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Radiative φ → f0(980)γ decay in light cone QCD sum rules
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Abstract

The light cone QCD sum rules method is used to calculate the transition form factor for the radiative φ → f0γ decay,
assuming that the quark content of the f0 meson is pure s̄s state. The branching ratio is estimated to be B(φ → f0γ ) =
3.5 × (1 ± 0.3) × 10−4. A comparison of our prediction on branching ratio with the theoretical results and experimental data
existing in literature is presented.

 2002 Elsevier Science B.V.
PACS: 11.55.Hx; 13.40.Hq; 14.40.Ev

1. Introduction

According to the quark model, mesons are inter-
preted as pure q̄q states. Scalar mesons constitute a
remarkable exception to this systematization and their
nature is not well established yet [1–4].

In the naive q̄q picture, one can treat the isoscalar
f0(980) either as the meson that exists mostly as
nonstrange and almost degenerate with the isovector
a0(980) or as mainly s̄s, in analogy to the pure s̄s

vector meson φ(1020).
In order to understand the content of the f0 meson

several alternatives have been suggested, such as, the
analysis of the f0 → 2γ decay [5,6]; study of the ra-
tio Γ (a0 → f0γ )/Γ (φ → f0γ ) [7]. However, among
these, the (φ → f0γ ) decay occupies a special place,
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since the branching ratio expected of this decay, is es-
sentially dependent on the content of f0. For example,
B(φ → f0γ ) is as high as ∼ 10−4 if it were composed
of q̄qq̄q , and ∼ 10−5 if f0 were a pure s̄s state.

It has been known for a long time that f0(980)
couples significantly through its s̄s content, from its
detection as a peak in the J/ψ → φf0 [8] and Ds →
πf0 [9] decays, as discussed in [10] and [11] (see also
[12]). For this reason, in this work we assume that
quark content of both φ and f0 mesons are pure s̄s. In
the present Letter we analyze the radiative φ → f0γ
decay in framework of the light cone QCD sum rules
(about light cone QCD sum rules and its applications,
see, for example, [13]). Note also that the φ → f0γ
decay is analyzed in framework of the 3-point sum
rules in [14]. In order to calculate the transition form
factor describing the φ → f0γ decay in light cone
QCD sum rules, we consider the following correlator

(1)Πµ = i

∫
d4x eipx

〈
0
∣∣T {

J s(x)J φ
µ (0)

}∣∣0〉
γ
,
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where J s = s̄s and J
φ
µ = s̄γµs are interpolating

currents for f0 and φ mesons, respectively, and γ is
the background electromagnetic field (for more about
external field technique in QCD see [15,16]).

The physical part of the correlator can be obtained
by inserting a complete set of one meson states into
the correlator,

(2)Πµ =
∑ 〈0|J s(x)|f0(p)〉〈f0(p)|φ(p1)〉γ 〈φ(p1)|J φ

µ (0)|0〉(
p2−m2

f0

)(
p2

1−m2
φ

) ,

where φ and f0 are the quantum numbers and p1 =
p + q with q being the photon momentum.

The matrix element 〈φ(p1)|J φ
µ (0)|0〉 in Eq. (1) is

defined as

(3)〈φ(p1)|J φ
µ (0)|0〉 =mφfφε

φ
µ,

where ε
φ
µ is the φ meson polarization vector. The

coupling of the f0(980) to the scalar current J s = s̄s

is defined in terms of a constant λf

(4)〈0|J s |f0(p)〉 =mf0λf .

The relevant matrix element describing the transi-
tion φ → f0 induced by an external electromagnetic
current can be parametrized in the following form:〈
f0(p)

∣∣φ(
p1, ε

φ
)〉
γ

(5)= eεµ
[
F1

(
q2)(p1q)ε

φ
µ + F2

(
q2)(εφq)

p1µ
]
,

where ε is the photon polarization and we have used
(εq)= 0. From gauge invariance we have

(6)F1
(
q2) = −F2

(
q2),

and since the photon is real in the decay under
consideration, we need the values of the form factors
only at the point q2 = 0. Using Eq. (6) the matrix
element 〈f0|φ〉γ takes the following gauge-invariant
form,

(7)〈f0|φ〉γ = eεµF1(0)
[
(p1q)ε

φ
µ − (

εφq
)
p1µ

]
.

