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A note on static dyonic diholes
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In this brief note we argue that a dyonic generalization of the Emparan–Teo dihole solution is described 
by a static diagonal metric and therefore, contrary to the claim made in a recent paper by Cabrera-
Munguia et al., does not involve any “non-vanishing global angular momentum” and rotating charges.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

In a recent paper [1], Cabrera-Munguia et al. presented an exact 
stationary axisymmetric solution of the Einstein–Maxwell equa-
tions for two unequal dyons and considered some of its limiting 
cases. In Subsection 5.3 they assert that in the limit of vanish-
ing total angular momentum, their binary dyonic configuration 
still has “non-vanishing global angular momentum” and, moreover, 
“the magnetic monopole charges arise from the rotation of the 
Reissner–Nordström black holes”. Our note aims at demonstrat-
ing explicitly that the dyonic generalizations of the symmetric [2]
and asymmetric [3] dihole spacetimes (to which supposedly must 
lead that limit) are static intrinsically, so that the claim by Cabrera-
Munguia et al. is erroneous and misleading.

2. The dyonic Emparan–Teo dihole

The static dihole solution describing two Reissner–Nordström 
black holes [4,5] with equal masses and opposite electric charges 
was obtained by Emparan and Teo [2] as a particular special-
ization of the double-Kerr–Newman solution [6]. The physical 
parametrization of the Emparan–Teo dihole and its magnetostatic 
analog were later worked out in [7], the two static versions of the 
dihole spacetime being related by Bonnor’s theorem [8]. The dy-
onic generalization of the Emparan–Teo dihole is obtainable from 
the original electrostatic solution by means of the duality rotation, 
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and below we write down the corresponding expressions of the 
Ernst potentials [9], satisfying the equations (for real E )

(E + �̄�)∇2E = (∇E + 2�̄∇�) · ∇E,

(E + �̄�)∇2� = (∇E + 2�̄∇�) · ∇�, (1)

which arise as a by-product of the recent paper [10] on stationary 
diholes:

E = A − B

A + B
, � = QC

A + B
,

A = R2(M2 − |Q|2τ )(R+ − R−)(r+ − r−) + 4σ 2(M2 + |Q|2τ )

× (R+ − r+)(R− − r−) + 2R2σ 2(R+r− + R−r+),

B = 2M Rσ [(Rσ − 2M2)(R+ + r−) + (Rσ + 2M2)(R− + r+)],
C = 2Rσ(R − 2M)

R2 − 4σ 2
[(R − 2σ)(Rσ + 2M2)(R+ − r−)

+ (R + 2σ)(Rσ − 2M2)(R− − r+)],

R± =
√

ρ2 +
(

z + 1

2
R ± σ

)2

,

r± =
√

ρ2 +
(

z − 1

2
R ± σ

)2

. (2)

In the above formulae

Q = Q + iB, |Q|2 = Q 2 + B2,

σ =
√

M2 − |Q|2 R − 2M
, τ = R2 − 4M2

2 2
, (3)
R + 2M (R + 2M) + 4|Q|
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the real parameters M , Q , B and R being, respectively, the mass, 
electric charge, magnetic charge of the upper dyon and the sepa-
ration distance; the characteristics of the lower constituent are M , 
−Q , −B. The Weyl cylindrical coordinates (ρ, z) enter the expres-
sions (2) only through the functions R± and r± .

By setting B = 0 in (2) and (3), one comes to the Ernst poten-
tials of the Emparan–Teo electrostatic solution [2], and the limit 
Q = 0 leads to the magnetostatic analog of the Emparan–Teo di-
hole [7]. Note, that the function E in (2) is real, while the electro-
magnetic potential � represents a product of the complex constant 
Q and a real function; therefore, the metric defined by these E
and � remains static and diagonal. Below we give the correspond-
ing metric functions f and γ from the Weyl line element

ds2 = f −1[e2γ (dρ2 + dz2) + ρ2dϕ2] − f dt2, (4)

together with the electric At and magnetic Aϕ components of the 
electromagnetic 4-potential,

f = A2 − B2 + |Q|2C2

(A + B)2
, e2γ = A2 − B2 + |Q|2C2

16R4σ 4 R+R−r+r−
,

At = − Q C

A + B
, Aϕ = B(I − zC)

A + B
,

I = −2M(R − 2M)

R2 − 4σ 2
[2R2(M2 − σ 2)(R+r+ + R−r−)

+ 2σ 2(R2 − 4M2)(R+R− + r+r−)]
+ (R − 2M){2M[Rσ(R+r− − R−r+)

+ 2M2(R+r− + R−r+)] + Rσ [Rσ(R+ + R− + r+ + r−)

+ 6M2(R+ − R− − r+ + r−) + 8M Rσ ]}, (5)

and one can see in particular that Aϕ is defined by a more concise 
expression than in the paper [7]. Here it is worth noting that the 
duality rotation of the potential � leaves the metric unchanged, 
and so the transformation

�′ = eiα0�, tanα0 = −B/Q , (6)

would convert the solution (2) into the electrostatic one
(Im�′ = 0) described by the Weyl metric with the functions 
f and γ from (5), thus confirming the staticity of the dyonic 
Emparan–Teo solution (2).

The absence of any stationary energy flows created by the elec-
tric and magnetic charges in the binary dyonic configuration (2)
can be easily established by analyzing the associated Poynting vec-
tor. In [11] it was demonstrated that the Poynting vector of a 
stationary axisymmetric electrovac spacetime can have only one 
non-zero component, and in [12] this ϕ-component was shown to 
be defined by the following simple formula:

Sϕ =
√

f e−2γ

4πρ
Im(�̄,ρ�,z). (7)

Then, taking into account that �̄,ρ�,z is a real function in the case 
of the solution (2), one immediately gets Sϕ = 0, which means the 
absence of frame-dragging effects due to electromagnetic field in 
the metric (5). The latter metric is therefore static intrinsically.

