarily equivalent.
(2) KL(¢) =KL({), top =10y foranyt € T(A) and Im Oy y, CIm D4.

Proof. We can prove this in the same way as Corollary 4.9. 0O
7. Homomorphisms between simple Z-stable C*-algebras

In this section we prove Theorem 7.1. The main idea is almost the same as Proposition 6.5
and Theorem 6.6. The proof is, however, somewhat lengthy because we must work with finitely

generated subgroups of K, (C) so as to use Lemma 6.4.

Theorem 7.1. Let C be a nuclear C*-algebra in C satisfying the UCT and let A € CUC'. For
any unital homomorphisms @, : C — A, the following are equivalent.
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(1) ¢ and + are approximately unitarily equivalent.
(2) KL(9p) =KL({) and Im Oy, y CIm D4.

Proof. The implication (1) = (2) is trivial. We would like to show the other implication. Note
that KL(¢) = KL() implies T (p) = T (), because projections of C separate traces. Since
Z is strongly self-absorbing [34] and C (resp. A) is Z-stable by assumption, there exists an
isomorphisms ¢ : C - C ® Z (resp. m4 : A — A ® Z) which is approximately unitarily
equivalent to the unital monomorphism ¢ +— ¢ ® 1. It is not so hard to see that any uni-
tal homomorphism ¢ : C — A is approximately unitarily equivalent to ngl o (p ®id) o mc.
Hence, for given homomorphisms ¢,y satisfying KL(¢) = KL(y) and Im &y C Im Dy,
it suffices to show that ¢ ® id : C ® Z — A ® Z is approximately unitarily equivalent to
YRIAd:CRZ—>ARQZ.

Suppose that we are given a finite subset F C C ® Z and ¢ > 0. We would like to
show ¢ ® id ~f . ¥ ® id. Without loss of generality, we may assume that F' is contained in
Cc®C.

Let Z, By, By, Q be as in Proposition 6.5. We identify T (A ® Q), T (A ® B;) with T'(A). Put
¢ =¢®id, ¥ = ¥ ®id. As in the proof of Proposition 6.5, we omit ‘®C’, ‘®1° and ‘@ Tr’ to
simplify notation.

By the classification theorem in [16], C ® Q is a unital simple AT algebra with real rank zero.
Thus, C ® Q can be written as an inductive limit of C*-algebras of the form €B7_,; M, (C(T)). By
using Theorem 5.4to ¥ : C® Q — A® Q, F and &/2, we obtain a finite subset L C K(C ® Q),
a finite subset G| C C ® Q and §; > 0. By Remark 5.5, we may and do assume that L is
written as L = Lo U L1, where L is a finite subset of P(C ® QO ® K) and L is a finite subset
of Uso(C ® Q). We may further assume that Ly and L are finite subsets of P(C ® K) and
U (C) respectively, because Bott gives rise to a ‘partial homomorphism’ (see Section 2.3). Let
H; C K;(C) be the subgroup generated by L;. Since H; is finitely generated, one can find a
finite subset Go C C ® Q and §> > 0 such that the following holds: For any unitary w € A ® Q
satisfying ||[1}(c), w]|| < &2 for any ¢ € G, there exist & € Hom(H;, K1—; (A ® Q)) such that
&(s]) = Bott(t}, w)(s) for any s € L; and i =0, 1 [19, Section 2]. We may assume that G,
contains G and that §; is less than §1. As C ® Q is generated by C, By and By, one may choose
finite subsets G3 C C, G3,0 C By, G3,1 C By and 63 > 0 so that if a unitary w € A ® Q satisfies
I[¥ (c), w]|| < 83 for every ¢ € G3 U G3,0 U G3.1, then [|[[¥(c), w]|| < 62 holds for all ¢ € G».
We assume that G3 contains F' and that &3 is less than €. For each j =0, 1, by the classification
theorem in [16], C ® B; is a unital simple AH algebra with real rank zero and slow dimension
growth, and so one can find a unital subalgebra C; C C ® B; such that the following hold.

e C; is a finite direct sum of C*-algebras of the form p(C(X) ® My)p, where X is a con-
nected finite CW complex (with dimension at most three) and p € C(X) ® My is a projec-
tion.

e There exists a finite subset G’3’ ; C C; such that any elements of G3 U G3 ; are within dis-
tance 83/12 of G’3,j.