Using Eqs. (1)–(4) and (7), for the phenomenological
part of the correlator we have

Γ
phen
µ = eF1(0)εν

[−(p1q)gµν + p1νqµ
]

(8)× λf fφmf0mφ

(p2 −m2
f0
)(p2

1 −m2
φ)

.

In order to construct the sum rule, calculation of the
correlator from QCD side (theoretical part) is needed.

From Eq. (1) we get

(9)Πµ =
∫

d4x eipx
〈
0
∣∣Tr

{−γµSs(−x)Ss(x)
}∣∣0〉

γ
,

where Ss is the full propagator of the strange quark
(see below). Theoretical part of the correlator contains
two pieces, perturbative and nonperturbative. Pertur-
bative part corresponds to the case when photon is ra-
diated from the freely propagating quarks. Its expres-
sion can be obtained by making the following replace-
ment in each one of the quark propagators in Eq. (9)

(10)
(Ss)

ab
αβ → 2eeq

(
dy Fµνy

νSfree
s (x − y)γ µSfree

s (y)
)ab
αβ
,

where the Fock–Schwinger gauge xµAµ(x) = 0 is
used and Sfree

s is the free s-quark propagatorSfree
s (x)=

i/x/(2π2x4) and the remaining one is the full quark
propagator.

The nonperturbative piece of the theoretical part
can be obtained from Eq. (9) by replacing each one
of the propagators with

(11)(Ss)
ab
αβ = −1

4
q̄aAiq

b(Ai)αβ,

where Ai is the full set of Dirac matrices and sum over
Ai is implied and the other quark propagator is the full
propagator, involving perturbative and nonperturbative
contributions. In order to calculate perturbative and
nonperturbative parts to the correlator function (1),
expression of the s-quark propagator in external field
is needed.

The complete light cone expansion of the light
quark operator in external field is presented in [16].
The propagator receives contributions from the non-
local operators q̄Gq , q̄GGq , q̄qq̄q , where G is the
gluon field strength tensor. In the present work we con-
sider operators with only one gluon field and neglect
terms with two gluons q̄GGq , and four quarks q̄qq̄q
and formal neglect of these these terms can be justified
on the basis of an expansion in conformal spin [17].
In this approximation full propagator of the s-quark is
given as

Ss(x)= i/x

2π2x4 − 〈s̄s〉
12

(
1 + x2

16
m2

0

)

+ ims〈s̄s〉
48

/x − im2
0ms

2732 x2/x
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− igs

1∫
0

dv

[
/x

16π2x2Gµν(vx)σ
µν

(12)− i

4π2x2 vx
µGµνγ

ν

]
.

It follows from Eqs. (11) and (9) that in calculating the
QCD part of the correlator, as is generally the case,
we are left with the matrix elements of the gauge-
invariant nonlocal operators, sandwiched in between
the photon and the vacuum states 〈γ (q)|s̄Ais|0〉.
These matrix elements define the light cone photon
wave functions. The photon wave functions up to
twist-4 are [17,18]

〈γ (q)|q̄(x)σµνq(0)|0〉 = ieeq〈q̄q〉

×
1∫

0

dueiqx
{
(εµqν − ενqµ)

× [
χφ(u)+ x2(g1(u)− g2(u)

)]
+ [

(qx)(εµxν − ενxµ)

(13)+ (εx)(xµqν − xνqµ)
]
g2(u)

}
,

〈γ (q)|q̄(x)γµγ5q(0)|0〉

(14)= ef

4
eqεαβρσ ε

βqρxσ

1∫
0

dueiuqxψ(u).