Let us also mention for completeness that on the upper and 
lower horizons (ρ = 0, 1

2 R −σ ≤ z ≤ 1
2 R +σ and ρ = 0, − 1

2 R −σ ≤
z ≤ − 1

2 R + σ , respectively) the surface gravity κ H and horizon’s 
area S H of the dyonic Emparan–Teo solution are given by the ex-
pressions

κ H = Rσ(R + 2σ)

(R + 2M)2(M + σ)2
, S H = 4π(R + 2M)2(M + σ)2

R(R + 2σ)
,

(8)
while the Ernst potential � on the upper horizon takes the com-
plex constant value

�H
ext = Q(M − σ)

|Q|2 (9)

(on the lower horizon, �H
ext changes its sign), thus representing 

a complex extension of the electric potential �H from the Smarr 
mass formula [13]. The generalized mass relation involving the 
electric and magnetic charges has the form

M = 1

4π
κH S H + Q̄�H

ext, (10)

and it is verified identically on both horizons since the complex 
charge Q, similar to �H

ext , changes its sign on the lower horizon.

3. The asymmetric dyonic dihole

The case of the dyonic asymmetric dihole solution is fully anal-
ogous to the previous case of the dyonic Emparan–Teo dihole. The 
Ernst potentials of that solution are obtainable by means of the 
substitutions Q → Q, Q 2 → |Q|2 from the formulae of the paper 
[3] defining the respective potentials of the asymmetric electric di-
hole, thus eventually leading to the metric functions f and γ in 
the Weyl line element (4) and to the electric At and magnetic A′

ϕ
potentials of the form

f = A2 − 4B2 + 4|Q|2C2

(A + 2B)2
, e2γ = A2 − 4B2 + 4|Q|2C2

K 2
0 R+R−r+r−

,

At = − 2Q C

A + 2B
, A′

ϕ = 2BC

A + 2B
,

A = � σ [ν(R+ + R−)(r+ + r−) + 4κ(R+R− + r+r−)]
− (|Q|2μ2ν − 2κ2)(R+ − R−)(r+ − r−),

B = � σ [(mν + 2Mκ)(R+ + R−) + (Mν + 2mκ)(r+ + r−)]
+ |Q|2(μ − μ2)(ν − 2κ)[σ(R+ − R−) − �(r+ − r−)]
− 2Rκ[Mσ(R+ − R−) − m�(r+ − r−)],

C = � σ(1 − μ)(ν − 2κ)(r+ + r− − R+ − R−)

+ σ [Mμν + 2κ(mμ − R + Rμ)](R+ − R−)

+ �[mμν + 2κ(Mμ − R + Rμ)](r+ − r−),

K0 = 4� σ [R2 − (M − m)2 + 4|Q|2(1 − μ)2],

R± =
√

ρ2 +
(

z + 1

2
R ± �

)2

,

r± =
√

ρ2 +
(

z − 1

2
R ± σ

)2

, (11)

where

Q = Q + iB, |Q|2 = Q 2 + B2,

� =
√

M2 − |Q|2(1 − 2μ), σ =
√

m2 − |Q|2(1 − 2μ),

μ = M + m

R + M + m
, κ = Mm + |Q|2(1 − μ)2,

ν = R2 − M2 − m2 + 2|Q|2(1 − μ)2, (12)

and now the lower dyonic black hole with the horizon ρ = 0, 
− 1

2 R − � ≤ z ≤ − 1
2 R + � has the mass M , electric charge Q and 

magnetic charge B, whereas the mass and charges of the upper 
dyonic constituent with the horizon ρ = 0, 1

2 R − σ ≤ z ≤ 1
2 R + σ

are m, −Q and −B (see Fig. 1). Note that in formulae (11) we give 
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Fig. 1. Location of the dyonic black-hole constituents on the symmetry axis.
the expression of the magnetic potential A′
ϕ (the imaginary part of 

the Ernst potential �) instead of Aϕ because the latter has a rather 
cumbersome form that can be inferred from Eq. (28) of [3].

There can be no doubt that the spacetime of the asymmetric 
dyonic dihole (11) is static intrinsically: it is described by a diago-
nal static metric and, as can be easily checked with the aid of the 
formula � = −At + i A′

ϕ , the ϕ-component of the Poynting vector 
(7) is zero, thus proving the absence of any frame-dragging phe-
nomena in this spacetime.

Let us also mention that the non-equal dyonic black-hole con-
stituents verify the generalized Smarr formula (10). Thus, for in-
stance, restricting ourselves to the lower constituent, we will have

κ H = �[(R + �)2 − σ 2]
(R + M + m)2(M + �)2

,

S H = 4π(R + M + m)2(M + �)2

(R + �)2 − σ 2
,

�H
ext = Q(1 − 2μ)

M + �
, (13)

with which the relation (10) holds identically.

4. Conclusion

Therefore, our analysis makes it very clear that the dyonic gen-
eralizations of the known electrostatic solutions for black diholes 
[2,3] are static as well, despite the presence in them of both elec-
tric and magnetic charges. The erroneous physical interpretations 
of the dyonic configurations made in the paper [1] spring from 
improper use by Cabrera-Munguia et al. of Tomimatsu’s formula 
for the angular momentum [14] that forced those authors to make 
some incorrect redefinitions (see [15,16] for details). We hope that 
our results may be helpful in the future for constructing more gen-
eral static spacetimes, for instance in the presence of a dilaton 
field.
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