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We completely determine fusion rules for irreducible modules of the charge
conjugation orbifold V +

L for a rank one even lattice L. © 2001 Academic Press

1. INTRODUCTION

The charge conjugation orbifold V +L is the orbifold model which comes
from the lattice vertex operator algebra VL associated to a rank one even
lattice L with the automorphism θ indexed from the −1-isometry of L
(cf. [FLM, DVVV]). Any irreducible VL-module or θ-twisted module is
completely reducible as V +L -module. It is known that every irreducible
V +L -module is equivalent to an irreducible component either of an irre-
ducible VL-module or of an irreducible θ-twisted module ([DN2]). In this
paper we completely determine the fusion rules for the irreducible V +L -
modules and construct nonzero intertwining operators which provide non-
trivial fusion rules. The intertwining operators for VL-modules constructed
in [DL] basically give intertwining operators for untwisted type modules
(which are irreducible V +L -modules derived from irreducible VL-modules),
whereas intertwining operators involving twisted type modules (which are
irreducible V +L -modules derived from twisted VL-modules) are obtained by
modifying the twisted ones for M�1� constructed in [FLM]. In determining
the fusion rules for V +L , the fusion rules and explicit forms of intertwin-
ing operators for the free bosonic orbifold vertex operator algebra M�1�+
determined in [A] play important roles.

The vertex operator algebra V +L and its irreducible modules are con-
structed as follows. Let L = �α be a rank one even lattice with a �-bilinear
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form �·� ·� defined by �α� α� = 2k for a positive integer k. Set � = �⊗� L
and extend the �-bilinear form to a �-bilinear form on �. Let �̂ = � ⊗
��t� t−1� ⊕ �K be its affinization with the center K. Then the Fock space
M�1� = S�� ⊗ t−1��t−1�� is a simple vertex operator algebra. Let ���� =
⊕λ∈��eλ be the group algebra of the abelian group �. For a subset M of
� set ��M� = ⊕λ∈M�eλ. Then VL = M�1� ⊗ ��L� is a simple vertex oper-
ator algebra, and Vλ+L = M�1� ⊗ ��λ + L� is an irreducible VL-module
for all λ ∈ L◦, where L◦ is the dual lattice of L (see [FLM]). Let θ be the
−1-isometry of L. The involution θ is lifted to an isomorphism of VL◦ , which
induces automorphisms of M�1� and VL of order 2. For a θ-invariant sub-
space W of VL◦ , we denote the ±1-eigenspaces of W by W ±, respectively.
Then V +L and M�1�+ are simple vertex operator algebras, and V ±L , V ±α/2+L,
and Vrα/2k+L for 1 ≤ r ≤ k− 1 are irreducible V +L -modules (see [DN2]).

Let �̂�−1� = �⊗ t1/2��t� t−1� ⊕�K be the twisted affine Lie algebra, and
set M�1��θ� = S��⊗ t−1/2��t−1��. Then M�1��θ� is an irreducible θ-twisted
M�1�-module (see [FLM, D2]). The automorphism θ acts on M�1��θ�,
and the ±1-eigenspaces M�1��θ�± become irreducible M�1�+-modules (see
[DN1]). Let T 1 and T 2 be irreducible ��L�-modules on which eα acts 1
and −1, respectively. Then the tensor products V Ti

L = M�1��θ� ⊗ T i�i =
1� 2� are irreducible θ-twisted VL-modules, and their ±1-eigenspaces V Ti�±

L

for θ become irreducible V +L -modules [DN2]. In [DN2], it is proved that
any irreducible V +L -module is isomorphic to one of the irreducible modules
V ±L , V ±α/2+L, Vrα/2k+L for 1 ≤ r ≤ k− 1 and V Ti�±

L for i = 1� 2.
For a vertex operator algebra V and its modules W 1�W 2, and W 3, the

dimension of the vector space IV
(

W 3

W 1 W 2

)
which consists of all intertwining

operators of type
(

M3

M1 M2

)
is called the fusion rule of corresponding type

and denoted by NW 3

W 1 W 2 . Fusion rules have the symmetry

IV

(
W 3

W 1 W 2

)
∼= IV

(
W 3

W 2 W 1

)
∼= IV

( �W 2�′
W 1 �W 3�′

)
� (1.1)

where W ′ means the contragredient module of a V -module W (see [FHL,
HL]). We give the correspondence between irreducible V +L -modules and
their contragredient modules (see Proposition 2.8) by using Zhu’s theory
[Z]. Then one can use the symmetry of fusion rules (1.1) to reduce the
amount of arguments in the process of determining the fusion rules for
V +L .

Let us explain the method of determining the fusion rules for V +L in
more detail. Let W 1�W 2, and W 3 be V +L -modules, and let M1 and M2 be
M�1�+-submodules of W 1 and W 2, respectively. Then we have a cononical
restriction map

IV +L

(
W 3

W 1 W 2

)
→ IM�1� +

(
W 3

M1 M2

)
�� �→ ��M1⊗M2 �
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If W 1 and W 2 are irreducible, then the restriction map is injective (see
[DL, Proposition 11.9]). Therefore we have

dim IV +L

(
W 3

W 1 W 2

)
≤ dim IM�1�+

(
W 3

M1 M2

)
� (1.2)

We also prove that all irreducible V +L -modules are completely reducible as
M�1�+-modules and that the multiplicity of each irreducible M�1�+-module
is at most one (see Proposition 3.2). Using this fact, (1.2), and fusion rules
for M�1�+ (see Theorem 2.7), we are able to prove that fusion rules for
V +L are zero or one.

The formula (1.2) also shows that for irreducible V +L -modules W 1�W 2,
and W 3, if there are M�1�+-submodules M1 of W 1 and M2 of W 2 such that
the fusion rule NW 3

M1 M2 forM�1�+ is zero, then the fusion rule NW 3

W 1 W 2 for V +L
is zero. For almost all of the irreducible V +L -modules W 1�W 2, and W 3 for
which the fusion rule NW 3

W 1 W 2 is zero, we can find such M�1�+-submodules
M1 of W 1 and M2 of W 2.

But there are irreducible V +L -modules W 1�W 2, and W 3 for which we
cannot find M�1�+-submodules M1 of W 1 and M2 of W 2 such that the
fusion rule NW 3

M1 M2 is zero, though the fusion rule NW 3

W 1 W 2 is zero (for exam-
ple, W 1 = V −L and W 2 = W 3 = V +α/2+L). In such cases, we first restrict
an intertwining operator � of corresponding type to M1 ⊗M2 for certain
irreducible M�1�+-submodules Mi of W i for i = 1� 2, and view � as an
intertwining operator for M�1�+. Next we show that � is zero by using the
explicit forms of intertwining operators for M�1�+.

The nonzero fusion rules are provided by constructing nonzero intertwin-
ing operators explicitly as before mentioned. The construction is treated
separately in the following two cases: one is the case that all modules are
of untwisted types, and the other is the case that some modules are of
twisted types.

Nontrivial intertwining operators for untwisted type modules were essen-
tially given in [DL] (see Section 3.4). More precisely, a nontrivial interwin-
ing operator �λµ for VL of type � Vλ+µ+L

Vλ+L Vµ+L� for λ�µ ∈ L◦ was constructed.
The intertwining operator �λµ gives a nonzero intertwining operator for V +L
of type � Vλ+µ+L

Vλ+L Vµ+L�. Since θ induces a V +L -module isomorphism from Vλ+L to
V−λ+L for λ ∈ L◦, the operator �λ�−µ ◦ θ defined by �λ�−µ ◦ θ�u� z�v =
�λ�−µ�u� z�θ�v� for u ∈ Vλ+L and v ∈ Vµ+L gives a nonzero intertwining
operator of type � Vλ−µ+L

Vλ+L Vµ+L�. Then all nonzero intertwining for untwisted
type modules are obtained as restrictions of �λµ or �λ�−µ ◦ θ.

Nonzero intertwining operators involving twisted type modules are
constructed as follows (see Section 3.4). Let λ ∈ L◦. In [A], we con-
struct a nonzero intertwining operator �θ for M�1�+ of type � M�1��θ�

M�1�λ� M�1��θ��
following [FLM]. We define a linear isomorphism ψλ of T 1 ⊕ T 2 which
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satisfies eαψλ = �−1��α�λ�ψλeα = ψλ+α, and define �̃ by �̃�u� z� =
�θ�u� z� ⊗ ψµ for µ ∈ λ + L and u ∈ M�1� µ�. Then for indices i and j

subject to �−1��λ�α�+δi� j+1 = 1, �̃ gives a nonzero intertwining opera-

tor of type
(

V
Tj
L

Vλ+L V
Ti
L

)
. All nonzero intertwining operators in this case are

obtained by restricting �̃ to irreducible V +L -modules and by using symmetry
of fusion rules (1.1).

The organization of this paper is as follows: We review definitions of
modules for a vertex operator algebra, fusion rules, and some related results
in Section 2.1. We recall the vertex operator algebras M�1�+ and V +L and
their irreducible modules in Section 2.2. In Section 2.3 we list the fusion
rules for M�1�+ and study the contragredient modules for V +L . In Section
3.1, we give the irreducible decompositions of irreducible V +L -modules as
M�1�+-modules and prove that the fusion rules for V +L are zero or one.
The main theorem is stated in Section 3.2 (Theorem 3.4). In Sections 3.3
and 3.4, we determine the fusion rules for untwisted type modules and ones
involving twisted type modules, respectively.

2. PRELIMINARIES

In Section 2.1, we recall the definition of g-twisted modules for a vertex
operator algebra and its automorphism g of finite order, intertwining oper-
ator, and fusion rule following [FLM, FHL, DMZ, DLM]. In Section 2.2,
we review the constructions of vertex operator algebras M�1�+, V +L and
their irreducible modules following [FLM, DL, DN1, DN2]. In Section 2.3,
we state the fusion rules for M�1�+ obtained in [A] (see Theorem 2.7)
and discuss the correspondence between irreducible V +L -modules and their
contragredient modules.

Throughout this paper, � is the set nonnegative integers and �+ is the
set of positive integers.