The path-ordered gauge factor P exp(igs
∫ 1

0 duxµ ×
Aµ(ux)) is emitted since the Schwinger–Fock gauge
xµAµ(x) = 0 is used. The functions φ(u), ψ(u) are
the leading twist-2 photon wave functions, while g1(u)
and g2(u) are the twist-4 photon wave functions. Note
that twist-3 photon wave functions are neglected in
the calculations, since their contributions are small
and change the result by 5%. In Eq. (13) χ is the
magnetic susceptibility of the quark condensate and
eq is the quark charge. The theoretical part is ob-
tained by substituting photon wave functions and ex-
pression for the s-quark propagators into Eq. (9). The
sum rules is obtained by equating the phenomeno-
logical and theoretical parts of the correlator. In or-
der to suppress higher states and continuum contri-
bution (for more details see [19,20]) double Borel
transformations of the variables p2

1 = p2 and p2
2 =

(p + q)2 are performed on both sides of the cor-
relator, after which the following sum rule is ob-

tained

F1(0)= e
m2
f0
/M2

2 e
m2
φ/M

2
1

es

λf0fφmf0mφ

×
{[

2χ〈s̄s〉φ(u0)− 3ms

2π2 (1 + γE)

]
M2E0

(
s2

0/M
2)

+ 1
24

〈s̄s〉[−192g1(u0)+msφ(u0)〈s̄s〉
]

+ 3ms

2π2

[
M2

(
γE + ln

M2

Λ2

)
E0

(
s0/M

2)

(15)+M2f
(
s0/M

2)]}
,

where s0 is the continuum threshold

E0
(
s0/M

2) = 1 − e−s0/M
2
,

f
(
s0/M

2) =
s0/M

2∫
0

dy lnye−y,

which have been used to subtract continuum, and

u0 = M2
2

M2
1 +M2

2
, M2 = M2

1M
2
2

M2
1 +M2

2
,

where M2
1 and M2

2 are the Borel parameters in φ and
f0 channels, respectively, Λ is the QCD scale para-
meter and γE is the Euler constant. Since the masses
of φ and f0 are very close to each other we will set
M2

1 = M2
2 ≡ 2M2, obviously from which it follows

that u0 = 1/2.
It is clear from Eq. (14) that the values of λf0

and fφ are needed in order to determine F(0). The
coupling of the f0(980) to the scalar s̄s current is
determined by the constant λf0 and in the two-point
QCD sum rules its value is found to be λf0 = (0.18 ±
0.0015) GeV [14]. In further numerical analysis we
will use fφ = 0.234 GeV which is obtained from the
experimental analysis of the φ → e+e− decay [21].

Having the values of λf0 and fφ , our next and
final attempt is the calculation of transition form factor
F1(0). As we can easily see from Eq. (15) the main
input parameters of the light cone QCD sum rules is
the photon wave function. It is known that the leading
photon wave function receive only small corrections
from the higher conformal spin [17,19,22], so that
they do not deviate much from the asymptotic form.
The photon wave functions we use in our numerical
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analysis are given as

φ(u) = 6u(1 − u), ψ(u) = 1,

g1(u)= −1
8
(1 − u)(3 − u).

Furthermore, the values of the input parameters that
are used in the numerical calculations are: f = 0.028
GeV2, χ = −4.4 GeV−2 [23] (in [24] this quantity
is predicted to have the value χ = −3.3 GeV−2),
〈s̄s(1 GeV)〉 = −0.8 × (0.243)3 GeV3 and the QCD
scale parameter is taken as Λ = 0.2 GeV. The strange
quark mass is chosen in the range ms = 0.125–
0.16 GeV, obtained in the QCD sum rules approach
[25]. The masses of the φ and f0 mesons are mφ =
1.02 GeV, mf0 = 0.98 GeV. The transition form factor
is a physical quantity and therefore it must be inde-
pendent of the auxiliary continuum threshold s0 and
and the Borel mass M2 parameters. So our main con-
cern is to find a region where the transition form fac-
tor F1(0) is practically independent of the parameters
s0 and M2. For this aim in Fig. 1 we present the de-
pendence of the transition form factor F1(0) on the
Borel parameter M2 at three different values of the
continuum threshold: s0 = 2.0 GeV2, 2.2 GeV2 and
2.4 GeV2. It follows from this figure that for the choice
of the continuum thresholds in the above-mentioned
range, the variation of the result on the transition form
factor F1(0) is about 10%. In other words, we can con-

clude that F1(0) is practically independent of the con-
tinuum threshold. Furthermore, we observe that when
1.4 � M2 � 2.0 GeV2, F1(0) is quite stable with re-
spect to the variations of the Borel parameter M2. As
a result, one can directly read from this figure

F1(0)= (3.25 ± 0.20) GeV−1,

where the resulting error is due to the variations in s0
and M2. The other sources of errors contributing to the
numerical analysis of the transition form factor come
from the strange quark mass and the uncertainties in
values of various condensates. Hence, our final pre-
diction on the transition form factor is

(16)F1(0)= (3.25 ± 0.50) GeV−1.

