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Entropy of L-Fuzzy Sets* 

ALDO DE LUCA AND SETTIMO TERMINI 
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Arco Felice, Napoli, Italy 

The notion of "entropy" of a fuzzy set, introduced in a previous paper in the 
case of generalized characteristic functions whose range is the interval [0, 1] 
of the real line, is extended to the case of maps whose range is a poset L (or, in 
particular, a lattice). 

Some of the reasons giving rise to the non-comparability of the truth values 
and then the necessity of considering poset structures as range of the maps are 
discussed. 

The interpretative problems of the given mathematical definitions regarding 
the connections with decision theory are briefly analyzed. 

1. INTRODUCTION 

In  this work the notion of entropy of a fuzzy set (Zadeh, 1965) introduced 
in De Luca and Termini  (1972) will be extended to the case of L-fuzzy sets 
(Goguen, 1967), i.e., maps from a given set I to a part ly ordered set (poset) L. 
The  difference between the case in which L coincides with the interval [0, 1] 
of the real line (fuzzy sets) and that considered here, in which L is a general 
poset, is similar to the one existing between a multivalued logic (see, for 
instance, Lukasiewicz and Tarski,  1930) and a logic in which the t ru th-  
values of the proposit ions are not always comparable (see, for instance, 
Koopman,  1940). 

In  the next section we shall collect some mathematical  preliminaries that  
will be used in the following. 

Before introducing the formal definition of entropy of an L-fuzzy set, we 
shall, then, briefly discuss how and why the necessity arises of considering 
poset structures as range of the generalized characteristic functions. The  
mathematical  definition of the entropy of an L-fuzzy set will then be given 
in the general case. This  entropy is a matrix quanti ty so that  the L-fuzzy 
sets cannot always be compared by  means of their  entropies. A more detailed 

* An abstract of this paper was published in Notices A .M.S .  19, A710 (1972). 
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discussion on the appearance of the non-comparability of the truth-values 
for systems described by means of "independent" and "measurable" 
properties is made. The interpretation of the new mathematical concepts 
introduced will then be presented, taking into particular account its con- 
nections with decision theory. In this last case a (natural) direct interpretation 
of the entropy as a measure of the uncertainty in decision taking is given. 

We shall finally indicate what are, in our opinion, some possible implications 
of the previous theory, stressing at the same time its main features. 

2. ~V~ATHEMATICAL PRELIMINARIES 

In this section we list some definitions and mathematical results that will 
be of use. 

Let I be a set and L a poset. 

DEEINITION 2.1. An L- fuzzy  set defined on I is any map from I to L 
(Goguen, 1967). 

If the poset L coincides with the interval [0, 1] of the real line we obtain 
the definition of fuzzy set as introduced by Zadeh (1965). 

We denote by ~ ( I ,  L) the class of all the L-fuzzy sets defined on I; the 
class of all the fuzzy sets defined on I will be simply defined by ~q(I). 

We remember that any closed operation defined on L can be induced 
point-by-point on 5¢(I, L). In particular, i lL  is a lattice then one can give to 
~ ( I ,  L) a lattice structure by means of the binary operations v and ^ defined, 
for any pair f and g of elements of ~L,C(L L), as: 

Or v g)(x) ~ 1.u.b.{f(x), g(x)}, 
(2.1) 

( f  6 g)(x) ~ g.l.b.{f(x), g(x)}, 

for all x e l ,  where 1.u.b. and g.l.b, denote the least upper bound and the 
greatest lower bound, respectively. 

Some remarks on the algebraic structure of &°(I) can be found in De Luca 
and Termini (1970). We remember, in particular, that ~ ( I )  is a non- 
complemented lattice with respect to the operations (2.1). 

DEFINITION 2.2. Let I be a finite set. An  "entropy" measure on ~ ( I )  is 
a non-negative functional 

d: ~,W(I)--~ R, (2.2) 
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R denoting the set of non.negative real numbers, such that the following properties 
are satisfied: 

P1. d(f) =- 0 if and only if f is a classical characteristic function. 