2.1. Modules, Intertwining Operators, and Fusion Rules

Let �V�Y� 1�ω� be a vertex operator algebra and g an automorphism of
V of order T . Then V is decomposed into the direct sum of eigenspaces
for g:

V =
T−1⊕
r=0

V r� V r = �a ∈ V � g�a� = e
−2πir
T a��

A g-twisted V -module is a �-graded vector space M = ⊕λ∈�M�λ� such
that each M�λ� is finite dimensional and for fixed λ ∈ ��M�λ+ n/T � = 0
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for a sufficiently small integer n, and equipped with a linear map

YM � V → � End M��z��
a �→ YM�a� z� =

∑
n∈�

aMn z
−n−1� �aMn ∈ End M�

such that these conditions hold for 0 ≤ r ≤ T − 1� a ∈ V r� b ∈ V� and u ∈M
YM�a� z� =

∑
n∈r/T+�

aMn z
−n−1� YM�a� z�v ∈ z−

r
T M��z���

× z−1
0 δ

(
z1 − z2

z0

)
YM�a� z1�YM�b� z2�

− z−1
0 δ

(
z2 − z1

−z0

)
YM�b� z2�YM�a� z1�

= z−1
2 δ

(
z1 − z0

z2

)(
z1 − z0

z2

)− r
T

YM�Y �a� z0�b� z2��

YM�1� z� = idM�

L�0�v = λv for v ∈M�λ��
where we set YM�ω� z� =

∑
n∈� L�n�z−n−2.

A g-twisted V -module is denoted by �M�YM� or simply by M . In the
case g is the identity of V , a g-twisted V -module is called a V -module. An
element u ∈M�λ� is called a homogeneous element of weight λ. We denote
the weight by λ = wt�u�. We write the component operator aMn �a ∈ V ,
n ∈ �� by an for simplicity.

For a V -module M , it is known that the restricted dual M ′ = ⊕λ∈�M�λ�∗
with the vertex operator Y ∗M�a� z� for a ∈ V defined by

�Y ∗M�a� z�u′� v� = �u′� YM�ezL�1��−z−2�L�0�a� z−1�v�
for u′ ∈M ′, v ∈M is a V -module (cf. [FHL, HL]). The V -module �M ′� Y ∗M�
is called the contragredient module ofM . The double contragredient module
�M ′�′ of M is naturally isomorphic to M , and therefore if M is irreducible,
then M ′ is also irreducible (see [FHL]).

Definition 2.1. Let V be vertex operator algebra and let �Mi�YMi�
�i = 1� 2� 3� be V modules. An intertwining operator for V of type

(
M3

M1 M2

)
is

a linear map �� M1 ⊗M2 →M3�z�, or equivalently,

�� M1 → �Hom�M2�M3���z��
v �→ ��v� z� = ∑

n∈�
vnz

n�vn ∈ Hom�M2�M3��



fusion rules 629

such that for a ∈ V� v ∈M1, and u ∈M2, following conditions are satisfied:

(1) For fixed n ∈ �, vn+ku = 0 for sufficiently large integer k,
(2) (The Jacobi identity)

z−1
0 δ

(
z1 − z2

z0

)
YM3�a� z1���v� z2�

− z−1
0 δ

(
z2 − z1

−z0

)
��v� z2�YM2�a� z1�

= z−1
2 δ

(
z1 − z0

z2

)
��YM1�a� z0�v� z2�� (2.1)

(3) �L�−1�-derivative property�
d

dz
��v� z� = ��L�−1�v� z�� (2.2)

The identity (2.1) implies the following commutator formula for n ∈ �,
a ∈ V and u ∈M1:

�an���u� z�� =
∞∑
i=0

(
n

i

)
��aiu� z�zn−i� (2.3)

The vector space which consists of all intertwining operators of type
(

M3

M1 M2

)
is denoted by IV

(
M3

M1 M2

)
. The dimension of the vector space IV

(
M3

M1 M2

)
is called

the fusion rule of corresponding type and denoted by NM3

M1 M2 . Fusion rules
have the following symmetry (see [FHL, HL]).

Proposition 2.2. Let Mi �i = 1� 2� 3� be V -modules. Then there exist nat-
ural isomorphisms

IV

(
M3

M1 M2

)
∼= IV

(
M3

M2 M1

)
and IV

(
M3

M1 M2

)
∼= IV

( �M2�′
M1 �M3�′

)
�

The following lemma is often used in later sections.

Lemma 2.3 ([DL, Proposition 11.9]). Let V be a vertex operator algebra,
and let M1 and M2 be irreducible V -modules and M3 a V -module. If � is
a nonzero intertwining operator of type

(
M3

M1 M2

)
, then ��u� z�v �= 0 for any

nonzero vectors u ∈M1 and v ∈M2.

As a direct consequence of Lemma 2.3, we have:

Corollary 2.4. Let V�Mi �i = 1� 2� 3� be as in Lemma 2.3, and let
U be a vertex operator subalgebra of V with same Virasoro element, Ni a
U-submodule of Mi for i = 1� 2. Then the restriction map

IV

(
M3

M1 M2

)
→ IU

(
M3

N1 N2

)
�� �→ ��N1⊗N2�



630 toshiyuki abe

is injective. In particular, we have

dim IV

(
M3

M1 M2

)
≤ dim IU

(
M3

N1 N2

)
�

Let V , Mi �i = 1� 2� 3�, U and Ni �i = 1� 2� be as in Corollary 2.4. Sup-
pose that M3 is decomposed into a direct sum of U-modules as M3 =
⊕i∈ILi. Then there is an isomorphism

IU

( ⊕i∈ILi

N1 N2

)
∼=⊕

i∈I
IU

(
Li

N1 N2

)
�

Therefore by Corollary 2.4, we have an inequality

dim IV

(
M3

M1 M2

)
≤∑

i∈I
dim IU

(
Li

N1 N2

)
� (2.4)

Another consequence of Lemma 2.3 is:

Lemma 2.5. Let V be a simple vertex operator algebra, and let M1 and
M2 be irreducible V -modules. If the fusion rule of type

(
M2

V M1

)
is nonzero, then

M1 and M2 are isomorphic to each other as V -modules.

Proof. Let � be an intertwining operator of type
(
M2

V M1

)
. Consider

the operator ��1� z�. By the L�−1�-derivative property (2.2), we see that
��1� z� is independent on z. Denote f= ��1� z� ∈ Hom�M1�M2�. Since V
is simple and M1 is irreducible, Lemma 2.3 implies that f is nonzero. By
(2.3), we have a commutation relation

�an� f � = �an���1� z�� =
∞∑
i=0

(
n

i

)
��ai1� z�zn−i = 0

for a ∈ V and n ∈ �. Hence f is a nonzero V -module homomorphism from
M1 to M2. Since M1 and M2 are irreducible, f is in fact an isomorphism.
Therefore M1 is ismorphic to M2.

2.2. Vertex Operator Algebra V +L and Its Irreducible Modules

We review the construction of the vertex operator algebra V +L and its
irreducible modules following [FLM, DL, D1, D2, DN2]. We also refer to
the vertex operator algebra M�1�+ and its irreducible modules (see also
[DN1]).

Let L be an even lattice of rank 1 with a nondegenerate positive definite
�-bilinear form �·� ·�, and � = �⊗� L. Then � has the nondegenerate sym-
metric �-bilinear form given by extending the form �·� ·� of L. Let ���� be
the group algebra of � with a basis �eλ�λ ∈ ��. For a subset M of �, set
��M� = ⊕λ∈M�eλ.
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Let �̂ = � ⊗ ��t� t−1� ⊕ �K be a Lie algebra with the commutation
relation given by �X ⊗ tm�X ′ ⊗ tn� = mδm+n�0�X�X ′�K� �K� �̂� = 0 for
X�X ′ ∈ �, and m�n ∈ �. Then �̂+ = �⊗��t� ⊕�K is subalgebra of �̂, and
the group algebra ���� becomes a �̂+-module by the action ρ�X ⊗ tn�eλ =
δn�0�X�λ�eλ and ρ�K�eλ = eλ for λ�X ∈ � and n ∈ �. It is clear that for a
subset M of � the subspace ��M� is a �̂+-submodule of ����. Set VM the
induced module of �̂ by ��M�

VM = U��̂� ⊗U��̂+� ��M� ∼= S��⊗ t−1��t−1�� ⊗ ��M� �linearly��
where U��� means the universal enveloping algebra of a Lie algebra �.
Denote the action of X ⊗ tn�X ∈ �� n ∈ �� on V� by X�n� and set X�z� =∑
n∈�X�n�z−n−1 for X ∈ �. For λ ∈ �, the vertex operator associated with

eλ is defined by

�◦�eλ� z� = exp
( ∞∑
n=1

λ�−n�
n

zn
)

exp
(
−

∞∑
n=1

λ�n�
n

z−n
)
eλz

λ�0�� (2.5)

where eλ in the right-hand side means the left multiplication of eλ ∈ ����
on the group algebra ����, and zλ�0� is an operator on V� defined
by zλ�0�u = z�λ�µ�u for µ ∈ � and u ∈ U��̂� ⊗U��̂+� �eµ. For v =
X1�−n1� · · ·X)�−n)�eλ ∈ V��Xi ∈ � and ni ∈ �+�, the corresponding
vertex operator is defined by

�◦�v� z� = ◦
◦ ∂

�n1−1�X1�z� · · · ∂�n)−1�X)�z��◦�eλ� z�◦◦� (2.6)

where ∂�n� = � 1
n!��d/dz�n, and the normal ordering ◦

◦ · ◦◦ is an operation
which reorders the operators so that X�n��X ∈ �� n < 0� and eλto be
placed to the left of X�n��X ∈ �� n ≥ 0� and zλ�0�. We extend �◦ to V� by
linearity. We denote Y �a� z� = �◦�a� z� when a is in VL.

Set L = �α with �α� α� = 2k for k ∈ �+, and L◦ = �λ ∈ � � �λ� α� ∈ ��,
the dual lattice of L. Let h = α/

√
2k be the orthonormal basis of � and set

1 = 1 ⊗ e0 and ω = �1/2�h�−1�2e0. Then �VL�Y� 1�ω� is a simple vertex
operator algebra with central charge 1 and for λ ∈ L◦, �Vλ+L�Y � is an
irreducible module for VL. Set M�1� = S�� ⊗ t−1��t−1�� ⊗ e0 ⊂ VL, then
�M�1�� Y� 1�ω� is a simple vertex operator algebra. If we set M�1� λ� =
U��̂� ⊗U��̂+� �eλ for each λ ∈ �, then �M�1� λ�� Y � becomes an irreducible
M�1�-module (see [D1, DL]).

Let θ be a linear isomorphism of V� defined by

θ�X1�−n1�X2�−n2� · · ·X)�−n)� ⊗ eλ�
= �−1�)X1�−n1�X2�−n2� · · ·X)�−n)� ⊗ e−λ�

for Xi ∈ �, n ∈ �+, and λ ∈ �. Then θ induces automorphisms of VL and
M�1�. For a θ-invariant subspace W of V�, we denote the ±1-eigenspaces of
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W for θ by W ±. Then �V +L �Y� 1�ω� and �M�1�+� Y� 1�ω� are vertex oper-
ator algebras. Furthermore M�1�± and M�1� λ� for λ �= 0 are irreducible
M�1�+-modules, and θ induces an M�1�+-module isomorphism between
M�1� λ� and M�1�−λ� (see [DN1]). As to V +L -modules, V ±L , V ±α/2+L, and
Vrα/2k+L for 1 ≤ r ≤ k − 1 are irreducible modules and θ induces a V +L -
module isomorphism between Vλ+L and V−λ+L for λ ∈ L◦ (see [DN2]).