e There exist finite subsets L6,j € P(C; ®K) and L/l’j C U (C}) such that any elements of
L; are within distance 1/2 of Lg,j foreachi =0,1.Let L; 55+ s} e L;yj be a map such
that ||s — sl;. || < 1/2. We further require that L’l’j generates K1(C}).
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Let y;j : C; — C ® B; denote the embedding map. For each i =0, 1, we choose a finitely
generated subgroup Hl./ C K;(C) so that H; is contained in Hi’ and Im K; (y;) is contained in

H! ® K;(Bj) for each j =0, 1. Applying Lemma 6.3to ¢goy;:C; > A® Bj, Yoy;:C; —
A® B;, G} j and 63/12, we get 84, ; > 0 for each j =0, 1.

As in the proof of Proposition 6.5, we can find a homomorphism n : H 1’ — Aff(T (A)) such
that

nx)+ImDy =06y y(x), Vxe Hl/

and

H nj ([Vj(w)]) ” <84, Ywe Lll,j’ ji=0,1,

where 7; € Hom(H { ® Ko(Bj), Aff(T (A))) denotes the homomorphism induced from . It fol-
lows from Lemma 6.3 that there exists a unitary u; € A ® B; such that

|@(c) —uji (] <83/12, VeeGy;

and

1 = * 1 * ~ /
mr(log(go(w) wj(wyus)) =i;([v;jw])(@), ¥reT(A®B)), wel;.

By choosing G j large enough in advance, we may also assume that ||@(w) — uji(w)u;fn is
less than 1/2 for every w € L’1 i From the choice of G’3 jowe obtain ||¢(c) — ujvﬁ(c)u;‘. | <83/4
forall c€e G3UGs3 ;. If cisin G31—j, thenu; € A ® B; commutes with 1/_/(c) € By, and so

@)=V (c)= ujlﬁ(c)uj. Therefore
” [Ip(c)’ “TMO] ” <83/2, YeeG3zUG30UG3.
From the choice of G3, G309, G3,1 and §3, one has
I[¥ (), wiuo]| <82, VeeGa.

Then,_frorn the choice of G and §,, we can find & € Hom(H;, K1—;(A® Q)) such that &; ([s]) =
Bott(yr, u’lkuo)(s) holds for any s € L; and i =0, 1. By [18, Theorem 3.6],

Dago(&1([w]))(r) = Dago (Bott(yr, ujuo) (w))(r)

= L (tog(utuod wyndur § (w)*))

= 271\/__11' Og uluo w u0u1 w
1 _ _

= m(r(log(¢<w>*uow<w>u3)) — 7(log(@(w)*u1 ¥ (wyu})))
1

2=t (Foa(@(w) w0 (w)u)) — = (10g (@ (wi) "wr ¥ (wy)uf)))
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fio([wo]) (@) — it ([wi ]) ()
fo([w]) () — 71 ([w]) (1)
n([wl)(x) —n([wl)(x) =0

forany w € Ly and 7 € T(A ® Q). Thus Im&; is contained in Ker Dy g ¢. Since Ker Dpogp =
(Ker D4) ® Q is divisible, & extends to a homomorphism & : H [ — Ker Dygg. Likewise &
extends to a homomorphism & : H) — K1(A ® Q) = K1(A) ® Q. By Lemma 6.4, we can find
ISWE Hl/ — KerDA®B/. such that & = &;.1 — &1,0. We let El,j : Hl/ ® Ko(Bj) — KerDA@,Bj
denote the homomorphism induced from £ ;. In the same way, one obtains & ; : Hy —
K1(A ® Bj) such that &y = &1 — &o,0. We let éo,j : HO/ ® Ko(Bj) - K1(A ® Bj) denote the
homomorphism induced from & ;.

In the same way as in the proof of Proposition 6.5, for each j = 0, 1, we consider the following
exact sequence of C*-algebras:

0—C;®Co(T\{-1}) 5 C;®C(T) 5 ¢; -0,
where 7; is the evaluation at —1 € T. We write § = Co(T \ {—1}) for short. Let p; : C; —

C; ® C(T) be the homomorphism defined by p;(c) =c ® 1. Then 7 o p; is the identity on C;.
This split exact sequence induces the isomorphism

(a,b) = KL(pj)(a) + KL(;)(D)

from K(C;) @ K(C;®S) to K(C; ®C(T)). Letw;, j : K;i(C; ®S) — K1-;(C}) be the canonical
isomorphism for each i, j =0, 1. For each j =0, 1, choose «; € KL(C; ® S, A ® Bj) so that

Ki(kj)=&1_ijoKi_i(y)ow.j, Vi=0,1.