P~. d(f) is maximum if and only if f (x) = 1/2 for all x ~ I. 

Pa. d(f*) <~ d(f), where f *  is any "sharpened" version of f ,  that is, 
f*(x) <~ f(x) for f(x) <~ 1/2 and f*(x) >~ f(x) for f(x) >~ 1/2. 

The previous properties, as discussed in De Luca and Termini (1972), 
are the weakest requirements that, intuitively, a measure of the "degree of 
fuzziness" of f must satisfy. In De Luca and Termini (1972), in analogy 
with Shannon's entropy of information theory, we fixed a particular measure 
of entropy given by the following functional 

N 

k E S(fi), (2.3) 
i= l  

where f~ = f(xi), N = #I ,  S(x) is the Shannon function 

S(x) = --x in x -- (1 --  x) ln(1 --  x), 

and k a positive constant. The functional (2.3) besides the properties P1, 
P~, Pa satisfies many other properties. 

In Capocelli and De Luca (1972) a large class of functionals satisfying 
P1, P2, Pa, to which (2.3) belongs, has been taken into account. A functional 
of the class is given by 

N 

d( f ) -~  ~ T(f,), (2.4) 

where T(x) ~/~(x) +/~(1 -- x),/~ being any continuous and strictly concave 
function in the interval (0, 1) such that 

= = o .  

Entropy measures as (2.4) have been considered by Vajda (1969) in problems 
of statistical pattern recognition. 

In the following we shall call (2.3) "logarithmic entropy" of a fuzzy set 
using the word "entropy" for any arbitrary functional (2.4)with a T not 
specified. 

From the fact that/~ is a concave function it follows that 

d(f) ~ NT(P(f)/N),  (2.5) 
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where P( f )  is the power of f,  i.e., P( f )  ~- s~Nlf~.  A further property of 
the entropy d that we shall use in the following is that d is a non-negative 
valuation on the lattice ~.~cP(I), that is, 

a( f )  4- d(g) = d ( f  v g) 4- d ( f  A g), for all f ,  g ~ 5e(1). (2.6) 

3. STRUCTURE OF THE RANGE OF THE GENERALIZED 

CHARACTERISTIC FUNCTIONS 

In  this section we briefly stress how the use of a poset L (in particular 
a lattice) as the range of generalized characteristic functions arises in a natural 
way when dealing with the description of sets of objects by means of more 
than a single property. 

We shall first see that it is possible to attain the notion of L-fuzzy set in two 
ways; a unique formal scheme, including them as particular cases, will then 
be presented. 

The  interpretation of the formalism will be given in the following sections. 
Let  us consider a set I of objects and M properties PJ(j = 1,..., M);  

suppose that M fuzzy sets 

i f :  1--+ [0, 1] ( j  = 1,..., M)  (3.1) 

are given, i f(x)  being interpreted as a numerical evaluation of the "degree" 
to which x enjoys the property PJ. 

I t  is then possible to associate a matrix M × 1, whose elements are the 
degrees with which x enjoys the M properties, to any given element x ~ 1: 

1 
Lfd(x)  j (3.2) 

A map f from I to the set L of all M × 1 matrices whose elements take values 
in [0, 1] is then, in such a way, constructed. 

L is a lattice with respect to the partial order relation defined as 

z < ~ y - e > z j ~ y j ,  for all j ~ J ,  (3.3) 

where J ~ {1,..., M} and z and y are two elements of L of components z~- 
and y y , j ~  J. L has a greatest and a least element given by the M × 1 
matrices whose components are all ones and all zeros, respectively. 

In  such a way a set of M maps (3.1) naturally determines an L-fuzzy set. 
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Let  us now consider the limiting case in which the objects of I are described 
by means of only one property of a given ensemble. This  situation occurs, 
for instance, if our set I is such that for each object one property is more 
meaningful than the others, or when only one property for each object is 
available. 

