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Abstract

This paper presents a matching pursuit technique for computing the simplest normal forms of
vector fields. First a simple, explicit recursive formula is derived for general differential equations,
which reduces computation to the minimum. Then a matching pursuit technique is introduced
and applied to the Takens—Bogdanov dynamical singularity. It is shown that unlike other methods
for computing normal forms, the technique using matching pursuit does not need any algebraic
constraints which are required for the existence of the simplest normal form. The efficient method
and matching pursuit technique, which have been implemented using Maple, can be “automatically”
executed on various computer systems. A number of examples are presented to demonstrate the
advantages of the technique. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Normal form theory has been widely used in the study of nonlinear vector
fields in order to simplify the analysis of the original syste@h¢w et al., 1994
Cushman and Sanders, 19&®lubisky and Schaeffer, 1986uckenheimer and Holmes,
1993 Nayfeh, 1993. It provides a convenient tool to transform a given system to an
equivalent system, whose dynamical behavior is easier to analyze. (Note that the normal
form used in this paper particularly refers to the Birkhoff normal form.) Consider the
following general system:

N N
P=dx+ f)=dx+ ) fu@) =vi+ ) axk, (1)
k=2 k=2

wherex € R"and f : R" — R", N is an arbitrary positive integer angg = Jx
represents the linear term, whelds the Jacobian matrix of the system evaluated at the
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the originO—an equilibrium of the system. Th&is assumed, without loss of generality,

in Jordan canonical form. Functighis analytic and can thus be expanded in Taylor series.
[ denotes th&th degree homogeneous vector polynomiale.ofk denotesdl(1 x‘2<2 .. xﬁ"
satisfyingky +kz+- - - kny = k for all possible non-negativg's. The coefficientay can be
(rational or irrational) numbers, or symbolic notations, or a combination of both numbers
and notations. More specifically, € Q™", f, € (Qlakl[x]k)" and f € (Qla]llx])",
wherea = (az, as, ..., an).

The basic procedure in the computation of normal forms employs a near-identity nonlin-
ear transformation to obtain a simpler form which is qualitatively equivalent to the original
system. However, the conventional normal form has been found not the simplest form and
further reductions using a similar near-identity nonlinear transformation are possible, lead-
ing to the simplest normal form (e.g. sAfgaba et al., 199/7/Baider and Churchill, 1988
Baider and Sanders, 19%Raider, 1989Chua and Kokubu, 19883,Kokubu et al., 1996
Ushiki, 1984 Wang, 1993 Wang etal., 2000 Yu, 1999 Yu and Yuan, 2000, 2001
Yuan and Yu, 2001l The fundamental difference between the computations of the conven-
tional normal form and the simplest normal form can be roughly explained as follows. First
note that computing the coefficients of the normal form and associated nonlinear transfor-
mation needs to solve a set of linear algebraic equations at each order. Since in general
the number of the variables—the coefficients of the nonlinear transformation—is larger
than the number of the algebraic equations, some coefficients of the nonlinear transforma-
tion are not determined. In conventional normal form theory, the coefficients détthe
order nonlinear transformation are only used to possibly remov&ttherder nonlinear
terms of the system and the undetermikédorder coefficients are set to zero at orller
(and therefore, the nonlinear transformation is simplified). However, in the computation of
the simplest normal form, the undetermined coefficients can be used to further simplify the
normal form. They are not set to zero but carried over to higher order equations so that they
may be used to eliminate nonlinear terms in higher order normal forms. In other words, the
kth order coefficients are not only used to simplify ktle order terms of the system, but are
also used to eliminate higher order nonlinear terms. This is the key idea of the simplest nor-
mal form theory. At each order, the simplest normal form computation keeps the minimum
number of terms retained in the final form, which cannot be further reduced by any other
near-identity nonlinear transformations. In addition, in this paper a recursive algorithm is
formulated for efficient computation. The formula is applicable for arbitrary dynamical
singularity, and is employed to solve the Takens—Bogdanov singularity in this paper.

It has been noticed that the computation of the simplest normal form is much more
complicated than that of the conventional normal form, and thus computer algebra systems
such as Maple, Mathematica, Reduce, etc. must be used (e.d\Igaea et al., 1997
Yu, 1999 Yu and Yuan, 2000, 20Q0Ivuan and Yu, 2001l Even with the aid of computer
algebra systems, computational efficiency is still the main concern in the computation
of the simplest normal form. Recently, we have paid attention to developing efficient
methodologies and efficient algorithms for computing the simplest normal form (e.g. see
Yu, 2002 Yu and Yuan, 2008 SinceUshiki (1984)introduced the method of infinitesimal
deformation in 1984 to study the simplest normal form of vector fields, many researchers
have applied Lie algebra to consider the computation of the simplest normal form.
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However, only very few singularities have been investigated so far. Hopf and generalized
Hopf bifurcations were completely solved (e.g. 8sgder and Churchill, 1988/u, 1999,

and explicit formulas as well as “automatic” Maple programs were developed
(Yu, 1999. The 1:2 resonant case (double Hopf) was also considered in detail
(Sanders and van der Meer, 19%@an and Yu, 2002 The main attention, however, has
been concentrated on the Takens—Bogdanov dynamical singularity (an algebraic double but
geometric simple zero eigenvaludgider and Sanders, 1992hen and Della Dora, 2000

Chua and Kokubu, 19883,iKokubu et al., 1996 Ushiki, 1984 Wang et al., 2000 Yuan

and Yu, 200). For this case, the Jacobian matrix givenEq. (1) may be assumed to
include a double zero eigenvalue, given in the form:

o 01 apr1 w1 Qpi2 w2 Qpiq Oq
J _dlag[[O Oi| alazmap[—wl ap+1} [—wz api2| | —wq opiq @)
wherea; < 0,j =1,2,...,p+qQwk >0k =12 ...,9,and 24+ p+2q = n,
P, g, oj andwy are given fixed numbers. Note that for most physical systems, the unstable

manifold is assumed null. Then by normal form theory, the conventional normal form of
system(1) is of the form:

Y1 =Ya,

n
. i j—1
Yo=Y azjoyi +axj-n1y¥i Yz 3)
j=2

whereapjk’'s are explicitly expressed in terms of the derivatives of the original funcfion
evaluated at = 0.