Using the matrix element (7) for the decay width of
the considered process, we obtain

(17)Γ (φ → f0γ )= α
∣∣F1(0)

∣∣2 (m
2
φ −m2

f0
)3

24m3
φ

.

Using the experimental value Γtot(φ) = 4.458 MeV
[21], and Eqs. (16) and (17), we get for the branching
ratio

(18)B(φ → f0γ )= 3.5 × (1.0 ± 0.3)× 10−4.

Our result on the branching ratio is obtained under
the assumption that f0 meson is represented as a

Fig. 1. The dependence of the transition form factor F1(0) for the radiative φ → f0γ decay on M2 at three different values of the continuum
threshold s0 = 2.0 GeV2, 2.2 GeV2 and 2.4 GeV2.
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pure s̄s component. How does the result change if we
assume that φ and f0 mesons can be represented as a
mixing of s̄s and n̄n = (ūu+ d̄d)/

√
2 state, i.e.,

φ = cosα s̄s + sinα n̄n,

f0 = sinβ s̄s + cosβ n̄n?

Analysis of the process φ → π0γ and combined
analysis of the φ → f0γ and f0 → 2γ decays show
that |α| � 4◦ and two solutions are found for β , i.e.,
β = −48◦ ± 6◦ or β = 85◦ ± 5◦, respectively (see,
for example, [5]). In other words, quark content of
φ meson is pure s̄s state, while in f0 meson there
might be sizable n̄n component. Obviously, when
F1(0) is calculated from QCD side, only sinβs̄s com-
ponent operates (see Eq. (1)) and, therefore, the de-
cay width Γ (φ → f0γ ), and hence the correspond-
ing branching ratio, contains an extra factor sin2 β . If
β = 85◦ ± 5◦, then prediction for the branching ratio
given in Eq. (18) is practically unchanged, but when
β = −48◦ ±6◦ B(φ → f0γ ) decreases by about a fac-
tor of 2.

Finally, let us compare our prediction on branch-
ing ratio with the existing theoretical results and ex-
perimental data in the literature. Obviously, our re-
sult is slightly larger compare to the 3-point QCD
sum rule result which predicts B(φ → f0γ ) � (2.7 ±
1.1)×10−4 [14], and approximately three times larger
compared to the prediction of the spectral QCD sum
rules and chiral unitary approaches, whose predic-
tions are B(φ → f0γ ) = 1.3 × 10−4 [26] and B(φ →
f0γ ) = 1.6 × 10−4 [27], respectively. It is interest-
ing to note that this value of the branching ratio is
closer to our prediction when the mixing angle is
chosen to be β = −48◦ ± 6◦. Our result, which is
given in Eq. (18), is larger compared to the predic-
tions of [7,28], whose results are B(φ → f0γ )= 1.9×
10−4 [28], and B(φ → f0γ ) = 1.35 × 10−4 [7], re-
spectively.

As the final words we would like to point out
that our prediction given in Eq. (18), is in a very
good agreement with the existing experimental result
B(φ → f0γ )� (3.4 ± 1.1)× 10−4 [21].

References

[1] L. Montanet, Rep. Prog. Phys. 46 (1983) 337;
F.E. Close, Rep. Prog. Phys. 51 (1988) 833;

N.N. Achasov, Nucl. Phys. (Proc. Suppl.) B 21 (1991) 189;
T. Barnes, hep-ph/0001326;
V.V. Anisovich, hep-ph/0110326.

[2] N.A. Tornqvist, Phys. Rev. Lett. 49 (1982) 624;
N.A. Tornqvist, Z. Phys. C 68 (1995) 647.