We obtain, in this way, a partition o f / i n  some classes d~-, equal in number  
to the properties taken into consideration. 

I t  is, obviously, possible to compare the "degrees" if(x) with which the 
various elements of any -/15 enjoy the corresponding property PJ; these 
"degrees" may be, then, ordered in a chain. I t  is meaningless, however, 
to compare "degrees" referring, for instance, to different " independent"  
properties (see Section 5); in this case a collection of disjoint chains, one 
for each property, is obtained. 

I f  fJ(x) denotes for each property PJ, j ~ J, the "degree" to which the 
element x ~ A~- enjoys PJ, one may equivalently give a map f from I to a 
suitable set L and a map 

~ :L  --+ [0, l] (3.4) 

such that a(f(x)) = fJ(x). 
L has to be constructed taking into account all the allowed partitions of I 

and all the possible degrees if(x), j ~ jr. 
Moreover,  one imposes that if y and z are two elements of L such that 

co(y) = a(z) then y = z. 
L can be partly ordered with respect to the partial order relation 

f(x) <~ g(y) <:> {a(f(x)) < c~(g(y)) and xCy}, (3.5) 

where xCy means that x and y belong to the same element of a partition of I.  
T h e  previous examples show that the use of a poset as the range of generalized 
characteristic functions is not a purely mathematical extension but naturally 
comes out when one describes a certain class of objects by means of more 
than one property. 

We now give a general mathematical scheme that includes the previous 
cases and a more general one in which, for each object x of I,  a variable 
number  of properties chosen among M fixed ones is considered. T h e  main 
difference with the cases considered above is that we will start f rom a purely 
formal scheme, allowing various interpretations. I t  will be possible also to 
introduce in a more direct way the formal notion of entropy. Detailed 
interpretative problems will be postponed to the following sections. 
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Let  f be a map from I to a set L and 

~j : D~. --~ [0, 1], j e J, (3.6) 

M maps with D~ subsets of L. In  such a way, for any given f,  one obtains 
a set of M maps: 

~j of: A,( I )  --~ [0, 1], j ~ J ,  (3.7) 

where a: of(x) ~ ~¢(f(x)) for x e Aj( f ) ,  being Aj( f )  =-f- l (Dj)  that is the 
inverse image of D r with respect to f .  

We denote by R(y), for any y EL, the subset of J defined as 

R(y) ~ { j  I J e J and y e Dj}. (3.8) 

We suppose the maps c 9 to be such that aj of, j e J, uniquely determine 
f,  that is, if z, w e L are such that R(z) : R(w) and o~j(z) : cg(w), j ~ R(z), 
then z = w. Because of this condition we assume that, for all x and f ,  R(f(x))  
is not empty so that the As(f),  j e J, for any f ,  determine a cover of I.  

Given these assumptions L can be partly ordered as 

z <~ w .*~ R(z) : R(w) and ~j(z) ~ cg(w ), for all j E R(z). (3.9) 

I f  a3" of (x) coincides, for any j e jr, with the degree to which x enjoys a 
certain property PJ, then Aj( f )  is the subset of I for which the property PJ 
is taken into account. In  the first example Aj( f )  -~ I, j e J, and L is the 
lattice of all M × 1 matrices with components in [0, 1]; in the second one 
the Aj(f) ,  for any f,  form a partition of 1: for any x only one of the maps c 9 
is defined, so that the set of maps c¢, , j e  jr, acts as a "projection operator" 
on the single properties , one for any element. In  this case L is a poset formed 
by M chains. 

Finally, we note that in the ordinary definition of a fuzzy set the map 
that gives a numerical evaluation of the degree with which a property is 
enjoyed is implicitly given and assumed equal to the identity function. 

4. ENTROPY OF L-FuzzY SETS 

The  formal notion of the entropy g ( f )  of an L-fuzzy set f is now intro- 
duced starting from the general definition 2.1. 