Next we review the construction of θ-twisted VL-modules following
[FLM, D2]. Let �̂�−1� = �⊗ t1/2��t� t−1� ⊕ �K be a Lie algebra with the
commutation relation �X ⊗ tm�X ′ ⊗ tn� = mδm+n�0�X�X ′�K� �K� �̂�−1�� =
0 for X�X ′ ∈ � and m�n ∈ 1/2+ �. Then there is a one-dimensional mod-
ule for �̂�−1�+ = �⊗ t1/2��t� ⊕�K, which is identified with �, by defining
the representation ρ by ρ�X ⊗ tn�1 = 0 and ρ�K�1 = 1 for X ∈ � and
n ∈ 1/2 +�. Set M�1��θ� the induced �̂�−1�-module:

M�1��θ� = U��̂�−1�� ⊗U��̂�−1�+� � ∼= S��⊗− 1
2 ��t−1�� �linearly��

Denote the action of X ⊗ tn�X ∈ �� n ∈ 1/2 + �� on M�1��θ� by X�n�,
and set X�z� = ∑

n∈1/2+�X�n�z−n−1. For λ ∈ L◦ a twisted vertex operator
associated with eλ ∈ V� is defined by

�θ�eλ� z� = 2−�λ�λ�z−
�λ�λ�

2 exp
( ∑
n∈1/2+�

λ�−n�
n

zn
)

× exp
(
− ∑

n∈1/2+�

λ�n�
n

z−n
)
� (2.7)

For v = X1�−n1� · · ·X)�−n)�eλ ∈ VL◦ �Xi ∈ � and ni ∈ �+�, set

W θ�v� z� = ◦
◦ ∂

�n1−1�X1�z� · · · ∂�n)−1�X)�z��θ�vλ� z�◦◦� (2.8)

and extend it to VL◦ by linearity, where the normal ordering ◦
◦ · ◦◦ is an

operation which reorders so that X�n��X ∈ �� n < 0� to be placed to the
left of X�n��X ∈ �� n > 0�. Let cmn ∈ � be coefficients defined by the
formal, power series expansion

∑
m�n≥0

cmnx
myn = − log

( �1+ x�1/2 + �1+ y�1/2
2

)
�

and set 1z =
∑
m�n≥0 cmnh�m�h�n�z−m−n. Then the twisted vertex operator

associated to u ∈ VL◦ is defined by

�θ�u� z� = W θ�exp�1z�u� z�� (2.9)

If we write Yθ�a� z� = �θ�a� z� for a ∈ M�1�, the pair �M�1��θ�� Yθ� is
the unique irreducible θ-twisted M�1�-module.



fusion rules 633

Let T1 and T2 be irreducible ��L�-modules which eα acts as 1 and −1,
respectively, and set V Ti

L = M�1��θ� ⊗� Ti for i = 1� 2. For u ∈ M�1� β�
�β ∈ L�, the corresponding twisted vertex operator is defined by Yθ�u� z� =
�θ�u� z� ⊗ eβ. We extend Yθ to VL by linearity. Then

(
V
Ti
L � Y

θ
)�i = 1� 2�

are irreducible θ-twisted VL-modules. Note that V Ti
L has a θ-twisted M�1�-

module structure. Let ti be a basis of Ti for i = 1� 2. Then we have a
canonical θ-twisted M�1�-module isomorphism

φi �M�1��θ� → V
Ti
L � u �→ u⊗ ti for i = 1� 2� (2.10)

The action of the automorphism θ on M�1��θ� is defined by

θ�X1�−n1� · · ·X)�−n)�1� = �−1�)X1�−n1� · · ·X)�−n)�1�
for Xi ∈ �� ni ∈ 1/2 + �. Set M�1��θ�± the ±1-eigenspaces of M�1��θ�
for θ and V Ti�±

L the ±1-eigenspaces of V Ti
L for θ⊗ 1. Then M�1��θ�± and

V
Ti�±
L �i = 1� 2� become irreducible M�1�+-modules and irreducible V +L -

modules respectively (see [DN1, DN2]).
All irreducible M�1�+-modules and all irreducible V +L -modules are clas-

sified in [DN1, DN2].

Theorem 2.6. (1) ([DN1]) The set

�M�1�±�M�1��θ�±�M�1� λ��∼=M�1�−λ�� � λ ∈ �− �0�� (2.11)

gives all inequivalent irreducible M�1�+-modules.
(2) ([DN2]) The set{

V ±L � V
±
α/2+L� V

Ti�±
L � Vrα/2k+L � i = 1� 2� 1 ≤ r ≤ k− 1

}
(2.12)

gives all inequivalent irreducible V +L -modules.

We call irreducible modules V ±L � V
±
α/2+L, and Vrα/2k+L untwisted type mod-

ules, and call V Ti�±
L �i = 1� 2� twisted type modules. Here and further we

write λr = rα/2k for r ∈ �.

2.3. Fusion Rules for M�1�+ and Contragredient Modules for V +L
First we list the fusion rules for M�1�+ determined in [A]. The fusion

rules play central roles in determining fusion rules for V +L .

Theorem 2.7. ([A]) Let M1�M2, and M3 be irreducible M�1�+-modules.
Then the fusion rule NM3

M1 M2 is zero or one, and the fusion rule NM3

M1 M2 is zero
if and only if Mi�i = 1� 2� 3� satisfy the following cases:

(i) M1 =M�1�+ and M2 ∼=M3.
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(ii) M1 =M�1�− and the pair �M2�M3� is one of the following:

�M�1�±�M�1�∓�� �M�1��θ�±�M�1��θ�∓�� �M�1� λ��M�1� µ��
for λ�µ ∈ �− �0� such that �λ� λ� = �µ�µ��

(iii) M1 = M�1� λ� for λ ∈ � − �0� and the pair �M2�M3� is one of
the following:

�M�1�±�M�1� µ���M�1� µ��M�1�±� for µ ∈ �− �0�
such that �λ� λ� = �µ�µ��

�M�1� µ��M�1� ν�� for µ� ν ∈ �− �0� such that �ν� ν� = �λ± µ�λ± µ��
�M�1��θ�±�M�1��θ�±�� �M�1��θ�±�M�1��θ�∓��

(iv) M1 =M�1��θ�+ and the pair �M2�M3� is one of the following:

�M�1�±�M�1��θ�±�� �M�1��θ�±�M�1�±�� �M�1� λ��M�1��θ�±��
�M�1��θ�±�M�1� λ�� for λ ∈ �− �0��

(v) M1 =M�1��θ�− and the pair �M2�M3� is one of the following:

�M�1�±�M�1��θ�∓�� �M�1��θ�±�M�1�∓�� �M�1� λ��M�1��θ�±��
�M�1��θ�±�M�1� λ�� for λ ∈ �− �0��

Next we study the contragredient modules of irreducible V +L -modules.
We shall prove the following proposition.

Proposition 2.8. (i) If k is even, then all irreducible V +L -modules W
are self-dual; that is, W ∼= W ′ as V +L -modules.

(ii) If k is odd, then(
V ±α/2+L

)′ ∼= V
∓
α/2+L�

(
V
T1�±
L

)′ ∼= V
T2�±
L �

(
V
T2�±
L

)′ ∼= V
T1�±
L

and others are self-dual.

To prove this proposition, we recall the notion of Zhu’s algebra (see[Z]).
Let V be a vertex operator algebra. Zhu’s algebra A�V � associated with V
is a quotient space of V modulo the subspace O�V � spanned by

a ◦ b = Resz
�1+ z�wt�a�

z2 Y �a� z�b

for homogeneous element a ∈ V and b ∈ V . The product of A�V � is
induced from the bilinear map ∗ � V × V → V which is defined by

a ∗ b = Resz
�1+ z�wt�a�

z
Y �a� z�b
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TABLE I
Actions of o�ω�, o�J�, and o�E� on the Top Levels

V +
L V −

L Vλr+L�1 ≤ r ≤ k− 1� V +
α/2+1 V −

α/2+L

ω 0 1 r2/4k k/4 k/4
J 0 −6 �r2/2k�2 − r2/4k k4/4− k2/4 k4/4− k2/4
E 0 0 0 1 −1

V
T1�+
L V

T1�−
L V

T2 �+
L V

T2 �−
L

ω 1/16 9/16 1/16 9/16
J 3/128 −45/128 3/128 −45/128
E 2−2k+1 −2−2k+1�4k− 1� −2−2k+1 2−2k+1�4k− 1�

for homogeneous element a ∈ V and b ∈ V . Let M be an irreducible
V -module. Then there is a constant h ∈ � such that M has an eigenspace
decomposition M = ⊕n∈�Mn, Mn = �v ∈M � L�0�v = �h+ n�v� for n ∈ �.
We always assume that M0 �= 0. Define o�a�u = awt�a�−1u for a ∈ V and
u ∈ M . Then o induces an irreducible representation of A�V � on the top
level M0. Furthermore, two irreducible V -modules M and N are isomorphic
if and only if M0 and N0 are isomorphic A�V �-modules.

Now we return to our case: V = V +L . Suppose that k �= 1. Then Zhu’s
algebraA�V +L � is generated by three elements [ω], [J], and [E], where �a� =
a + O�V +L � ∈ A�V +L � for a ∈ V +L , and J = h�−1�41 − 2h�−3�h�−1�1 +
�3/2�h�−2�21 and E = eα + e−α (see [DN2]). Hence for an irreducible
V +L -module M , to find the irreducible module which is isomorphic to M ′,
it is enough to see the actions of [ω], [J], and [E] on the top level of M ′.
Since the top level of an irreducible V +L -module is one-dimensional when
k �= 1, they act on the top level as scalar multiples. By the construction of
irreducible V +L -modules, we have Table I.

Now we prove Proposition 2.8.