Baider and Sanders (199@ave a detailed study for the Takens—Bogdanov dynamical
singularity and classified the normal forms into three cases according to the relation
betweenu andv: (I) u < 2v, (I) © > 2v and (lll) u = 2v, where theu andv
are defined by thea coefficients of systenf3): axo0 = a30 = -+ = a0 = 0,
butag,+10 # 0, andapis = a1 = -+ = au-p1 = 0, butag,; # 0. They
provided a fair detailed analysis on the first two cases and obtained the “forms” of
the simplest normal form for most of the sub-casBaider and Sanders, 1992 ater,
Kokubu et al. (1996 and Wang et al. (2000ronsidered case (lll) and also obtained the
“form” of the simplest normal form. Recentlyang et al. (2001)nvestigated a special
sub-case of case (). However, some special sub-cases are still unsolved. Moreover, even
for a classified case, certain non-algebraic number conditions must be satisfied in order
for the algebraic equations to be solvable (e.g.\&&ag et al., 2000Yu and Yuan, 2000
Yuan and Yu, 2001 Unfortunately, such non-algebraic humber conditions cannot be
known before determining the “form” of the simplest normal form. Therefore, regardless
of the methods used, there always exist unsolvable special cases if certain non-algebraic
number conditions are not assumed appropriately. Otherwise, one must specify the non-
algebraic number conditions case by case in the process of computing the simplest
normal form. (It will be seen more clearly Bection 5) When the non-algebraic number
conditions are violated, the commonly developed computer programs such as those given
in Li et al. (2001)andYuan and Yu (2001fail to obtain the simplest normal form, since a
“zero division” problem occurs when the programs are executed up to such an order.
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A novel approach called matching pursuit technique has been developed to solve this
difficulty. Here, the “matching” means that for any given vector fields, the algorithm can
match a “form” of the simplest normal form to a special non-algebraic number condition,
and the “pursuit” means that the algorithm (program) has been designed to automatically
search the right “matching” between the simplest normal form and the non-algebraic
number conditions. Symbolic programs are coded using Maple, which can be used to
“automatically” compute the simplest normal form of any given vector fields associated
with the Takens—Bogdanov singularity.

Before we describe the matching pursuit technique, we present an efficient approach
for computing the simplest normal form in the next sectiSection 3deals with the
computation of the simplest normal form for the Takens—Bogdanov dynamical singularity.
The matching pursuit technique is discussed in detaBéction 4 and the algorithm is
also outlined in this section. Various examples are show®eiction 5to demonstrate the
advantage of the matching pursuit technique, and conclusions are giSewtion 6

2. An efficient approach for computing the simplest normal form

Consider the general systdft). The basic idea of normal form theory is to find a near-
identity nonlinear transformation, given by

N N
x=y+h(y)=y+) () =y+ Y hy (4)
k=2 k=2
such that the resulting system

N N

y=dy+em=Jy+) e =Iy+ ) g (5)
k=2 k=2

becomes as simple as possible. Hek€y) € (Qlakl[yl)" andgy(y) € (Qlgillylk)"
denote the generéith degree homogeneous vector polynomialg efith the coefficients
hy andg, to be determined.

To apply normal form theory, we define the linear vector sgagenhich consists of
the kth degree homogeneous vector polynomigléx). Further define the homological
operatorLy, induced by the linear vectas, as

Lk 1 Hk — Hk

(6)
Uk € Hk = Ln(Uk) = [Uk, v1] € Hk,
where the operatdbJk, v1] is called the Lie bracket, defined by
[Uk, v1] = DU - v1 — Dy - U, (7)

whereD is a Freclet differential operator, anBv; = J.
Next, we define the spad@y as the range ofx, andKy as the complementary space
of Rk. Thus,

Hik = Rk @ Kk, (8)
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and we can then choose the vector space baseskforand Ky. Consequently, a
homogeneous vector polynomifil (x) € Hy can be split into two parts: one is spanned
by the vector space basis Bk and the other by that df.

By applying Takens normal form theorydkens, 197% one can find théth order
normal form g, (y), while the part belonging t&®Ryx can be removed by appropriately
choosing the coefficients of the nonlinear transformatig(y). The “form” of the
normal form g, (y) depends upon the vector space basis of the complementary space
Kk, which is determined by the linear vectof. We may apply the matrix method
(Guckenheimer and Holmes, 1998 find the vector space basis®f and then determine
the basis of the complementary spage Once the vector space basiskdf is chosen, the
form of g, .(y) can be determined. The idea of further reduction of the conventional normal
formisto find an appropriate(y) such that some coefficients gf(y) can be eliminated,
leading to the simplest normal form.

Once the “form” of the normal form is determined, in order to find the explicit
expression of the conventional normal form or the simplest normal form, in general one
needs to us&gs. (1)and(4) to find a set of algebraic equations at each order. Suppose
the normal form and associated nonlinear transformation have been obtainegkup1p
order, we want to find th&th order normal form. To do this, usually one may assume a
general form for th&th order nonlinear transformation and substitute it back to the original
system(1). Then with the aid of the obtained normal form one can derivektheorder
algebraic equations by balancing the coefficients of the homogeneous polynomial terms.
From this way, the solution procedure generates the expressions which contain not only
lower order terms, but also higher order terms. This dramatically increases the time and
space complexity of the computation. Therefore, a crucial step in the computation of the
simplest normal form is to derive theh order algebraic equations as simply as possible,
i.e. only thekth order nonlinear terms should be calculated.

The following theorem gives an efficient recursive formula for computing ke
order algebraic equations, which can be used to determirkttharder normal form and
associated nonlinear transformation for any kind of singularity.

Theorem 1. The recursive formula for computing théhkorder algebraic equations is
given by
k—1
gk = [y + [hk, v1] + Z{[hkfiJrl, Sfil+ Dhi(fr—it1 — 8k—i+1)}
i=2

(51 k—m pop .l
1, ™, [
+2.2 0" 2 T AR (9)
m=2i=m aplp+aplp++apl p=k—(@i-m) qlqz qp
2§|p<|p71<---|1§(k*(i*m))/m
where k = 2,3,..., and f, h¢x and g, are the kh degree homogeneous vector

polynomials ofy (wherey has been dropped for simplicity).

Notes. The notationD™ f; denotes themth order terms of the Taylor expansion of
fi(y + h(y)) abouty. More precisely,

D" fi(y + k) = D(D(...DUD fDhi)h,) - - - by, Dhiyy, (10)
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where each differential operatdr affects only functionf;, nothy; (i.e.hy; is treated as a
constant vector in the process of the differentiation), and thus i. At each level of the
differentiation, the Freadt derivative operatoD, results in a matrix, which is multiplied
with a vector to generate another vector, and then to another level ofdtrdehvative,
and so on.

The proof ofTheorem 1can follow a similar proof given byu and Yuan (2003and
thus only the main steps are outlined below: first differentiaqe(4)and then substitute
Egs. (1)and(5) into the resulting equation, and then apily. (4)again and finally employ
Taylor expansion abouyt to obtain

g =D fim+Y (i) v+ DY Dhi(»){fi(y) — &)}

i=2 i=2 i=2 j=2
+ ii{Dfi (Mhj(y) = Dhj) fiM}+ T+, (11)
=2 j=2
where
Ti= 22%Dkfj<y)hj<y). (12)
i—2 =

Itis easy to find the formulas for the 2nd, 3rd and 4th order equations as follows:

g2 = fo+[h2,v1],
g3 = f3+[h3,vi]l + [h2, fo] + Dha(f2 — g>),
ga= fa-+[ha,v1] + [h3, fo]+ [h2, f3]
+ Dha(f3— g3) + Dh3(f2 — g2) + 1D? f,h3. (13)

Fork > 5, one needs to carefully considEr and separate thieth order terms, which
finally leads toEq. (9) Note thatg, € Q(az, a3, ..., ak, ho, h3, ..., hy).