[3] N.A. Tornqvist, M. Ross, Phys. Rev. Lett. 76 (1996) 1575.
[4] E. van Beveren et al., Z. Phys. C 30 (1986) 615;

E. van Beveren, G. Rupp, M.D. Scadron, Phys. Lett. B 495
(2000) 300;
E. van Beveren, G. Rupp, M.D. Scadron, Phys. Lett. B 509
(2001) 365, Erratum.

[5] A.V. Anisovich, V.V. Anisovich, V.A. Nikonov, hep-ph/
0011191.

[6] M. Boglione, M.R. Pennington, Phys. Rev. Lett. 79 (1997)
1998.

[7] F.E. Close, N. Isgur, S. Kumano, Nucl. Phys. B 389 (1993)
513;
N. Brown, F.E. Close, in: L. Maiani, G. Pancheri, N. Paver
(Eds.), The DAFNE Physics Handbook, INFN, Frascati, 1995.

[8] G. Gidal et al., MARK II Collaboration, Phys. Lett. B 107
(1981) 153;
A. Falvard et al., DM2 Collaboration, Phys. Rev. D 38 (1988)
2706.

[9] J.C. Anjos et al., E691 Collaboration, Phys. Rev. Lett. 62
(1989) 125;
E.M. Aitala et al., E791 Collaboration, Phys. Rev. Lett. 86
(2001) 125.

[10] K.L. Au, D. Morgan, M.R. Pennington, Phys. Rev. D 35 (1987)
1633.

[11] D. Morgan, M.R. Pennington, Phys. Rev. D 48 (1993) 1185.
[12] R. Delbourgo, D.-S. Liu, M.D. Scadron, Phys. Lett. B 446

(1999) 332.
[13] P. Colangelo, A. Khodjamirian, in: M. Shifman (Ed.), At

the Frontier of Particle Physics, Handbook of QCD, World
Scientific, Singapore, 2001, p. 1495.

[14] F. De Fazio, M.R. Pennington, Phys. Lett. B 520 (2001) 78.
[15] B.L. Ioffe, A.V. Smilga, Nucl. Phys. B 232 (1984) 109.
[16] I.I. Balitsky, V.M. Braun, Nucl. Phys. B 311 (1988) 541.
[17] V.M. Braun, I.E. Filyanov, Z. Phys. C 48 (1990) 239.
[18] A. Ali, V.M. Braun, Phys. Lett. B 359 (1995) 223.
[19] V.M. Belyaev, V.M. Braun, A. Khodjamirian, R. Rückl, Phys.

Rev. D 57 (1995) 6177.
[20] T.M. Aliev, A. Özpineci, M. Savcı, Nucl. Phys. A 678 (2000)

443;
T.M. Aliev, A. Özpineci, M. Savcı, Phys. Rev. D 62 (2000)
053012.

[21] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15
(2000) 1.

[22] I.I. Balitsky, V.M. Braun, A.V. Kolesnichenko, Nucl. Phys.
B 312 (1989) 509;
V.M. Braun, I.E. Filyanov, Z. Phys. C 44 (1989) 157.

[23] V.M. Belyaev, Ya.I. Kogan, Yad. Fiz. 40 (1984) 1035, Sov. J.
Nucl. Phys. 40 (1984) 659.

[24] I.I. Balitsky, A.V. Kolesnichenko, Yad. Fiz. 41 (1985) 282, Sov.
J. Nucl. Phys. 41 (1985) 178.



198 T.M. Aliev et al. / Physics Letters B 527 (2002) 193–198

[25] P. Colangelo, F. De Fazio, G. Nardulli, N. Paver, Phys. Lett.
B 408 (1997) 340.

[26] S. Narison, Nucl. Phys. (Proc. Suppl.) 96 (2001) 244.

[27] E. Marco, S. Hirenzaki, E. Oset, H. Toki, Phys. Lett. B 470
(1999) 20.

[28] J. Lucio, J. Pestiean, Phys. Rev. D 42 (1990) 3253.


	Radiative phi->f0(980) gamma decay in light cone QCD sum rules
	Introduction
	References