Proof of Proposition 2.8. First we consider the case k �= 1. Let W be an
irreducible V +L -module. Set the top level W0 = �v, and the top level of
the contragredient module W ′

0 = �v′. By the definition of a contragredient
module, if a ∈ V +L satisfies that L�0�a = wt�a�a and L�1�a = 0, we have
�o�a�v′� v� = �−1�wt�a��v′� o�a�v�, and hence

�o�ω�v′� v�= �v′� o�ω�v�� �o�J�v′� v� = �v′o�J�v��
�o�E�v′� v�= �−1�k�v′� o�E�v��

(2.13)

Therefore by Table I, we have Proposition 2.8 for k �= 1.
If k = 1, then the dimension of the top level �V −L �0 is 2 and others are

one. Hence we see that �V −L �′ ∼= V −L because the dimension of �V −L �′0 is 2.
Since for irreducible V +L -modules except V −L Table I is valid, we may apply
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same arguments of the case k �= 1 to such irreducible modules. Therefore
Table I and (2.13) show that

�V +L �′ ∼= V +L � �V ±α/2+L�′ ∼= V
∓
α/2+L�

(
V
T1�±
L

)′ ∼= V
T2�±
L �

(
V
T2�±
L

)′ ∼= V
T1�±
L �

This proves Proposition 2.8 for k = 1.

3. FUSION RULES FOR V +L

In Section 3.1, we give irreducible decompositions of irreducible V +L -
modules as M�1�+-modules, and prove that every fusion rule for V +L is
zero or one with the help of fusion rules for M�1�+. The main theorem
is stated in Section 3.2. The rest of section is devoted to the proof of the
theorem and it is divided into two cases: one is the case that all modules
are of untwisted types (Section 3.3) and the other is the case that some
irreducible modules are of twisted types (Section 3.4).

3.1. Irreducible Decompositions of Irreducible V +L -Modules as
M�1�+-Modules

Since Vλ+L =
⊕

m∈�M�1� λ + mα� for λ ∈ L◦ and M�1� µ� is an irre-
ducible M�1�+-module if µ �= 0, Vλr+L�1 ≤ r ≤ k − 1� is a completely
reducible M�1�+-module:

Vλr+L
∼= ⊕

m∈�
M�1� λr +mα�� (3.1)

For a nonzero λ ∈ �, we consider the subspace �M�1�+ ⊗ �eλ ± e−λ�� ⊕
�M�1�− ⊗ �eλ ∓ e−λ�� of M�1� λ� ⊕M�1�−λ�. Since the action of M�1�+
on M�1� λ� ⊕M�1�−λ� commutes the action of θ, the subspaces �M�1�+ ⊗
�eλ± e−λ��⊕ �M�1�− ⊗ �eλ∓ e−λ�� are M�1�+-submodules. In fact we have
the following lemma.

Lemma 3.1. For a nonzero λ ∈ �, M�1�+-submodules �M�1�+ ⊗ �eλ ±
e−λ�� ⊕ �M�1�− ⊗ �eλ ∓ e−λ�� of M�1� λ� ⊕M�1�−λ� are isomorphic to
M�1� λ�.
Proof. Define a linear map φλ by

φλ� �M�1�+⊗�eλ+e−λ��⊕�M�1�−⊗�eλ−e−λ��→M�1�λ�
u⊗�eλ+e−λ�+v⊗�eλ−e−λ� �→ �u+v�⊗eλ�

(3.2)

for u ∈ M�1�+ and v ∈ M�1�−. Then the linear map φλ is an injective
M�1�+-module homomorphism. Since M�1� λ� is irreducible for M�1�+,
the homomorphism is in fact an isomorphism. Hence M�1�+ ⊗ �eλ+ e−λ�⊕
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M�1�− ⊗ �eλ − e−λ� is isomorphic to M�1� λ� as M�1�+-module. We can
also prove that M�1�+ ⊗ �eλ + e−λ� ⊕M�1�− ⊗ �eλ + e−λ� is isomorphic to
M�1� λ� as M�1�+-module in the same way.

We give irreducible decompositions of irreducible V +L -modules for
M�1�+;

Proposition 3.2. Each irreducible V +L -module is decomposed into a
direct sum of irreducible M�1�+-modules as follows:

V ±L ∼=M�1�± ⊕
∞⊕
m=1

M�1�mα�� (3.3)

Vλr+L
∼= ⊕

m∈�
M�1� λr +mα� for 1 ≤ r ≤ k− 1� (3.4)

V ±α/2+L ∼=
∞⊕
m=0

M�1� α/2 +mα�� (3.5)

V
Ti�±
L

∼=M�1��θ�± for i = 1� 2� (3.6)

In particular, the multiplicity of an irreducible M�1�+-module in any irre-
ducible V +L -module is at most one.

Proof. The irreducible decompositions of Vλr+L �1 ≤ r ≤ k − 1� and
V
Ti�±
L �i = 1� 2� have already given by (3.1) and (2.10), respectively. We see

that V ±L and V ±α/2+L have direct sum decompositions

V ±L =
∞⊕
m=0

��M�1�+⊗�emα±e−mα��⊕�M�1�−⊗�emα∓e−mα����

V ±α/2+L=
∞⊕
m=0

��M�1�+⊗�e α
2+mα±e− α

2−mα��⊕�M�1�
−⊗�e α

2+mα∓e− α
2−mα����

Hence Lemma 3.1 shows that these direct sum decompositions give irre-
ducible decompositions of V ±L and V ±α/2+L. The second assertion is obvious
by Theorem 2.6 (1).

Using these irreducible decompositions (3.3)–(3.6), Theorem 2.7, and
Corollary 2.4, we can show that all fusion rules for V +L are at most one:

Proposition 3.3. Let W 1�W 2, and W 3 be irreducible V +L -modules. Then
the following hold.

(1) The fusion rule NW 3

W 1 W 2 is zero or one.

(2) If all W i �i = 1� 2� 3� are twisted type modules, then the fusion rule
NW 3

W 1 W 2 is zero.
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(3) If one of W i �i = 1� 2� 3� is twisted type module and others are of
untwisted types, then the fusion rule NW 3

W 1 W 2 is zero.

Proof. Suppose that W 1 and W 2 have irreducible M�1�+-submodules
M and N respectively and that W 3 has an irreducible decomposition W 3 =
⊕i∈IMi and M�1�+-module, where I is a index set. By (2.4), we have an
inequality

dim IV +L

(
W 3

W 1 W 2

)
≤∑

i∈I
dim IM�1�+

(
Mi

M N

)
� (3.7)

If W 1�W 2, and W 3 are of twisted types or if W 1 is of a twisted type
and W 2 and W 3 are of untwisted types, then by Theorem 2.7 (iv), (v), and
(3.3)–(3.6), we see that the fusion rule for M�1�+ of type

(
Mi

M N

)
is zero for

any i. Hence (3.7) implies that the fusion rule NW 3

W 1 W 2 is zero. Since the
contragredient module of an (un)twisted type module is of an (un)twisted
type, (2) and (3) follow from Proposition 2.2.

By �2�� �3�, and Proposition 2.2, to show (1), it suffices to prove that for
untwisted type modules W 1�W 2, and W 3 or for an untwisted type module
W 1 and twisted type modules W 2 and W 3 the fusion rule NW 3

W 1 W 2 is zero
or one.

If W 1 is of untwisted type module and W 2 and W 3 are of twisted types,
then by Theorem 2.7 (i)–(iii) and irreducible decompositions (3.3)–(3.6),
we see that the fusion rule for M�1�+of type

(
W 3

M W 2

)
is zero or one for any

irreducible M�1�+-submodules M of W 1. Hence Corollary 2.4 shows that
the fusion rule NW 3

W 1 W 2 is zero or one.
Now we turn to the case that all W i�i = 1� 2� 3� are of untwisted types.

We consider the following three cases separately; (i) W 1 = V ±L , (ii) W 1 =
V ±α/2+L, and (iii) W 1 = Vλr+L for 1 ≤ r ≤ k − 1. Let W 3 = ⊕iM

i be the
irreducible decomposition of W 3 for M�1�+. Then it suffices to prove that
the right-hand side (3.7) is at most one for some M�1�+-submodules M of
W 1 and N of W 2.

(i) W 1 = V ±L cases: Take M = M�1�±. By (3.3)–(3.5), we can take
N to be isomorphic to M�1� λ� for some λ ∈ L◦. Then by Theorem 2.7
(i) and (ii), the fusion rule for M�1�+ of type

(
Mi

M N

)
is one if and only if Mi

is isomorphic to M�1� λ�. Since the multiplicity of M�1� λ� in an untwisted
type module is at most one, we see that the right-hand side of (3.7) is zero
or one.

(ii) W 1 = V ±α/2+L case: Take M ∼= M�1� α/2�. If N is isomorphic to
M�1� λ� for some λ ∈ L◦, then by Theorem 2.7 (iii), we see that the fusion
rule for M�1�+ of type

(
Mi

M N

)
is one if and only if Mi is isomorphic to

M�1� λ+ α/2� or M�1� λ− α/2�. If W 2 = V ±α/2+L, then by taking λ = α/2,
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we see that the right-hand side of (3.7) is zero unless W 3 is V +L or V −L .
So these cases and the cases W 2 = V ±L reduce to the case (i) by means
of Proposition 2.2. Therefore, to prove (1) in the case W 1 = V ±α/2+L, it is
enough to consider the case W 2 = Vλr+L for some 1 ≤ r ≤ k − 1. Then
by taking λ = λr , we see that the right-hand side of (3.7) is zero unless
W 3 is Vλk−r+L. By Corollary 2.4 and Proposition 2.8, the fusion rules of type
� Vλk−r+L
V ±α/2+L Vλr+L

� are equal to those of types � �V ±α/2+L�′
Vλr+L Vλk−r+L

�. Hence we have to show

that the right-hand side of (3.7) is at most one when W 1 = Vλr+L, W 2 =
Vλk−r+L, and W 3 = �V ±α/2+L�′. We take M = M�1� λr� and N = M�1� λk−r�.
Since by Theorem 2.7 the fusion rule for M�1�+ of type

(
M�1�α/2+mα�

M N

)
is δm� 0

for m ∈ �, (3.5) shows that the the right-hand side of (3.7) is at most one.

(iii) W 1 = Vλr+L case for 1 ≤ r ≤ k − 1: By Proposition 2.2 and
the cases (i) and (ii), to prove (1) in this case, it suffices to consider the
case W 2 = Vλs+L for 1 ≤ s ≤ k − 1. Then we can take M = M�1� λr�
and N = M�1� λs�. Hence by Theorem 2.7 (iii), we see that the fusion
rule for M�1�+ of type

(
Mi

M N

)
is one if and only if Mi is isomorphic

to M�1� λr + λs� or M�1� λr − λs�. By (3.3)–(3.5), one sees that if both
M�1� µ� and M�1� ν� �µ� ν ∈ L◦� have multiplicity one in W 3, then
µ+ ν ∈ L or µ− ν ∈ L. But �λr + λs� + �λr − λs� and �λr + λs� − �λr − λs�
are not in L. Hence by (3.3)–(3.5), we see that the right-hand side of (3.7)
is zero or one.