3. Thesimplest normal form for the Takens-Bogdanov dynamical singularity

In this section, we consider the Takens—Bogdanov dynamical singularity and derive the
general formula for computing the simplest normal form. For simplicity, we may choose
the system described on a 2-dimensional center manifold, given by the equations:

X1 = X2 + f1(x1, x2),

X2 = fa(xa, X2),
where f1, f € C%, which vanish, together with their first derivatives, at the origin.
Note that if the system is not given in the 2-dimensional center manifold, but in the form
of Eq. (1) one may first apply center manifold theory or normal form theory to obtain

either the 2-dimensional center manifgldt) or the conventional normal forig3). A more
sophisticated approach is to directly compute the simplest normal form from the original

(14)
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system(1). We will not discuss such an approach here, but the idea of the method can be
found inYu (2003)
The vector field of systerfiL4) can be written as

v = (X2 + f1(Xq, X2))9x, + f2(X1, X2) 9, (15)
and the homological operator is definedsqg. (6) where the linear pant; now becomes
v1 = (X2, 0)7.

To obtain the explicit formulas, we may find the vector space basis:

X0y, -, XKDk, —XKByy + KX Ix00,, XXX 20xs, - ., X0, ) (16)
for Rk, and that:

XX 204, + XKy, xK0x,) (17)

for K. However, we may use a more convenient vector space basis for the complementary
space taRy, denoted byCy which is spanned by

XKDy, X005, ). (18)

Thus thekth order conventional normal forng, (y), can be assumed in the form of

2(y) = ( 0 ) (19)

ngoyll( + gz(k—l)lylflyz

wheregako andgyk—1y1 are two coefficients to be determined. For the conventional normal
form, these two coefficients are generally non-zero and retained in the normal form. In the
further reduction of the conventional normal form leading to the simplest normal form, we
try to use the coefficients of nonlinear transformation to eliminate as many as possible of
the g coefficients.

Now we shall use the formulas given in the previous section and the idea stated above to
compute the simplest normal form for the Takens—Bogdanov dynamical singularity. First,
let the general forms of , andhy be given respectively by

Fely) = (alkoy‘l; + al(kfl)lYE_iVZ + -4 aryk- ylylz;_i + alOkVE) ’ (20)

agoy] + axk-n1Y; Y2+ -+ acuk-nyiYs ~ + akys
and

() (hlkoylf + hl(kfl)ly‘l(_lVZ + -+ hik-y y1y|2<—1 + thkylz() ' 21)

hakoyy + h2(k71)1y‘1(_1y2 + -+ hoyk-y y1y|2<—1 + hooky&
Then fork = 2, applying the formulg, = f, + [h2, v1] yields

0220 = a220, g211 = @211+ 2a120,

h120 = 3(a111+ a202), h111 = h202+ @102, (22)

h220 = —ai2o0, h211 = @02,

which indicates that none of the two 2nd ordgecoefficients can be eliminated. In other
words, the 2nd order normal form cannot be simplified. It is also noted that the coefficients
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h102 (which does not appear in the equations) hpgh are undetermined and may thus be
used in high order equations to remove normal form coefficigntsandgak—1)1.
Next considetkk = 3. Similarly we can apply the formulgs = f3 + [h3, v1] +

[h2, fo] + Dhao(f, — g5) to obtain eight algebraic equations. It is noted that six of the
eight equations, which do not involve the two coefficiegiso andgp21, can be used to
determine six of the eight 3rd ordercoefficients:

h230 = —A130+ a220M202,

h221 = 3(A212 — 4a120h202 + 282201102,

h212 = az03+ 2a202M202 + a211h102,

h13o= 3(A121 — ap11M202 — 282201102 + h221,

h121 = 3 [A112+ 2a111202 — 2(a120+ a21102] + h212.

h112 = @103+ 2a102h202 + a111h102 + h2os,

whereAjjk are known coefficients related to the original system.
The remaining two equations, which may be calkey equations and can be used to
determine the normal form coefficierdssg andgo21, are given as follows:

(23)

0230 — @230 — @1118220 + 1208211 = 0,
0221 — @221 — 3az20M202 + 3a130 — 581028220 (24)
+ Tag208202 — 3(a111+ 802 = 0.

The first equation of24) indicates thatipz3o must be retained in the normal form, given
by

0230 = a230+ a1118220 — &1203211- (25)
On the other hand, the second equatiofPdf) suggests that one may set
g221=10, (26)

under the conditiomy20 # 0, and then the 2nd order coefficidn, can be used to solve
the equation, uniquely determined as

h2o2 = N [a221 — 3a130+ 51028220 — 7a1208202 + }(61111—1- azoz)} . (27)
33.220 2

Itis observed from the above procedure that the coeffitiggtwhich is not determined
in the 2nd order equation has been used to eliminate the 3rd order conventional normal
form coefficientgpo1. This clearly shows the basic idea of the simplest normal form
computation:lower order nonlinear transformation coefficients are used to eliminate
higher order normal form coefficients

However, it is noted in the 3rd order equations that the 2nd order coeffltignis not
determined, and in addition, two 3rd order coefficidmigs andh,g3 are undetermined. It
can be shown thdt; o2 will be used in the 4th order equation to remove the normal form
coefficientgp31 under the conditiomyp11 + 2a120 # 0. Further, the coefficierttz gz will be
used to eliminate the 5th order normal form coefficigant;, and so on.
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For an arbitrarkth order equation, we want to use thecoefficients which are not
determined in lower order equations to eliminate kitte order normal form coefficients
O2ko andgpk—1y1. Similarly applyingEg. (9)results in X + 2 linear algebraic equations,
among which two equations do not involve tkih orderh coefficients but contain the
two g coefficientsgako andgok—)1 as well as some lower ordércoefficients. It can be
shown that the lower ordér coefficients can be used to eliminate either one or both of
the twog coefficients. Under the assumptiazo(az11 + 2a120) # 0, the general rule for
choosing the nonlinear transformation coefficiedmigc andhyo to eliminate the normal
form coefficientgyoko andgzk—1)1 are given as follows (for proof set and Yuan, 2008

For k=3, h202= 0221 =0,
For k=3m+1, higan= Gok-11=0,
For k=3m+ 2, h2oem+1) = 2k-1y1 = 0, (28)

For k=3m+3, hyomiz = Gak-11=0,
hioem+1) = g2ko = 0,

where m>1. The meaning of notation ==" means “imply”, for example,
hoo2 = go21 = O indicates thatpp1 can be set zero by appropriately choosing the
coefficienthaga.
Once the twdkeyequations are solved, the remainirigetjuations can be solved using

the X h coefficients as follows:

—hoko = Axko + a2koh2ok—1) + B2koh10k—1),

(K= Dhag—jj = Aote—j-1)(j+1) + @2k—jN20k-1)

+ Bak—j)jh10k-1)s

(k= j + Dhik—j+1)(j-1) — h2k-j)j = Ark—j)j + @1k—j+1)(j—ph20k-1) @9
+ Bik—j+1)(j—ph1ok-1),
h11k—1) — h2ok = Arok + a11(k—1)h20k—1) + Brak—1N10Kk-1)>
wherej =1, 2,..., k— 1, andAjjx are known coefficients. Note that the first and the last

equations of29) are decoupled from the othék — 2) equations. The first equation can
be used to solvhyg, while the last equation may be used to deternhifng.
Summarizing the above results yields the following theorem.