Le t  us consider L-fuzzy sets defined on a finite set 1 taking values in a 
general poset L. Let  ~. ,  j ~ jr, be M maps 

~j : Dj --* [0, 1], j e J, (4.1) 
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D~ being subsets of L. The maps ~ determine, for any fixed f,  a set of M 
maps 

czj of: A t ( f )  ---,- [0, 1], j ~ jr. 

Let 

~ {~(D) I D _C L}, 

where ~ ( D )  is the class of all the fuzzy sets defined on D. The set (4.1) of M 
maps %- is an element of the cartesian product 50  M). 

Let R the set of non-negative real numbers and d the entropy of an ordinary 
fuzzy set (see Definition 2.2). We give the following 

DEFINITION 4.1. 

maps ~ , j ~ J, is the quantity d(f ,  ~) where ~Z is the map 
The entropy of an L- fuzzy  set f with respect to a set of 

d: ~ ( I ,  L) × 5¢ {M) --* ~CM), (4.2) 

In the following, when no misunderstanding can arise, we shall drop 
the index ~. 

The set A ~ {d( f ,  ~) [ ~ C ° { M ) , f e ~ ( / , L ) }  may be partly ordered by 
means of the relation ~ defined as 

£a  ~ £b ~:~ dja ~ djO, for atl j E J, (4.5) 

where ga and d b are two elements of A. 
I t  is easy to prove that A is a lattice with respect to the operations w and n 

induced by the order relation (4.5), consisting, for any pair of entropy 
matrices, in making the maximum and minimum of all the components. 
This lattice has a minimum element given by the matrix d m i  n z 0 and a 
maximum */max which is reached when (a t of)(xi) ~- !/2 for all x e l  and 

d(f ,  a) = L J" 
(4.4) 

satisfying the condition 

dj(f, a) = d(aj of) ,  j E J, (4.3) 

for all f ~ ~ ( I , L )  and ~ ~ ~ M k  

dj(f, ~) is, then, the entropy (see Definition 2.4) of the fuzzy set ~j o f 
defined on Aj( f ) .  d ( f ,  ~) can be represented by a M × 1 matrix 
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for all j ~ J. We observe that d is closed under application of stochastic 
matrices to its elements. 

From any entropy d ( f )  one can extract the scalar quantity 3(f) defined as 

M 

3(f) --~ ~ dj(f); (4.6) 
j = l  

when Dj = L, j e J, as in the first example of the previous section, (4.5) 
becomes 

M N 

3(f) = ~ ~ T[(~j of)(xi)]. (4.7) 
] = 1 / = 1  

If  the Dj are disjoint, as in the second example, ~(f) reduces to 

N 

~(f)---- Z T[(~-(k)of)(x~)], (4.8) 
k=l 

where j(k) gives for any k the index of the unique map ~J(k) which is 
considered. 

Let us now make, in view of the interpretation that will be given to the 
entropy d, the following assumptions on the maps ~j- : 

A1. The Aj(f) ,  j E J, for any f, are a cover of L 

A2. For any pair (y, z) of elements of L one has 

y <~ z <=> R(y) = R(z) and cg(y ) <~ ~(z) with j e R(y). 

A3. For any pair y and z of elements of L one has 

~ o ( y  v z )  = (~j o y )  w ( ~  o z) ,  

~j o ( y  ^ z )  = (~j o y )  c~ ( ~  o ~), j ~ j ,  

where ~) and n denote the lattice operations in 5~(I). 

The examples considered in the previous section satisfy the assumptions 
AI and A2; A3 is satisfied when D~- -- L, j s jr. 

If we suppose L to be a lattice and Dj = L, j e J, one can prove under 
the hypothesis A2, A3 (A1 in this case is automatically satisfied) the following: 

PROPOSITION 4.1. The entropy d satisfies for any fixed ~ e ~ M  the property 

d ( f  v g) + g ( f  ^ g) = d ( f )  - / g ( g )  (4.9) 

that is, d is a (matrix) valuation on the lattice 5¢(I, L). 
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To prove (4.8) one has to show that for all j ~ J and f and g ~ ~ ( / ,  L) 

dj( f  v g) + d~(f ^ g) = as(f) + dj(g), 

that is 

d(%.o ( f  v g)) -t- d(%o ( f  ^ g)) = d(%. of)  + d(% og). 