3.2. Main Theorem

Here we state the main theorem. The proof is given in Sections 3.3
and 3.4:

Theorem 3.4. Let W 1�W 2, and W 3 be irreducible V +L -modules. Then (1)
the fusion rule NW 3

W 1 W 2 is zero or one and (2) the fusion rule NW 3

W 1 W 2 is one if
and only if W i�i = 1� 2� 3� satisfy following cases:

(I) The case that k is even.

(i) W 1 = V +L and W 2 ∼= W 3.

(ii) W 1 = V +L and the pair (W 2�W 3) is one of the following
pairs:

�V ±L � V ∓L �� �V ±α/2+L� V ∓α/2+L��
(
V
T1�±
L � V

T1�∓
L

)
�
(
V
T2�±
L � V

T2�∓
L

)
�

�Vλr+L� Vλr+L� for 1 ≤ r ≤ k− 1�
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(iii) W 1 = V +α/2+L and the pair (W 2�W 3) is one of the following
pairs:

�V ±L � V ±α/2+L�� �V ±α/2+L� V ±L ��
(
V
T1�±
L � V

T1�±
L

)
�
(
V
T2�±
L � V

T2�∓
L

)
�

�Vλr+L� Vα/2−λr+L� for 1 ≤ r ≤ k− 1�

(iv) W 1 = V −α/2+L and the pair (W 2�W 3) is one of the following
pairs:

�V ±L � V ∓α/2+L�� �V ±α/2+L� V ∓L ��
(
V
T1�±
L � V

T1�∓
L

)
�
(
V
T2�±
L � V

T2�±
L

)
�

�Vλr+L� Vα/2−λr+L� for 1 ≤ r ≤ k− 1�

(v) W 1 = Vλr+L for 1 ≤ r ≤ k − 1 and the pair (W 2�W 3) is
one of the following pairs:

�V ±L �Vλr+L���Vλr+L�V ±L ���V ±α/2+L�Vα/2−λr+L���Vα/2−λr+L�V ±α/2+L��
�Vλs+L�Vλr±λs+L� for 1≤s≤k−1 such that r±s �=0�k�(
V
T1�±
L �V

T1�±
L

)
�
(
V
T1�±
L �V

T1�∓
L

)
�
(
V
T2�±
L �V

T2�±
L

)
�
(
V
T2�±
L �V

T2�∓
L

)
if r is even�(

V
T1�±
L �V

T2�±
L

)
�
(
V
T1�±
L �V

T2�∓
L

)
�
(
V
T2�±
L �V

T1�±
L

)
�
(
V
T2�±
L �V

T1�∓
L

)
if r is odd�

(vi) W 1 = V
T1�+
L and the pair �W 2�W 3� is one of the following

pairs:(
V ±L � V

T1�±
L

)
�
(
V
T1�±
L � V ±L

)
�
(
V ±α/2+L� V

T1�±
L

)
�
(
V
T1�±
L � V ±α/2+L

)
�(

Vλr+L� V
T1�±
L

)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even,(

Vλr+L� V
T2�±
L

)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd�

(vii) W 1 = V
T1�−
L and the pair �W 2�W 3� is one of the following

pairs:(
V ±L � V

T1�∓
L

)
�
(
V
T1�±
L � V

∓
L

)
�
(
V ±α/2+L� V

T1�∓
L

)
�
(
V
T1�±
L � V

∓
α/2+L

)
�(

Vλr+L� V
T1�±
L

)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even,(

Vλr+L� V
T2�±
L

)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd.
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(viii) W 1 = V
T2�+
L and the pair �W 2�W 3� is one of the following

pairs:(
V ±L � V

T2�±
L

)
�
(
V
T2�±
L � V ±L

)
�
(
V ±α/2+L� V

T2�∓
L

)
�
(
V
T2�±
L � V

∓
α/2+L

)
�(

Vλr+L� V
T2�±
L

)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even,(

Vλr+L� V
T1�±
L

)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd�

(ix) W 1 = V
T2�−
L and the pair �W 2�W 3� is one of the following

pairs:(
V ±L � V

T2�∓
L

)
�
(
V
T2�±
L � V

∓
L

)
�
(
V ±α/2+L� V

T2�±
L

)
�
(
V
T2�±
L � V ±α/2+L

)
�(

Vλr+L� V
T2�±
L

)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even,(

Vλr+L� V
T1�±
L

)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd.

(II) The case that k is odd.

(i) W 1 = V +L and W 2 ∼= W 3.
(ii) W 1 = V −L and the pair (W 2�W 3) is one of the following pairs:

�V ±L � V ∓L �� �V ±α/2+L� V ∓α/2+L��
(
V
T1�±
L � V

T1�∓
L

)
�
(
V
T2�±
L � V

T2�∓
L

)
�

�Vλr+L� Vλr+L� for 1 ≤ r ≤ k− 1�

(iii) W 1 = V +α/2+L and the pair (W 2�W 3) is one of the following
pairs:

�V ±L � V ±α/2+L�� �V ±α/2+L� V ∓L ��
(
V
T1�±
L � V

T2�±
L

)
�
(
V
T2�±
L � V

T1�∓
L

)
�

�Vλr+L� Vα/2−λr+L� for 1 ≤ r ≤ k− 1�

(iv) W 1 = V −α/2+L and the pair (W 2�W 3) is one of the following
pairs:

�V ±L � V ∓α/2+L�� �V ±α/2+L� V ±L ��
(
V
T1�±
L � V T2�∓

)
�
(
V
T2�±
L � V

T1�±
L

)
�

�Vλr+L� Vα/2−λr+L� for 1 ≤ r ≤ k− 1�

(v) W 1 = Vλr+L for 1 ≤ r ≤ k − 1 and the pair �W 2�W 3� is one
of the following pairs:

�V ±L �Vλr+L���Vλr+L�V ±L ���V ±α/2+L�Vα/2−λr+L���Vα/2−λr+L�V ±α/2+L��
�Vλs+L�Vλr±λs+L� for 1≤s≤k−1 such that r±s �=0�k�(
V
T1�±
L �V

T1�±
L

)
�
(
V
T1�±
L �V

T1�∓
L

)
�
(
V
T2�±
L �V

T2�±
L

)
�
(
V
T2�±
L �V

T2�∓
L

)
if r is even�(

V
T1�±
L �V

T2�±
L

)
�
(
V
T1�±
L �V

T2�∓
L

)
�
(
V
T2�±
L �V

T1�±
L

)
�
(
V
T2�±
L �V

T1�∓
L

)
if r is odd�
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(vi) W 1 = V
T1�+
L and the pair �W 2�W 3� is one of the following

pairs:(
V ±L � V

T1�±
L

)
�
(
V
T2�±
L � V ±L

)
�
(
V ±α/2+L� V

T2�±
L

)
�
(
V
T1�±
L � V

∓
α/2+L

)
�(

Vλr+L� V
T1�±
L

)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even,(

Vλr+L� V
T2�±
L

)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd�

(vii) W 1 = V
T1�−
L and the pair �W 2�W 3� is one of the following

pairs:(
V ±L � V

T1�∓
L

)
�
(
V
T2�±
L � V

∓
L

)
�
(
V ±α/2+L� V

T2�∓
L

)
�
(
V
T1�±
L � V

∓
α/2+L

)
�(

Vλr+L� V
T1�±
L

)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even,(

Vλr+L� V
T2�±
L

)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd.

(viii) W 1 = V
T2�+
L and the pair �W 2�W 3� is one of the following

pairs:(
V ±L � V

T2�±
L

)
�
(
V
T1�±
L � V ±L

)
�
(
V ±α/2+L� V

T1�∓
L

)
�
(
V
T2�±
L � V ±α/2+L

)
�(

Vλr+L� V
T2�±
L

)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even,(

Vλr+L� V
T1�±
L

)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd.

(ix) W 1 = V
T2�−
L and the pair �W 2�W 3� is one of the following

pairs:(
V ±L � V

T2�∓
L

)
�
(
V
T1�±
L � V

∓
L

)
�
(
V ±α/2+L� V

T1�±
L

)
�
(
V
T2�±
L � V

∓
α/2+L

)
�(

Vλr+L� V
T2�±
L

)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even,(

Vλr+L� V
T1�±
L

)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd.

Since the assertion (1) of the main theorem has already been proved in
Proposition 3.3, to complete the proof of the theorem, it is enough to show
that for irreducible V +L -modules W 1, W 2, and W 3, the fusion rule NW 3

W 1 W 2 is
nonzero if and only if the triple (W 1�W 2�W 3) satisfy indicated cases in the
theorem. In Section 3.3, we prove this in the case that all W i (i = 1� 2� 3)
are untwisted type modules, and in Section 3.4 we do in the case that some
of W i (i = 1� 2� 3) are twisted type modules. To show the conditional part,
we shall construct nonzero intertwining operators explicitly.



fusion rules 643

3.3. Fusion Rules for Untwisted Type Modules

We construct nonzero intertwining operators for untwisted type modules.
For this purpose, we review intertwining operators for VL following [DL].

As shown in [FLM Chap. 8], the operator �◦ satisfies Jacobi identity
and L�−1�-derivative property on VL◦ for β ∈ L, λ ∈ L◦, a ∈M�1� β�, and
u ∈M�1� λ�:

z−1
0 δ

(
z1 − z2

z0

)
Y �a� z1��◦�u� z2� − �−1��β�λ�z−1

0 δ

(
z2 − z1

−z0

)
×�◦�u� z2�Y �a� z1� = z−1

2 δ

(
z1 − z0

z2

)
�◦�Y �a� z0�u� z2��

d

dz
�◦�u� z� = �◦�L�−1�u� z��

Let πλ�λ ∈ L◦� be the linear endomorphism of VL◦ defined by πλ�v� =
e�λ�µ�πiv for µ ∈ L◦ and v ∈ M�1� µ�. Set �r� s�u� z� = �◦�u� z�πλr �Vλs+L for
r, s ∈ � and u ∈ Vλr+L. Then the operator �r� s gives a nonzero intertwining
operator for VL of type � Vλr+λs+L

Vλr+L Vλs+L
� (see [DL]).

Proposition 3.5. The fusion rules for V +L of the following types are
nonzero:

(i) � V�λr±λs �+L
Vλr+L Vλs+L

� for 1 ≤ r, s ≤ k− 1,

(ii) � V ±L
V +L V ±L

�, � V
∓
L

V −L V ±L
� and � Vλr+L

V ±L Vλr+L
� for 0 ≤ r ≤ k− 1,

(iii) � V ±α/2+L
V +L V ±α/2+L

�, � V
∓
α/2+L

V −L V ±α/2+L
� and � V�α/2−λr �+L

V ±α/2+L Vλr+L
� for 0 ≤ r ≤ k− 1.