Theorem 2. The generic simplest normal form of systéhd) for Takens—Bogdanov
dynamical singularity up to an arbitrary order is given by

Uy = Uy,
.o 2 3
Uz = agaout + (az11+ 2a120)U1U2 + Q230U7
m
3j+1
+ 2(92(3j+1)0+ G2@3j+20uDU; T, (30)
i—1

if ago0(@211+ 2a120) # 0, where the coefficientggy'’s are expressed explicitly in terms of
the coefficientsig's of the original systenfl4).
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Notes. The simplest normal form given in the above theorem is for a general system
described on a 2-dimensional center manifold, givelEfly(14) However, in many cases
the original system is given in the conventional normal f¢Bhin which only ax and
axk-1)1 are non-zero. This is a particular case of the general sy@téjnin this particular
case, the condition required for the generic simplest normal form redueegy®11 # 0,
as expected (e.g. s&d®@an and Yu, 2001

It should be pointed out that the basic rule giverEaq. (28)is the same regardless
of whether the general syste(@4) or the particular systenf3) is used. This can be
easily shown by using conventional normal form theory to transform sy§i€hinto
system(3) with a nonlinear transformation. In fact, we can find the following nonlinear
transformation:

X1 = Y1+ 3(a111+ @202y + a102y1Y>
+ 3[@212+ 28121 + a2; | + @p02(3a111 + 28202) — A102(211 + 4a120)1Y;
+ 2[a112+ @203+ a102(a111 + 28202 1YY + a10ay1ys + - - - (31)
X2 = Y2 — @120y2 + @202Y1Y2 — (8130 + Q1208202 — 81028220) Y
+ 3 (a212+ 282y, + a102821D Y2Y2 + A203y1Y3 + - - -
to transform syster{iLl4) into the following conventional normal form:
y1=Y2,
V2 = 8220y + Bo11Y1Y2 + 82305 + Bo21Y2Y2 + Bpaoy] + E231yiy2 + - - (32)

which is in the form of(3), wheredjjx’s are explicitly given in terms o&jk’ s. Thus the
generic conditionazap(az11+ 2a120) # 0, required for systertild) becomesiooofo1 # O

for the new systern(32), as expected. If syste(f4)is given in the form of the conventional
normal form(3), thendoko = agko andaxk—1y1 = axk-1)1. Therefore, the degenerate cases
discussed on the basis of the conventional normal fg@may be unlikely to occur for
the general systeifi4) since the coefficientozo, 8221, 8240, €tc. are generally not zero if
the functionf; given inEg. (14)is non-zero.

The above discussion is for the generic case. The same argument can be applied to non-
generic cases, and thus the conclusion is true for any case. That is, considering systems
(3) and(14) equivalent and gives the same rule for eliminatingktreorder normal form
coefficientsgokg andgak—1)1 by using theh nonlinear transformation coefficients.

4. The matching pursuit technique for computing the smplest normal form

In the previous section we have discussed the computation of the simplest normal
form for the Takens—Bogdanov dynamical singularity and obtained the explicit formulas
for computing the coefficients of the simplest normal form and the associated nonlinear
transformation. However, the results are obtained under the assumptiath@b11 +
2a120) # 0 when the system is described by the general equétidhor azopaz11 # O if
the system is given in the conventional normal fqB8h As shown in the previous section,
the rule for choosing the nonlinear transformation coefficients to eliminate the two normal
form coefficientyko andgyk—11 is the same regardless of the type of the original system.



P. Yu, Y. Yuan / Journal of Symbolic Computation 35 (2003) 591-615 601

Therefore, without loss of generality, we will ugay. (3)throughout this section for the
convenience of discussion.

Although since 1984 many researchers studied the simplest normal form of the Takens—
Bogdanov dynamical singularity, the problem is not completely solved. Not only because
few results are obtained for computing the simplest normal form, but also because the
analytical “form” for some special cases are not found. Even suppose one can classify all
sub-cases and find all of the analytical “forms”, there still exists the non-algebraic number
problem ang et al., 2000 Roughly speaking, some non-algebraic number conditions
must be satisfied at certain order equations to make the equations solvable. Unfortunately,
such non-algebraic number conditions are not predictable. In other words, unless the
simplest normal form is explicitly computed, it is impossible to find or determine the non-
algebraic number conditions. Therefore, no matter what methods are used, there always
exist unsolvable special cases if certain non-algebraic number conditions are not assumed
appropriately.

The computation approaches recently developed (e.g. Algabaetal., 2001
Lietal., 2001 Yuan and Yu, 2001Lare based on explicit analytical formulas. Thus only
the cases for which the explicit formulas have been obtained are computable. Even for
the limited cases, the non-algebraic number problem is not solved because the obtained
formulas do not take account of this. Therefore, from the computational point of view, a
natural question would arise: can we design a computational approach or an algorithm to
solve the problem completely? More precisely, can we develop a program with the aid of
computer algebra, which can be used to compute the simplest normal form of the Takens—
Bogdanov dynamical singularity for a given general system without requiring any non-
algebraic number conditions or assumptions? Fortunately, the ansyesriie advantage
for developing such algorithms is obvious: for a given system, one does not need to worry
about what case it might be and one can always find the simplest normal form up to any
desired order. The matching pursuit technigue has been developed and “automatic” Maple
programs have been coded. It has been shown that this approach is indeed very powerful,
and many systems have been tested to give correct results. Unlike many other programs
which depend upon explicit formulas, this algorithm does not need to specify cases in the
input file and is very convenient for users. Therefore, this matching pursuit technique has
completely solved the problem of computing the simplest normal form for the Takens—
Bogdanov dynamical singularity.