Notice that the composition of 51,,-,]- and K;_;(y;) is well defined, because Im Ky_;(y;) is
contained in H{_i ® Ko(Bj). Define k; € KL(C; ® C(T), A® Bj) by

KjoKL(pj)=KL(y oy;) and &;oKL(})=k;j.

Clearly Ko(k;) is unital. Also for any x € Ko(C; ® C(T))+ \ {0}, one has Ko(m;)(x) €
Ko(Cj)+\ {0}, and so T(Ko(yy o yj omj)(x)) > 0 for every T € T(A ® B;). Since the image of
§ 1,j is contained in the kernel of Dagp > we obtain

T(Ko®)(x)) =1(Ko(¥ o yjomj)(x)) >0,

which entails Ko(k;)(x) € Ko(A ® B;)4+ \ {0}. It thus follows that Ko(k;) is unital and strictly
positive, and hence &; is in KL(C; ® C(T), A ® B;j)4,1. Let 1o € T(C(T)) be the tracial state
corresponding to the Haar measure on T and define the affine continuous map A; : T(A® B;j) —
T(C; @ C(T)) by A(r) = T(IZ o ¥;)(t) ® 79. For each minimal central projection p ® 1 €
C;®C(T)and t € T(A® Bj), it is easy to verify

(Ko@) ([p®11)) =1(KoW o yp)([rj(p® D])) =1t(¥(v;(p)) =4;(D)(p® D).
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Hence the hypotheses of Corollary 2.9 are satisfied. Thanks to Corollary 2.9, there exists a uni-
tal monomorphism o : C; ® C(T) — A ® B; such that KL(o;) = k; and T (o) = A;. Since
KL(ojopj)=KL(oyj)and T(ojo0p;) = T(I/f o y;), Corollary 4.9 implies that w oy; and
0 o p; are approximately unitarily equivalent. Hence there exists a unitary v; € A ® B; such
that

[0 (vi(@). v;]|| < 83/12. Vee Gy
and
Bott(} o yj, vj)(s) = (Ki-i(0j) o K1—i(tj) ow ”)([s])
= (Ki-itcj) oy, ;) (I5])
=& joKiypowiijowr; )(s])
=&, ([r;®)])

forany s € L ; and i =0, 1. As before,

[ (), v <83/4
holds for any ¢ € G3 U G3,0 U G3,1. By choosing Gg’j large enough and §3 small enough in

advance, we have BO'[t(l/_/, vj)(s) = BOtt(I/_/ oy, vj)(s}) forany s € L; andi =0, 1.
It is easy to see that

|@(c) —ujvjre)viut|| < 83/4 4 83/4=683/2
holds for any ¢ € G3 U G3,0 U G3,1. In particular one has
“ [V (c). viufuovo] H <383, VeeGzUG30UGs,
and hence
” [ll_f(c), v]"u’fuovo] ” <& <68, VYceGy,

because G is contained in G,. Besides, when G3 is sufficiently large and 43 is sufficiently small,
we get

Bott(v, viufuovo)([s1) = Bott(, v})([s1) 4+ Bott(v, ujuo)([s1) + Bott(yr, vo)([s])
= —&1([s1]) + & (Is1) +&i0([s0])
==& 1([s1) + & ([s]) + &.0([s]) =

forany s € L; and i =0, 1, where we have used [18, (2.6)]. Therefore, by Theorem 5.4, we can



830 H. Matui / Journal of Functional Analysis 260 (2011) 797-831

find a path of unitaries w : [0, 1] — A ® Q such that w(0) = vjujuovo, w(l) =1 and
I[¥ @), w®)]|| <e/2, VceF, tef0,1].

Define a unitary U € Z by U (t) = ujviw(t). It is easy to see that

le@@1-U(¥) @ )U*|| <e/2+83/2<¢
holds forany ce F. O

Remark 7.2. In the theorem above, if A has real rank zero, then the image of D4 is dense in
Aff(T (A)). Hence the condition Im &, y C Im D4 is trivially satisfied.
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