Proof. Since �VL�Y �, �Vα/2+L�Y �, and �Vλr+L�Y � �1 ≤ r ≤ k − 1� are
irreducible VL-modules, the vertex operator Y gives nonzero intertwining
operators for VL of types(

VL
VL VL

)
�

(
Vα/2+L

VL Vα/2+L

)
� and

(
Vλr+L

VL Vλr+L

)
for 1 ≤ r ≤ k − 1. Hence Y �a� z�u is nonzero for any nonzero vectors
a ∈ VL and u ∈ Vλs+L�s ∈ �� by Corollary 2.4. Therefore, since θY �a� z�θ =
Y �θ�a�� z� for a ∈ VL, Y gives nonzero intertwining operators for V +L of
types(

V ±L
V +L V ±L

)
�

(
V
∓
L

V −L V ±L

)
�

(
V ±α/2+L

V +L V ±α/2+L

)
�

(
V
∓
α/2+L

V −L V ±α/2+L

)
� and

(
Vλr+L

V ±L Vλr+L

)
for 1 ≤ r ≤ k− 1.
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Next we show that fusion rules of types � V�λr±λs �+L
Vλr+L Vλs+L

� for r, s ∈ � are
nonzero. Define �r�−s ◦ θ by ��r�−s ◦ θ��u� z�v = �r�−s�u� z�θ�v� for u ∈
Vλr+L and v ∈ Vλs+L. Then �r� s is a nonzero intertwining operator for V +L
of type � V�λr−λs �+L

Vλr+L Vλs+L
� since θ commutes the action of V +L . This proves that

fusion rules of types � V�λr±λs �+L
Vλr+L Vλs+L

� are nonzero for any r, s ∈ �.
Finally we show that fusion rules of type � V�α/2−λr �+L

V ±α/2+L Vλr+L
� for r ∈ � are

nonzero. Since Vα/2+L is an irreducible VL-module, Corollary 2.4 shows
that �k� r�u� z�v is nonzero for any nonzero vectors u ∈ Vα/2+L and
v ∈ Vλr+L. Hence ��k�−r ◦ θ��u� z�v is also nonzero for any nonzero vec-
tors u ∈ Vα/2+L and v ∈ Vλr+L. Therefore, �k�−r ◦ θ gives a nonzero
intertwining operator of type � V�α/2−λr �+L

V ±α/2+L Vλr+L
�.

Next we show that if W i�i = 1� 2� 3� are of untwisted types and the fusion
rule NW 3

W 1W 2 is nonzero, then
(

W 3

W 1 W 2

)
is one of the types in Proposition 3.5.

To prove this, by Proposition 2.2, it suffices to prove the following
proposition.

Proposition 3.6. Let W 1, W 2, and W 3 be untwisted type modules. Then
the fusion rule NW 3

W 1W 2 is zero if W i�i = 1� 2� 3� satisfy the following cases:

(i) W 1 = V +L , and W 2, W 3 are not equivalent.
(ii) W 1 = V −L and the pair (W 2�W 3) is one of the following pairs:

�W 2�W 3� = �V −L � V −L �� �V ±α/2+L� V ±α/2+L��
�Vλr+L� Vλs+L� for 1 ≤ r� s ≤ k− 1 such that r �= s�

�V −L � Vλr+L�� �V ±α/2+L� Vλr+L� for 1 ≤ r ≤ k− 1�

(iii) W 3 = V ±α/2+L and the pair �W 2�W 3� is one of the following pairs:

�W 2�W 3� = �Vλr+L� Vλs+L� for 1 ≤ r� s ≤ k− 1 such that r + s �= k�

�V ±α/2+L� Vλr+L� and 1 ≤ r ≤ k− 1�

(iv) W 1 = Vλr+L for 1 ≤ r ≤ k − 1 and the pair �W 2�W 3� is one of
the following pairs:

�W 2�W 3� = �Vλs+L� Vλt+L� for 1 ≤ s� t ≤ k− 1 such that t �= �r ± s��
Proof. Lemma 2.5 proves the proposition in the case (i).
Next we show the proposition in the cases (ii) except the pairs

�V ±α/2+L� V ±α/2+L�, (iii), and (iv). Let W 3 = ⊕iM
i be the irreducible

decomposition of W 3 for M�1�+. Then we can find irreducible M�1�+-
submodules M of W 1 and N of W 3 such that the fusion rule for M�1�+
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of type
(
Mi

M N

)
is zero for any Mi. Hence (3.7) implies that the fusion rule

NW 3

W 1W 2 is zero; for example, in the case W 1 = W 2 = W 3 = V −L , we take
M = N =M�1�−, etc.

It remains to prove the assertion in the cases �W 2�W 3� = �V ±α/2+L� V ±α/2+L�
of (ii). We show that fusion rule of type

( V +α/2+L
V −L V +α/2+L

)
is zero. The case of type( V −α/2+L

V −L V −α/2+L

)
can be also proved in a similar way.

Set

V +α/2+L�m�=M�1�+⊗�e α
2+mα+e−� α2+mα��⊕M�1�

−⊗�e α
2+mα−e−� α2+mα���

(3.8)
for m ∈ �. Note that V +α/2+L�m� is isomorphic to M�1� α/2 + mα� as
M�1�+-module by Lemma 3.1. Let � be an intertwining operator of
type

( �V +α/2+L
V −L V +α/2+L�

)
. By Theorem 2.7 (ii), we have ��u� z�v ∈ V +α/2+L�0���z��

for u ∈ M�1�− and v ∈ V +α/2+L�0�. Recall the M�1�+-module isomor-
phism φα/2� V +α/2+L�0� → M�1� α/2� defined in (3.2). For simplic-
ity, we denote φ = φα/2. Then the operator φ ◦ � ◦ φ−1 defined by
�φ ◦� ◦φ−1��u� z�v = φ��u� z�φ−1�v� for u ∈M�1�− and v ∈M�1� α/2�
gives an intertwining operator of type

( �M�1�α/2�
M�1�− M�1�α/2�

)
. Since the dimension

of IM�1�+
( M�1�α/2�
M�1�− M�1�α/2�

)
is one and the corresponding intertwining operator

is given by a scalar multiple of the vertex operator Y of the M�1�-module
�M�1� α/2�� Y �, there exists a constant d ∈ � such that

��u� z�v = dφ−1Y �u� z�φ�v�
for all u ∈ M�1�− and v ∈ V +α/2+L[0]. We write ��u� z� = ∑

n∈� ũ�n�z−n−1,
ũ�n� ∈ End V +α/2+L for u ∈ V −L . Take u = h�−1�1 and v = eα/2 + e−α/2,
then we have

h̃�0��eα
2
+ e− α

2
� = d

〈
h�
α

2

〉
�e α

2
+ e− α

2
�� (3.9)

h̃�−1��e α
2
+ e− α

2
� = d�h�−1�eα

2
− h�−1�e− α

2
�� (3.10)

where we denote � ˜h�−1�1��n� by h̃�n� for n ∈ �. By direct calculations, we
see that

Ek−1�e α
2
+ e− α

2
� = �eα

2
+ e− α

2
�� (3.11)

Ek�h�−1�e α
2
− h�−1�e− α

2
� = �h� α��e α

2
+ e− α

2
�� (3.12)

where E = eα + e−α ∈ V +L . Let F = eα − e−α ∈ V −L . Then by the commuta-
tor formula 2.3, we have a commutation relation

�Em� h̃�n�� = −�h� α�F̃�m+ n� (3.13)
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for m�n ∈ �. Hence (3.9) and (3.11) imply that F̃�k− 1��eα/2 + e−α/2� = 0
(take m = k− 1, n = 0 in (3.13)). On the other hand, by (3.10) and (3.12)
we have

−�h� α�F̃�k− 1��eα
2
+ e− α

2
� = �Ek� h̃�−1���eα

2
+ e− α

2
�

= d�h� α��eα
2
+ e− α

2
��

(take m = k, n = −1 in (3.13)). Therefore d = 0. This implies that
��h�−1�1� z��eα/2 + e−α/2� = 0, and then Lemma 2.3 shows � = 0. Thus

the fusion rule of type
( V +α/2+L
V −L V +α/2+L

)
is zero.

Consequently, by Propositions 2.2, 2.8, 3.3, 3.5, and 3.6, we can determine
fusion rules for untwisted type modules.

Proposition 3.7. Let W 1, W 2, and W 3 be untwisted type V +L -modules.
Then the fusion rule NW 3

W 1W 2 is zero or one. The fusion rule NW 3

W 1W 2 is one if
and only if W i�i = 1� 2� 3� satisfy the following cases:

(i) W 1 = V +L , and W 2 ∼= W 3.
(ii) W 1 = V −L and the pair (W 2�W 3) is one of the following pairs:

�V ±L � V ∓L �� �V ±α/2+L� V ∓α/2+L�� �Vλr+L� Vλr+L� for 1 ≤ r ≤ k− 1�

(iii) W 1 = V +α/2+L and the pair �W 2�W 3� is one of the following pairs:

�V ±L � V ±α/2+L�� ��V ±α/2+L�′� V ±L �� �Vλr+L� Vα/2−λr+L� for 1 ≤ r ≤ k− 1�

(iv) W 1 = V −α/2+L and the pair �W 2�W 3� is one of the following pairs:

�V ±L � V ∓α/2+L�� ��V ±α/2+L�′� V ∓L �� �Vλr+L� Vα/2−λr+L� for 1 ≤ r ≤ k− 1�

(v) W 1 = Vλr+L for 1 ≤ r ≤ k − 1 and the pair �W 2�W 3� is one of
the following pairs:

�V ±L � Vλr+L�� �Vλr+L� V ±L �� �V ±α/2+L� Vα/2−λr+L�� �Vα/2−λr+L� V ±α/2+L��
�Vλs+L� Vλr±λs+L� for 1 ≤ s ≤ k− 1�

3.4. Fusion Rules Involving Twisted Type Modules

Set �L = L◦ × �1� 2� × �1� 2�. We call �λ� i� j� ∈ �L a quasi-admissible
triple if λ, i, and j satisfy

�−1��λ�α�+δi� j+1 = 1�

We denote the set of all quasi-admissible triples by 	L. For a quasi-
admissible triple �λ� i� j� ∈ 	L, we first construct an intertwining operator

for V +L of type
( V

Tj
L

Vλ+L V
Ti
L

)
.
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As shown in [FLM, Chap. 9], the operator �θ satisfies twisted Jacobi
identity

z−1
0 δ

(
z1 − z2

z0

)
�θ�a� z1��θ�u� z2�

− �−1��β�λ�z−1
0 δ

(
z2 − z1

−z0

)
�θ�u� z2��θ�a� z1�

= 1
2
∑

p=0� 1

z−1
2 δ

(
�−1�p �z1 − z0�1/2

z
1/2
2

)
�θ�Y �θp�a�� z0�u� z2�� (3.14)

and L�−1�-derivative property

d

dz
�θ�u� z� = �θ�L�−1�u� z� (3.15)

for β ∈ L, λ ∈ L◦, a ∈ M�1� β�, and u ∈ M�1� λ�. Then we have the
following lemma.