4.1. The matching pursuit technique

Now we turn to discuss the matching pursuit technique. The basic idea of the technique
is based on the following observation: both the non-algebraic number problem and the
necessity for Baider and Sanders to classify the three cases are due to the same cause.
Recall that the computation of thieth order simplest normal form of the Takens—
Bogdanov dynamical singularity (described in the previous section) is to use the lower
order h coefficients to eliminate the twkth orderg coefficients, ¢oxo and gak—1)1)-

Further, note that there are only tweyequations at each order which contain the fgvo
coefficients. So the further reduction leading to the simplest normal form can be achieved
by using theh coefficients involved in the twdey equations to remove as many of



602 P. Yu, Y. Yuan / Journal of Symbolic Computation 35 (2003) 591-615

the kth orderg coefficients as possible. In the generic case, under the basic assumption
azoo(az11 + 2a120) # 0 (with no extra non-algebraic number conditions), the rule of
choosing theh coefficients is given irEq. (28) It is shown that starting from the 3rd
order at leastpk—1)1 can be removed, and for order= 3m + 3, both the twdkth order

g coefficients can be eliminated. The basic assumption becomes clear in the following
discussion. When we determine dmeoefficient from &keyequation, we actually solve a
linear algebraic equation for thecoefficient. It is thus obvious that the linear equation is
solvable as long as the coefficient of thevariable is non-zero, which generates the non-
algebraic number conditions. For example, consider the second equatia#)oifvhich
containsgz21 and —3ap20h202 terms. Hence, ifipog # 0, we can sefz21 = 0 and then
uniquely determindazgo. That is why we need to assuragyg # O for the generic case.

The second conditioap11+ 2a120 # 0 comes from one of the 4th ordezyequations. For
simplicity, instead ofEg. (14) we useEg. (3)in the following analysis. Then the second
condition becomeay11 # 0 and thekeyequation is of the form:

a1
——(9ap30+ 3-%11) =0, (33)
9az220
which clearly shows that as long as the coefficienhf is non-zero, i.eazz0a211 # 0,

we can sefp31 = 0 and uniquely determin, o2, as the rule given ileq. (28)shows.

Further it can be shown that for the generic case the only condition required is
az20a211 # 0 (remember that we are now usifg|. (3) no other non-algebraic number
conditions are required. In other words, under the assumptiogde11 # 0, all theh
coefficients can be uniquely determined to remove gheoefficients by following the
rule given inEq. (28) However, this is not always true, i.e. when the basic condition,
az20a211 # 0, does not hold, some extra non-algebraic number conditions must be satisfied.
For example, consideryo = 0, butapzp # 0 andazi1 # 0. Here,u = 2 andv = 1, so
it belongs to case (lllk = 2v. Then the rule given ifEq. (28)cannot be followed. The
2nd and 3rd order equations show tigaso = 0, g211 = @211, §230 = @230, 0211 = a211.
Compared witlEq. (33) thiskeyequation at the 4th order becomes

4
0231 — @231+ §a220a211h102 +

Op31— A231+ 3(9a230+ @31 )h202 = 0 (34)

which indicates that if &30+ a%ll # 0, then one can sgp3; = 0 to uniquely determine
hog2 (note that here it is1292, NoOt o2 like the generic case). Further, one of the 5th order
keyequations is found to be

a231(18a240+ Sa2118221) 0 (35)
2(9ap30+ a3,

which implies that in order to sefp41 = 0 by choosinghigz, one needsypiiazso # 0,

in addition to %30 + a%ll # 0. Therefore, this case (whenyo = 0) not only requires

the basic assumpticepiiazzg # 0, but it also needs the non-algebraic number condition
9az30 + a%ll # 0 at the 4th order. In fact, it can be shown using the program developed
by Yuan and Yu (2001jhat more non-algebraic number conditions need to be satisfied at
higher orders (see Example 4 in the next section).

5
0241 — @241+ Za211a23d1102 +
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In general, for thekth order equation we may find a set of algebraic equations, written

in the matrix form:

603

0 0] -1 hiko
k 0 | -1 hik-1)1
k-1 0 | -1 h1k-2)2
S :
0 | -1 hiok
P — — | — — — - = — - _
00 000|] 0O O O OO O hao | =% (36)
0] k hak-1)1
0 | k-1 hak-2)2
0 | k-2 hak-3)3
S :
i 0 | 1 0]\ ho

where the 2k + 1)-dimensional vectow contains the undeterminédcoefficients, one or

two of them are solved at the current order, while others will be determined in higher order

equations. It is seen fromq. (36)that the coefficienhyo can be solved first from the

first equation. Note that the coefficiemiox does not appear in the equations, whipegy

is only involved in the(k + 1)th equation and can thus be chosen arbitrarily. Thekeyo

equations are th& + 2)th and(k + 3)th equations which contain the two coefficiegsgo

andbyk-1)1. The remaining2k — 2) equations can be used to determine the remaining

(2k — 2) h coefficientshikg, hik-1)1, - - -, h12k—2) andhak—1)1, hok=2)2. - . . , h21K=1)-
Summarizing the above discussions gives the following theorem.

Theorem 3. The rule for choosing the nonlinear transformation coefficients, h, to
eliminate the normal form coefficients, g, is determined by theksyoequations. The
solvable non-algebraic number conditions are determined by the coefficients of the h
variables which are involved in the twey equations.

It should be noted that the conditions determined by the coefficients ofhthe
variables include not only the non-algebraic number conditions, but also the simple
conditions (in terms ofaxo and axk-1)1) for classifying the three cases due to
Baider and Sanders (19980 strictly speaking, there is no difference between the simple
classifying conditions and the non-algebraic number conditions, and thus it is not necessary
to consider the non-algebraic number conditions separately. Since, as discussed before,
the non-algebraic number conditions are not predictable, the classification to the three
cases Baider and Sanders, 19918 not enough and there should exist infinite sub-cases.
However, it becomes quite simple when considering the problem from the computational
point of view. For a given system, suppose the vector field of the system is explicitly given,
then at each order one only needs to investigatehtiteefficients involved in the two
keyequations. It is straightforward to use theoefficients to possibly remove the twio
coefficientsgoko andgak—1)1-

Now the only remaining problem is: when a degenerate case occurs (i.e. when some
non-algebraic number condition is not satisfied), stneeefficient is not present and will
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appear in high order equations, how can we determine whermtb@efficient becomes

useless? In general, if one of thecoefficients is not used at the current order, it may be

used later in higher order equations. However, thi®efficient may become nonlinear as

the order of the equations increases. Here we assume to obey the same rule in computing

normal forms: At each order, we only solileear algebraic equations with respect to the

h variables. Therefore, one can establish a rule for discardingarefficient: once ain

coefficient appears in higher order equations and becomes at least quadratic, set it to zero.
By summarizing the above discussion, we can establish the rules for using the matching

pursuit technique to find thkth order simplest normal form for the Takens—Bogdanov

dynamical singularity as follows.

(1) First solvehyko from the first equation given ikq. (36)since the result may contain
the lower ordeh coefficients which may be used at the current order.

(2) Solve the(k + 2)th and(k + 3)th equations o{36) usingh coefficients linearly to
possibly remove@oko andgok—1)1.

(3) If a lower orderh coefficient is not present in lower order equations but appears in
higher order equations due to a degenerate condition (i.e. a non-algebraic number
condition is not satisfied), then carry it over until either (i) it can be used to linearly
solve a higher order equation, or (ii) it can be set to zero if it becomes nonlinear.