Lemma 3.8. (1) The intertwining operator �θ gives nonzero intertwining
operators of types(

M�1��θ�±
M�1� λ� M�1��θ�±

)
�

(
M�1��θ�∓

M�1� λ� M�1��θ�±
)

for λ ∈ L◦�

(2) Define �θ ◦ θ by ��θ ◦ θ��u� z� = �θ�θ�u�� z� for u ∈ VL◦ . Then
�θ ◦ θ gives nonzero intertwining operators for M�1�+ of types � M�1��θ�

M�1�λ� M�1��θ�±�.
Moreover restrictions of �θ and �θ ◦ θ to M�1� λ� ⊗M�1��θ�± form a basis
of the vector space I� M�1��θ�

M�1�λ� M�1��θ�±�.

Proof. The assertion (1) is proved in [A, Proposition 4.4]. Next we
show (2). Clearly �θ ◦ θ gives nonzero intertwining operators of types
� M�1��θ�
M�1�λ� M�1��θ�±�. Since θ�θ�u� z�θ�v� = �θ�θ�u�� z�v for u ∈ M�1� λ� and
v ∈M�1��θ�, we have

p±���θ ◦ θ��u� z�v� = ±p±��θ�u� z�θ�v�� for u ∈M�1� λ�
and v ∈M�1��θ�±�

where p± is the canonical projection from M�1��θ� to M�1��θ�±, respec-
tively. Hence by Lemma 2.3 and (1), we see that �θ and �θ ◦ θ are linearly
independent in the vector spaces I� M�1��θ�

M�1�λ� M�1��θ�±�. Since the fusion rules of
types � M�1��θ�

M�1�λ� M�1��θ�±� are 2 by Theorem 3.4, �θ and �θ ◦ θ in fact form a
basis of I� M�1��θ�

M�1�λ� M�1��θ�±�. This proves (2).
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Set T = T 1 ⊕ T 2 the direct sum of the irreducible ��L�-modules T 1 and
T 2, and define a linear isomorphism ψ ∈ End T by ψ�t1� = t2, ψ�t2� = t1,
where ti is a basis of T i for i = 1� 2. For λ ∈ L◦, we write λ = rα/2k+mα
for −k+ 1 ≤ r ≤ k and m ∈ �, and define ψλ ∈ End T by

ψλ = emα ◦ ψ ◦ · · · ◦ ψ�︸ ︷︷ ︸
r

Set �̃�u� z� = �θ�u� z� ⊗ ψλ for λ ∈ L◦ and u ∈ M�1� λ�, and extend it to
VL◦ by linearity. Then we have following proposition.

Proposition 3.9. (1) For λ ∈ L◦, the linear map ψλ has following
properties:

eβ ◦ ψλ = �−1��β�λ�ψλ ◦ eβ = ψλ+β for all β ∈ L�
(2) For a ∈ VL and u ∈ Vλ+L, we have

z−1
0 δ

(
z1 − z2

z0

)
Yθ�a� z1��̃�u� z2� − δ

(
z2 − z1

−z0

)
�̃�u� z2�Yθ�a� z1�

= 1
2
∑

p=0� 1

z−1
2 δ

(
�−1�p �z1 − z0�1/2

z
1/2
2

)
�̃�Y �θp�a�� z0�u� z2�

and

d

dz
�̃�u� z� = �̃�L�−1�u� z��

Proof. Since eα ◦ ψ = −ψ ◦ eα, we have emα ◦ ψr = �−1�mrψr ◦ emα for
m� r ∈ �. Therefore ψλ�λ ∈ L◦� satisfies eβ ◦ ψλ = �−1��β�λ�ψλ ◦ eβ and
eβ ◦ ψλ = ψλ+β for β ∈ L. This proves (1). Then the assertion (2) follows
from (3.14), (3.15), and (1).

We note that for each quasi-admissible triple �λ� i� j� ∈ 	L, ψλ�T i� = T j .
Thus we have:

Proposition 3.10. Let �λ� i� j� ∈ 	L be an admissible triple. The restric-

tion of �̃ to Vλ+L⊗ V Ti
L gives an intertwining operator for V +L of type � V

Tj
L

Vλ+L V
Ti
L

�.

Now we have some nonzero intertwining operators by restricting �̃ to
irreducible V +L -modules.

Proposition 3.11. The fusion rules for V +L of following types are nonzero:

(i) � V
Tj �±
L

Vλr+L V
Ti�±
L

�, � V
Tj �∓
L

Vλr+L V
Ti�±
L

� for r ∈ � and �λr� i� j� ∈ 	L,
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(ii) � V
Ti�±
L

V +L V
Ti�±
L

�, � V
Ti�∓
L

V −L V
Ti�±
L

� for i ∈ �1� 2�,

(iii) � V
T1�±
L

V +α/2+L �V T1�±
L �′�, �

V
T2 �∓
L

V +α/2+L �V T2 �±
L �′�, �

V
T1�∓
L

V −α/2+L �V T1�±
L �′�, �

V
T2 �±
L

V −α/2+L �V T2 �±
L �′�.

Proof. By Lemma 3.8 and Proposition 3.10, we see that �̃ gives nonzero

intertwining operators of types � V
Tj �±
L

Vλr+L V
Ti�±
L

� and � V
Tj �∓
L

Vλr+L V
Ti�±
L

� for r ∈ � and
�λr� i� j� ∈ 	L.

Next we show that fusion rules of types in (ii) and (iii) are nonzero.
By Lemma 3.8 (2) and Corollary 2.4, �θ�u ± θ�u�� z�v = ��θ ± �θ ◦ θ�
�u� z�v are nonzero for any nonzero vectors u ∈ M�1� λ��λ ∈ L◦� and
v ∈M�1��θ�±. Thus by Proposition 3.10, we see that �̃ give nonzero inter-
twining operators of types(

V
Ti
L

V +L V
Ti�±
L

)
�

(
V
Ti
L

V −L V
Ti�±
L

)
�

(
V
Ti
L

V +α/2+L
(
V
Ti�±
L

)′ )�
(

V
Ti
L

V −α/2+L
(
V
Ti�±
L

)′ ) for i ∈ �1� 2��

By the definition of ψλ�λ ∈ L◦�, we have

ψ−mα = ψmα�ψ−�α/2+mα� = e−αψα/2+mα for m ∈ �� (3.16)

Since θ�̃�u� z�θ = �θ�θ�u�� z� ⊗ψλ for λ ∈ L◦ and u ∈M�1� λ�, by (3.16)
we have

θ�̃�u� z�θ = �̃�θ�u�� z� for u ∈ VL�
θ�̃�u� z�θ = eα�̃�θ�u�� z� for u ∈ Vα/2+L�

This proves that �̃ gives nonzero intertwining operators of types indi-
cated in (ii) and (iii) in the proposition; for instance, for u ∈ V +α/2+L and
v ∈ (V T2�−

L

)′, we have

θ�̃�u� z�v = eα�̃�θ�u�� z�θ�v�
= �̃�u� z�v�

Hence �̃�u� z�v ∈ V T2�+
L �z�. Thus �̃ gives a nonzero intertwining opera-

tor of type
(

V
T2 �+
L

V +α/2+L �V
T2 �−
L �′

)
.

We shall show the following proposition. The proof is given after
Proposition 3.13.
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Proposition 3.12. (1) For i� j ∈ �1� 2�, the fusion rules of types(
V
Tj
L

V ±L V
Ti�±
L

)
and

(
V
Tj
L

V ±L V
Ti�∓
L

)
are zero if i �= j.

(2) For 1 ≤ r ≤ k− 1 and i� j ∈ �1� 2�, the fusion rules of types(
V
Tj
L

Vλr+L V
Ti�±
L

)
are zero if �−1�r+δi� j+1 �= 1.

(3) For i� j ∈ �1� 2�, the fusion rules of types(
V
Tj
L

V ±α/2+L V
Ti�±
L

)
and

(
V
Tj
L

V ±α/2+L V
Ti�∓
L

)
are zero if �−1�k+δi� j+1 �= 1.

To prove Proposition 3.12, we need the following proposition.

Proposition 3.13. Let W be an irreducible V +L -module and suppose
that W contains an M�1�+-submodule isomorphic to M�1� λ� for some
λ ∈ Lo. If �λ� i� j� ∈ �L is not a quasi-admissible triple, then fusion rules

of types
(

V
Tj
L

W V
Ti�±
L

)
are zero.

Proof. Let W be an irreducible V +L -module, let N be an M�1�+-
submodule of W isomorphic to M�1� λ�, and let f be an M�1�+-
isomorphism from M�1� λ� to N . Consider an intertwining operator

� ∈ IV +L
(

V
Tj
L

W V
Ti� ε

L

)
for i� j ∈ �1� 2� and ε ∈ �±�. We have to prove that

� = 0 if �−1��α�λ�+δi� j+1 �= 1.
The restrictions of � to N ⊗ V

Ti� ε
L give an intertwining operator for

M�1�+ of type
(

V
Tj
L

N V
Ti� ε

L

)
. Set

#��u� z� = φ−1
j ��f �u�� z�φi for u ∈M�1� λ��

Then #� is an intertwining operator for M�1�+ of type � M�1��θ�
M�1�λ� M�1��θ�ε�. By

Lemma 3.8 (2), for any u ∈ M�1� λ�, #��u� z� is a linear combination of
�θ�u� z� and �θ�θ�u�� z�. By (3.14), we have

z−1
0 δ

(
z1−z2

z0

)
�θ�E�z1��θ�e±λ�z2�−�−1��α�λ�z−1

0 δ

(
z2−z1

−z0

)
×�θ�e±λ�z2��θ�E�z1�=z−1

2 δ

(
z1−z0

z2

)
�θ�Y �E�z0�e±λ�z2�� (3.17)
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where E = eα + e−α ∈ V +L . Hence one has

�z1−z2�M�θ�E�z1��θ�e±λ�z2�=�−1��α�λ��z1−z2�M�θ�e±λ�z2��θ�E�z1�
for a sufficiently large integer M , and then

�z1 − z2�M�θ�E� z1� #��eλ� z2�
= �−1��α�λ��z1 − z2�M #��eλ� z2��θ�E� z1�� (3.18)

(3.18) is an identity on M�1��θ�ε. We next derive an identity on V
Ti� ε
L

from (3.18). Since e±α ∈ ��L� act on V
Ti
L (i = 1� 2) as the scalar �−1�δ1�2 ,

we have

e±αφj #��u� z�φ−1
i = �−1�δi� j+1φj #��u� z�φ−1

i e±α

for u ∈ M�1� λ�. And Yθ�E� z� acts on V
Ti
L �i = 1� 2� as �θ�E� z� ⊗ eα.