Note that the above rules are applicable for a given explicitly described system. For a

system not described numerically but in symbolic notations, it is usually assumed that

all the unknown non-algebraic number conditions are satisfied. That is, one may assume
that any algebraic expressions on denominators are non-zero so that the “zero division”
problem is avoided.

4.2. Outline of the matching pursuit technique algorithm

It is straightforward to follow the discussion and the established rules given above to
design an algorithm using computer algebra systems. In fact, Maple has been used to
develop programs for computing the simplest normal form of a given vector field associated
with the Takens—Bogdanov dynamical singularity. They can be conveniently executed on
various computer systems and only require a minimum preparation for an input from a user.

Input: The input gives an indeCASE for classifying irrational numbers, the order, Ord,
for the computation of the simplest normal form, and the original differential equations
given in homogeneous polynomials. The reason for defidAGEto identify irrational
numbers is that more careful treatment should be taken when arithmetic operations
involve irrational numbers. In particular, rationalization must be performed whenever an
expression involves irrational numbers on its denominator. Other steps are outlined below.

(A) For a sub-ordek(2 < k < Ord), compute the algebraic equations using the efficient
method.

(a) Build the procedures for computing the Lie bracket, vector multiplication and
equation solver.

(b) Separate the original different equations to obtain homogeneous vector
polynomials. Set general forms for théh order nonlinear transformation and
normal form.
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(c) Use the recursive formu(®) to find thekth order equation which only contains
thekth order terms. The variable COF is used to transfer non-definite multiple
loops to single loops so the searching scheme can be handled by the regular
program routines.

(d) Get the coefficients of the monomials from tkth order equation, which
consists of théth order algebraic equations.

(B) Call the subroutine for computing the simplest normal form of the Takens—Bogdanov
dynamical singularity. For a sub-ordé&(2 < k < Ord), recursively calculate
the coefficients of the simplest normal form and the corresponding nonlinear
transformation.

(a) Build several procedures for computing the index and solving thekiyo
equationsindexl andindexX2 are used to record the relation betwéwgg, and
hooq(P, g < Ord) as well as the number dfop’s andhzoq’s which have been
used.

(b) Set the two key coefficientboox = Sxk—3 and hix = Sxk—2 for a
consistent identifying proces€ontrolLnois a counter to record the number of
s coefficients which have been used.

(c) Solve the equation for the initial ordék & 2), and find the 2nd order normal
form coefficients gp1 andgoo. (Note: The notationgoke and gok—1)1 used in
the text are replaced bgki and gk respectively, in the Maple program for
convenience.)

(d) For a sub-order X k < Ord, get the coefficients af,'s from the expressions
cofxo andcofrk—1)1.

(e) Classify the cases based on the information obtained in (d), solves the
coefficients and determine whether or not to carry the unsaveakfficients
to higher order equations.

(f) Determine the rule to eliminatg andgko.

(g) Call the procedure to solve tHegh order non-key nonlinear transformation
coefficientshijk .

Output: The simplest normal form is expressed in polynomials which contain minimum
terms with coefficients given in rational functions of the original coefficientsd$.

The Maple source code and a sample input can be downloaded from the website:
http:// pyul.apmaths.uwo.cgdyu/ pub/preprints(The file names ammatchingmapleand
matchinginput)

5. Examples

In this section we shall present several examples for the computation of the simplest
normal form using the matching pursuit technique and the Maple programs developed in
this paper. The first example shows the computation starting from origidahensional
differential equation, while others are based on a general conventional normal form. In par-
ticular, it is shown that unlike other theory or methods which require certain non-algebraic
number conditions, our matching pursuit technique and the Maple program do not have any
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limitations. In principle, the Maple program can be used to compute the simplest normal
form of the Takens—Bogdanov dynamical singularity up to any order. However, in practice,
due to limitations of computer memory, it always stops at a certain order. The results given
in this paper are up to the 12th order. It should be pointed out that our program computes
not only the simplest normal form but also the associated nonlinear transformation. Also it
is noted that the Maple program can treat both numerical (rational or irrational) numbers
and symbolic notations. The following examples use numerical numbers (but still handle
them symbolically) for the convenience of presenting higher order results.

In the following computations, if the original system is describecEy (1) we shall
first use normal form theory to find the conventional normal form given in f8jnand
then apply the results presented in the previous sections to obtain the simplest normal
form. If the original system is already given in the conventional normal f@)nthen the
formulas and programs developed in this paper are directly employed to find the simplest
normal form. Five examples are present in this section.

5.1. Example 1

Consider the following 6-dimensional differential equation, given by

X1 = X2 + XJZ_ + 5XoX3X4 — Xg + %Xg’,

X2 = 2XoX3 + :—73X3X5 + %, Xz% — 11X1Xs,
%3 = —2x3 + Zxox4 + 3X2,
) 1 , (37)
X4 = —3Xa+ 1Ix1Xe + 7%,
X5 = —5X5 + X6 -+ X2X3 + 3X6X4Xs,
X6 = —X5 — 5X6 + X2 + 1 X1X3.
The Jacobian of the system evaluated at the equilibbtuma= 0 is in Jordan canonical

form, having a double zero eigenvalug, = 1> = 0, two real eigenvalues;z = —%
andigq = —%, and a complex conjugate eigenvalags = —5 + i. The conventional
normal form of system(37) can be found by using the Maple program developed by

Bi and Yu (1999)s follows (up to 12th order):

y1=1Y>,
11, 33 . 115061 363 , 7381 ,
26”172~ 130”1 T 338000172 * 169001 ~ 5492512
1080 , 2787053007, 39509857, 165961642011,
* 21970t ~ 45697600712 " 2197000t T 2158481600717
1320167799,, 29133870333046074} 2197367304,
T 114244000% T T 417036297600000°172 T 11602906231
611702776170061740},  190417469981733,
~ T 527087542800000 7 "2~ 5406026080000 :
633064920131991951132899
5168469848256000000 ° -

Yo = 2y1y2 +

Y. (38)
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The coefficients given in the above equation can be written in the forap;ef and
ay(j—1)1 according to formulg3). By noting thatazzo = az30 = aza0 = 0, azso# 0,

az11 # 0, we know that this is a non-generic case. According to the notation of
Baider and Sanders (1992his belongs to case (Ijy > 2v. For this exampley = 4,

v = 1. Executing our Maple program based on the matching pursuit technique yields the
simplest normal form:

U1 = Uy,
33 © 1089 7, 1089 1089 Bt 19730051u 9
1301 T 82501 T 219701 " 1098500 1

930453551l7Jlo 27669313329811 14527959542023,,
799708000 1 29703440000 ~ 1351506520000

Us = 2uU1Us —

(39)
5.2. Example 2

In the previous example, although the original system is a genadahensional sys-
tem (h > 2), one first needs to use a method to find the conventional normal form on the
2-dimensional center manifold, and then apply the approach developed in this paper to find
the simplest normal form from the conventional normal form. Note that with the approach
developed in this paper, one does not require the equations to be described on the center
manifold to be given in the conventional normal form. For an example, consider the follow-
ing system with randomly chosen coefficients up to 12th degree homogeneous polynomial:

Xlzxz—i-xf—i— xlxz+2x2+2xl+7xlxz+ x1x2—|— x2+5xl+3xlxz

— 15x1x2 gxlx2 + 2x2 — 2xl + 5x1xz + ZX1X2 + xlx2 + zX1X2 + 20x25

%2 = 3X2 + x1Xz + 5x2 + 2x3 + 3xPxa + 10x1X3 + 3x3 + 3xF — 2x3xo

+10x2x2 + 3x1x3 + X5 + 7% — 2xxo + Tx3x3 + 3xax§ + 2x5
L (40)
The complete description of the above equation can be found from the input given
in http://pyul.apmaths.uwo.cgdyu/pub/preprints (The file nhame ismatchinginput)

Executing the Maple program takes only about a few seconds on a PC to obtain the
following simplest normal form:

U1 = uy,
(o = 302 + gy + o? 4 320723 u$
2= S Utz + 55t + 7300
27908277 iy 4 402857396738200%
256000 3612672000000

6116895890374246036636377u
682795008000000000 1 2

(41)
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2136699101955403817686368261611u791l.‘l3
569811028049657856000000000 * 2

1264850044225914971746326926326209573%_3
50143370468369891328000000000000

In the next two examples, the computation of the simplest normal form is based on the
following general conventional normal form, say, up to 12th order:

Y1 =Ya,

; 2 3 2 12 1, (42
Y2 = ap20y7 + az11y1Y2 + azz0y; + az21y1yz2 + - - - + azi120y1” + a2111y7 " Ye-

5.3. Example 3

First considew = 1, v = 2, which, according to the classification, satisfies< 2v.
Thisimplies thabtp11 = 0, ag20 # 0, az21 # 0. Li et al. (2001)have computed the simplest
normal form for this case and shown that the following non-algebraic number condition:

183a230(az30a221 — a2208231) + 1108220(a2208241 — @2408221) # O (43)

must be satisfied. In fact, we can show that this condition is not required until the 9th order.

Now suppose that conditiqd 3)is satisfied, then one may use either the Maple program
developed byruan and Yu (20019r the program developed based on the matching pursuit
technique to find the following explicit expressions for the coefficients of the simplest
normal form (only the non-zero coefficients are listed):

9220 = 3220
221 = a21.
2309221
Ooa1=a31— ———
a220
2409221
Qa1=041— ———»
a220 ,
226 a240
__ 1330gems0+ 56083, + 85323085,; — 5082202213231 — % (44)
0251 = @260 500 ,
220 5
283418240 + 3582309251 + 12ap508231 + 208213260 + 48553231
9261 = 261 — 20a:
220
_ 23132403230(82308221 — 82318220) — 5ap208221(485,18230 + 283, + 47a250a230)

10083,

However, if condition(43)is not held, for example, let

apzpazo1  110(ag2pAzs1 — a2408221)
ax31= + )
as20 183ax30

then the Maple program given Muan and Yu (2001will experience a “zero division”
problem when it is executed up to the 9th order. The Maple program using the matching
pursuit technique can overcome this difficulty and produce the unique simplest normal
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form. To demonstrate this and avoid massive expressions, we use the following humerical
conventional normal form:

Y1 =1Y2,
. ) 3 ) (45)
Y2 = ap20yf] + a211Y1Y2 + az3oy; + az2ayiyz + 9(Y1, ¥2),
where
9(y1, ¥2) = Vi + Y3y2 + 3y2 + vivo + 2y8 + 3y2yo + 5yl + 2y8y, + 7y8
+ 3ylya + 3y) + 118y, + 2y10 + 2ydy, + 2yl 4+ 2 ylly,
+ 3yi2 4 Zyily,. (46)
We choosesp11 = 0, 220 = 8230 = 3 # 0, 821 = — 3, andapso = @31 = aa1 = 1,

which violates condition43). Executing the Maple program results in the following
simplest normal form:

Uy = Uy,
U = }ui + }uf + 1—1Ou§uz + 1—83u‘1‘uz + 336001u? - 5243550111?@
2 2 37 37 2053500 6078360
377269222:37U2 _ 3570702386977 9
151959000 * 1443103970000_1
683815118675488766454985066§82
2211283083977214661299600
75258144273234194651505534919139
75675021096109123964475200081 Uz

(47)

It should be pointed out that the violation of conditi@t8) would, in general, yield one
more termu? (marked by a box irEq. (43) than the simplest normal form obtained
when condition(43) is satisfied. Suppose conditi¢h3) is held. For example, ledz31 =
2,a241 = 5, instead ofagz1 = az41 = 1, then one can find the second equation of the
simplest normal form given as follows:

Up = Lo + 1 + £7u3uz + 3—31u4uz _ 09149 6 _ 53379050%%2
2t 21T 371 37 1t 20535001 30391800 !
1665621781, ~ 158926741092910680993
50653000 1 2~ 69236127146865000 1 -

74440550084773398756&%0
823348539043800000 *

uz. (48)

Itis clearly seen fronkgs. (47)and(48)thatEq. (47)has one more termg, thanEq. (48)

due to the violation of the condition at the 9th order at whichhazoefficient does not
appear and thus cannot be used at this order. In general, if some non-algebraic number
condition like the one given ikq. (43)is not satisfied at thkth order, then one more term

than the regular simplest normal form is retained atdtmeorder normal form.
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Also, it should be noted that by a method such as usedAlgyba et al. (1997)
Chen and Della Dora (2000l.i et al. (2001) Yu (2002) and Yuan and Yu (2001 )higher
order simplest normal forms may require more non-algebraic number conditions like the
one given byEq. (43) There is no way to find all such non-algebraic number conditions for
the simplest normal form of a system up to an arbitrary order. However, with the matching
pursuit technique and the Maple program, one does not need to worry about these non-
algebraic number conditions, and the simplest normal form can be obtained even when
these unknown non-algebraic number conditions are not satisfied.

5.4. Example 4

We now turn to consider a casg: = 2,v = 1 which belongs to case (lll} = 2v,
i.e.az20= 0, a211 # 0, ag30 # 0. It can be shown that the following algebraic conditions
should be held, which are found using the Maple program givéfuan and Yu (2001)

9ap30+ a2;, # 0 at 4th order,
623230+ 3a5;, # 0 at 6th order, (49)
3153%30 - 229&23061%11 - 6a§11 # 0 at 8th order.

The condition for the 4th order has been givenAlgaba et al. (2001)We can use the
matching pursuit technique to find the simplest normal forms for the above three cases
when the conditions are violated. Again, using the numerical equation, described in
Eq. (45) here we choosapz1 = 1 for convenience. The results for the three cases are
given below.