Hence by (3.18), we have

�z1 − z2�MYθ�E� z1���f �eλ�� z2�
= �−1��α� λ�+δi� j+1�z1 − z2�M��f �eλ�� z2�Yθ�E� z1� (3.19)

for a sufficiently large integer M . On the other hand, since � is an inter-

twining operator for V +L of type
(

V
Tj
L

W V
Ti� ε

L

)
, Jacobi identity (2.1) shows that

�z1 − z2�MYθ�E� z1���f �eλ�� z2� = �z1 − z2�M��f �eλ�� z2�Yθ�E� z1�
for a sufficiently large integer M . Therefore by (3.19) and (3.20), if
�−1��α� λ�+δi� j+1 �= 1, then

�z1 − z2�M��f �eλ�� z2�Yθ�E� z1�u = 0 (3.20)

for a nonzero u ∈ V Ti� ε
L and a sufficiently large integer M . Since there is an

integer n0 such that En0
u �= 0 and Enu = 0 for all n > n0, by multiplying zn0

1
and taking Resz1

on both sides of (3.20), we have zM2 ��f �eλ�� z2�En0
u = 0.

Hence Lemma 2.3 implies that � = 0.

Now we prove Proposition 3.12.

Proof of Proposition 3�12� By the irreducible decompositions (3.3)–
(3.5), we see that Vλr+L contains M�1� λr� for 1 ≤ r ≤ k − 1, that V ±α/2+L
contains an M�1�+-submodule isomorphic to M�1� α/2�, and that V ±L con-
tains an M�1�+-submodule isomorphic to M�1� α�. Hence Proposition 3.12
follows from Proposition 3.13.

Finally, we prove the following proposition:
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Proposition 3.14. (1) For i ∈ �1� 2�, the fusion rules of types(
V
Ti�∓
L

V +L V
Ti�±
L

)
and

(
V
Ti�±
L

V −L V
Ti�±
L

)
are zero.

(2) The fusion rules of types(
V
T1�∓
L

V +α/2+L
(
V
T1�±
L

)′ )�( V
T2�±
L

V +α/2+L
(
V
T2�±
L

)′ )�( V
T1�±
L

V −α/2+L
(
V
T1�±
L

)′ )�
(

V
T2�∓
L

V −α/2+L
(
V
T2�±
L

)′ )
are zero.

Proof. Since V ±L contains the irreducible M�1�+-module M�1�±
and the fusion rules of types � M�1��θ�∓

M�1�+ M�1��θ�±� and � M�1��θ�±
M�1�− M�1��θ�±� are zero

by Theorem 2.7 (i) and (ii), (1) follows from Corollary 2.4.

Next we prove that the fusion rules of types � V
T1�∓
L

V +α/2+L �V T1�±
L �′� and � V

T2 �±
L

V +α/2+L �V T2 �±
L �′�

are zero. The assertion (2) for types � V
T1�±
L

V −α/2+L �V T1�±
L �′� and � V

T2 �∓
L

V −α/2+L �V T1�±
L �′� can be

also proved in a similar way.
By Proposition 3.11 (iii), for i ∈ �1� 2� and ε ∈ �±�, there exists ε′ ∈ �±�

such that the fusion rule of type � V
Ti� ε

′
L

V +α/2+L �V Ti� εL �′� is nonzero. Let �τ� ε′� = �±�.
Then we have to prove that the fusion rule of type � V

Ti� τ
L

V +α/2+L �V Ti� εL �′� is zero. To

show this, we prove that the projection(
V
Ti
L

V +α/2+L
(
V
Ti� ε
L

)′ )→ (
V
Ti� ε

′
L

V +α/2+L
(
V
Ti� ε
L

)′ )�� �→ pε′ ◦�

is injective, where pε′ are the canonical projections from V
Ti
L to V

Ti� ε
′

L

and pε′ ◦ � is the intertwining operator defined by �pε′ ◦ ���u� z�v =
pε′ ���u� z�v� for u ∈ V +α/2+L and v ∈ �V Ti� ε

L �′. To prove this, it is enough
to prove that an arbitrary nonzero intertwining operator � of type( V

Ti
L

V +α/2+L �V Ti� ε

L �′
)

satisfies

θ��eα/2 + e−α/2� z�θ = �−1�δi� 2��eα/2 + e−α/2� z�� (3.21)

Actually if � is a nonzero intertwining operator of the indicated type
satisfying (3.21), then pε′ ���eα/2 + e−α/2� z�v� = ��eα/2 + e−α/2� z�v for
v ∈ �V Ti� ε

L �′, and then pε′ ◦� is nonzero by Corollary 2.4.
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Let V
Tj
L = �V Ti

L �′, and let V +α/2+L�0� be as of (3.8). Then � gives an inter-

twining operator for M�1�+ of type
( V

Ti
L

V +α/2+L�0� V Tj� ε

L

)
. Thus by Lemma 3.8 (2),

we see that IM�1�+
( V

Tj
L

V +α/2+L�0� V Ti� ε
L

)
is spanned by intertwining operators �±

defined by

�±�u� z� = φi�
θ�φ±α/2�u�� z�φ−1

j for u ∈ V +α/2+L�0�� (3.22)

Hence there exist constants c1� c2 ∈ � such that

��u� z� = c1�
+�u� z� + c2�−�u� z� (3.23)

for all u ∈ V +α/2+L�0�. Now for β ∈ �, set

exp
( ∞∑
n=0

β�−n�
n

zn
)
=

∞∑
n=0

pn�β�zn ∈ �EndVL◦ ���z���

Then we have E0�e α
2
+ e− α

2
� = pk−1�α�e α

2
+pk−1�−α�e− α

2
∈ V +α/2+L�0�, and

hence

φα
2
�E0�e α

2
+ e− α

2
�� = pk−1�α�e α

2
� φ− α

2
�E0�e α

2
+ e− α

2
�� = pk−1�−α�e− α

2
�

Thus by (3.22) and (3.23), we have

�E0���eα
2
+ e− α

2
� z�� = ��E0�e α

2
+ e− α

2
�� z�

= φi�c1�θ�pk−1�α�e α
2
� z�

+ c2�θ�pk−1�−α�e− α
2
� z��φ−1

j � (3.24)

On the other hand, (3.17) shows that

�E0� φi�
θ�e± α

2
� z�φ−1

j � = eαφi�
θ�E0�e± α

2
�� z�φ−1

j

= �−1�δi�2φi�θ�pk−1�∓α�e∓ α
2
� z�φ−1

j �

Hence by (3.22) and (3.23) again, we have

�E0���eα
2
+ e− α

2
� z�� = �−1�δi�2c1��E0��

+�E0�e α
2
+ e− α

2
�� z��

+c2�E0��
−�E0�e α

2
+ e− α

2
�� z���

= �−1�δi�2φi�c1�θ�pk−1�−α�e− α
2
� z�

+c2�θ�pk−1�α�e α
2
� z��φ−1

j � (3.25)

Subtracting (3.24) from (3.25) gives the identity

�c1 − �−1�δi�2c2�φi��θ�pk−1�α�e α
2
� z�

− �−1�δi�2�θ�pk−1�−α�e− α
2
� z��φ−1

j = 0�

Then Lemma 3.8 shows that c1 = �−1�δi� 2c2. Since θ�±�u� z�θ = �∓�u� z�
for u ∈ V +α/2+L�0�, we have (3.21).
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Now the following proposition follows from Propositions 2.2, 3.3, 3.11,
3.12, and 3.14.

Proposition 3.15. Let W 1, W 2, and W 3 be irreducible V +L -modules and
suppose that some of them are of twisted types. Then the fusion rule NW 3

W 1W 2

is zero or one. Assume that W 1 is a twisted type module, then the fusion rule
NW 3

W 1W 2 is one if and only if W i (i = 1� 2� 3) satisfy the following cases:

(i) W 1 =
(
V
T1�+
L

)′
and the pair (W 2�W 3) is one of pairs(

V ±L �
(
V
T1�±
L

)′)
�
(
V
T1�±
L � V ±L

)
�
(
V ±α/2+L� V

T1�±
L

)
�
((
V
T1�±
L

)′
�
(
V ±α/2+L

)′)
�(

Vλr+L�
(
V
T1�±
L

)′)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even�(

Vλr+L�
(
V
T2�±
L

)′)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd�

(ii) W 1 = �V T1�−
L �′ and the pair (W 2�W 3) is one of pairs(

V ±L �
(
V
T1�∓
L

)′)
�
(
V
T1�±
L � V

∓
L

)
�
(
V ±α/2+L� V

T1�∓
L

)
�
((
V
T1�±
L

)′
�
(
V
∓
α/2+L

)′)
�(

Vλr+L�
(
V
T1�±
L

)′)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even�(

Vλr+L�
(
V
T2�±
L

)′)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd�

(iii) W 1 = �V T2�+
L �′ and the pair (W 2�W 3) is one of pairs(

V ±L �
(
V
T2�±
L

)′)
�
(
V
T2�±
L � V ±L

)
�
(
V ±α/2+L� V

T2�∓
L

)
�
((
V
T2�±
L

)′
�
(
V
∓
α/2+L

)′)
�(

Vλr+L�
(
V
T2�±
L

)′)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even�(

Vλr+L�
(
V
T1�±
L

)′)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd�

(iv) W 1 = �V T2�−
L �′ and the pair (W 2�W 3) is one of pairs(

V ±L �
(
V
T2�∓
L

)′)
�
(
V
T2�±
L � V

∓
L

)
�
(
V ±α/2+L� V

T2�±
L

)
�
((
V
T2�±
L

)′
�
(
V ±α/2+L

)′)
�(

Vλr+L�
(
V
T2�±
L

)′)
and

(
V
T2�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is even�(

Vλr+L�
(
V
T1�±
L

)′)
and

(
V
T1�±
L � Vλr+L

)
for 1 ≤ r ≤ k− 1 such that r is odd�

By using Propositions 2.2, 3.7, and 3.15, we the fusion rule NW 3
W 1W 2

for arbitrary irreducible V +L -modules W 1, W 2, and W 3. Then by using
Proposition 2.8 and by writing the types for which the fusion rule is one
without the expression of contragredient module, we have Theorem 3.4.
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