Case (A) Letar1y; = 1, a230 = —% which results in 830+ a%ll = 0. Executing the
Maple program yields the simplest normal form:

U1 = up,

Up = UUp — éuf + u3uz 4+ uf + [udup |+ éu?
N 3621 ; 24939007 5. 333914934217,
448 "1 376320 ' 541900800 *
~ 26934758114728u910+ 416637981737123969;
34139750400 * 5608022999040 *
133819136648903746555259

158626936258560000 v

Note that the 4th order termﬁuz is an extra term retained due to the violation of the first
condition of (49). In other words, if 230+ a3,; # 0, then this 4th order term can be
removed from the simplest normal form usingtanoefficient.

Case (B)Letap11 = 1, a230 = —6%, then 6230 + 3a§11 = 0. Our matching pursuit

technique program produces the simplest normal form given by

(50)

U1 = Uy,

Us = uqu 3u3+u2u +u4+2u5 14249u6
2= N2 T g 1 T2 T LT 31T Tp05 L
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328918 5 7 102353455517,
875 L 12 59810625 !
_ 211175539657065%  32177532310230110717,
382189893750 ! 28893555967500 *
464736490815052588637611013
29579777921728125000 *
_ 628486844636952471726823764521
825958414275946875000 '

(51)

Similarly, if the condition 62230+ 332211 # 0 is held, then the 6th order tennﬁuz can be
removed.

Case (C)Letaz11 = 1,a230 = ZZ%Wl which renders 31;5530— 229&51230a§ll
6a211 0. The simplest normal form for this case is found by using the matching pursuit
technique as

Uy = up,
b — gy 4. 2294 /60001 5 Uy i1 2 e 43,/60001- 1790
2= Utz + 630 itlt2tlitg 9450 1
38921872 13828%/60001 . 290685973/60001— 68546927567 5
782775 1 328765500 1
. 3355418332083737 1369851779963360001 7
6904075500 t1t2
. 2663452386309233068 1087308263372482760001 10
6524351347500 U1

4366519487909066357201100525117826084914537346394082955360001 11
4435977661838451225000

72583951957185815146592634439/]50001 l7779510731041003188460814801592@
3220519782494715589350000

(52)

where an extra term{uz cannot be eliminated due to the third non-algebraic number
condition of(49) being violated.

It can be seen from this example that the Maple program developed in this paper can
be used to compute the simplest normal form of the systems containing not only rational
coefficients, but also irrational coefficients. In fact, the program can be executed for any
combinations of numerical numbers and symbolic notations.

5.5. Example 5

From the previous examples, we have observed that, in general, the two terms of the
conventional normal form at each order may be eliminated by one, two, or none. Thus one
may expect that no simplest normal forms may have more terms at any order than that
of the conventional normal form. However, this is not always true. Now we shall give an
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example to demonstrate that the general rule is not applicable if the conventional normal
form looks sufficiently “irregular”.

For a more clear investigation, consider the following 15th order conventional normal
form:

Y1 =Ya,

V2= YiV2+ Y1+ Yiy2 + | ViY2 [+ 3¥9 4 5Y] + 3y{y2 + 3y + §yi°

— 2 yoyn |+ 3| yit |4+ ZylOy, 4 3yl2 4 2 ylly, | 4 3y13 1 7| 12y,

+ 9y 4 yyo + 5y1° + 11| yityo (53)

which satisfies
ap20 = @11 = @30 = az50 = az51 = aze1l = azgo = azg1 = 0. (54)

The box notation given ikq. (53)is marked for the comparison with the simplest normal
form obtained below. Note that heagy1 # 0 andaz4g # 0, suggesting that this case may
belong tou = 3, v = 2(u < 2v). However, since more higher ordecoefficients vanish,

it does not follow the “rule” of the case. Executing our Maple program yields the following
simplest normal form up to 15th order:

U1 = Uz,
1 1 41 50453
. 2 4 3 6 5 7 8 9 8
U2 = uUju u usu —U; — <|uju 5u —Uu; —u usu
2 12+ 1+ 12+21 9 12+ 1+421 1+74088 142
L 7963 1o 3014237 1o 448499369, 82102121 g

37044'1 330062041 "2 T 22004512" T 2320812161

_ 45215814840251,, 56124385596423502097,
634592280924 * 9287994158368611841 -
2464725735875010107

T T253968590267891751 -

Comparing the above simplest normal form with the conventional normal form given by
Eq. (53)shows that (paying particular attention to the terms marked by the boxes):

(55)

(a) The simplest normal form and conventional normal form havesséimenumber of
terms up to 3rd, 6th, 7th, 8th or 10th order.

(b) The conventional normal form hage5th order term while the simplest normal form
hasno 5th order term.

(c) The conventional normal form hase6th order term but the simplest normal form
hastwo 6th order terms.

(d) The conventional normal form hasie9th order term but the simplest normal form
hastwo 9th order terms.

(e) The conventional normal form h&so 10th order terms while the simplest normal
form hasonel0th order term.
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(f) From the 11th order on, the simplest normal form resumes the normal simplification
process.

It can be seen from this “irregular” example that the simplest normal form is simpler
than the conventional normal form up to 5th order, while the conventional normal form is
simpler than the simplest normal form up to 9th order. They have same terms up to 6th
order and 10th order. Starting from 11th order terms, the simplification process in finding
the simplest normal form resumes normally, i.e., the simplest normal form simplifies the
conventional normal form at any order> 11.

6. Conclusions

A matching pursuit technique has been developed for computing the simplest
normal form of the Takens—Boganov dynamical singularity. It has been shown that this
approach is indeed computationally efficient. From the computational point of view, the
method completely solves the simplest normal form of the Takens—Bogdanov dynamical
singularity. It does not need any non-algebraic number conditions or requirements as other
approaches do. “Automatic” symbolic computation programs written in Maple have been
developed. Examples are presented to show the advantages of the matching pursuit method.
It has been observed from the five examples that in general the process of simplification is
carried out order by order. However, for “irregular’ systems like example 5 there may
exist an “upper boundary” order (which is 10 for example 5). When the order of the
simplest normal form is smaller than the boundary, the conventional normal form contains
no fewer terms than the simplest normal form (as we would expect). Although the simplest
normal form is simpler than the conventional normal form for sufficiently high order,
the conventional normal form may actually be simpler than the simplest normal form for
some lower orders. When the order is greater than the boundary, the simplification process
resumes normally, i.e., the simplest normal form simplifies the conventional normal form
at any order after the “boundary”.

It should be pointed out that the five examples presented in this paper for computing
the simplest normal form do not contain perturbation parameters (unfolding). In fact, it
has been noted that no single example has been given to show the real application of the
simplest normal form in bifurcation analysis, since a physical or engineering system always
contains perturbation parameters. Thus, for real applications, the theory and methodology
for computing the simplest normal form with unfolding needs to be developed. Such
simplest normal form for single zero dynamical singularity can be foundui2002)
and that for Hopf bifurcation has also been obtainddgnd Leung, 2003 It is expected
that the matching pursuit technique can be extended to consider the simplest normal form
with perturbation parameters.
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