From the property (2.6) of valuation of d on the lattice ~ ( I )  one has 

d(%. of)  + d(a~ og) = d((~ 5 of)  k; (~j og)) + d((~j of)  c~ (a s og)), 

so that, under the assumption A3, (4.9) follows. 
By means of procedure analogous to the one used in De Luca and Termini 

(1972) it is possible to introduce in the class ~.~(I, L) of all the L-fuzzy sets 
defined on I the quotient set ~ ( I ,  L)/~.~ with respect to the equivalence 
relation 

f ~.~ g <=~ d ( f )  = d(g) (4.10) 

for a fixed ~ ~ A a~M~. 
To any element K ~ ~q~(I,L)/~ one may associate the quantity d(K)  

defined as 

d(K)  ~- d ( f ) ,  with f e K, 

and partly order the equivalence classes by the relation 

K~l < Ka2~ dl < 4 .  

We observe that, differently from what occurs in the case of fuzzy sets, 
the quotient set, in general, is not a chain. 

where 

DEFINITION 4.2. 

if As(f) ~ ~ and 

i f  & ( f )  = ~. 

The normalized entropy of an L- fuzzy  set is the matrix 

v( f )  ~ vMif) (4.11) 

1 
vj(f)  --  # A j ( f )  d~(f) 

v~(f) = oo 

643/24/~-5 
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v(f)  is obviously a generalization of the normalized entrop) o~ a fuzzy 
set (De Luca and Termini, 1972) and the component vj(f), j ~ J, represents 
the average amount of entropy, connected with the property PJ, with regard 
to those elements of I for which P~ has been considered. 

The normalized entropies u can be partly ordered in a similar way to the 
entropies d (see Eq. 4.2); however, these order relations are not, in general, 
comparable. 

5. MEASURABLE AND INDEPENDENT PROPERTIES 

Before dealing with the interpretation of the formal notion of entropy 
of an L-fuzzy set we take up again the interpretative problems related with 
the poset structure of the range of L-fuzzy sets. To this end the notions of 
measurable properties and independence of properties will be introduced 
more formally than was done in the previous sections. 

Let a class U of objects be given and a property P defined on it. We 
suppose that the objects of U can enjoy to a different degree the property P. 
Mathematically a map 

~,  : u- -~  [o, 1] (5.1) 

is given such that for all x ~ U, P(x) ~ (~bp(x) = 1) and ~bp(x) is interpreted 
as the degree to which x enjoys P or, equivalently, the degree of membership 
of x to the set 

PI(U) ~ {x ~ U] P(x)}. 

I f  ~e(x) = 1 we say that the property P is "present" in x; if ~e(x) = 0 
we say that P is "absent" in x. A property P together with a map ~bp given 
by (5.1) has been called measurable (Capocelli and De Luca, 1972) and, if 
PI(U) ~ ~, completely measurable. ~j, is called measure of P or membership 
function. The set Po(U) =- {x E U[ ~e(x) = 0} determines a further property 
~-~P such that 

(~-~P)(x) +-+ (~be(x) = 0). 

A noteworthy case is when, for all the objects of U, 

~ (x )  + ~_e(x) = 1. (5.2) 

Two properties /°1 ~'~ P completely measurable in U satisfying (5.2) are 
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called orthogonal. Intuitively this is the case when the objects of U have 
"features intermediate" between those of Pa(U) and P0(U). 

Let us now consider M properties p1,..., pM defined in U of measures 
¢~ ..... CM. Intuitively, the properties PJ( j  = 1 "" M )  are independent if U is 
such that whatever object of U is considered the values of a certain number 
of measures do not determine the values of the others. To better clarify this 
concept let us denote by Rh the range of ¢~: 

R h = range ¢~ (h = 1,..., M), (5.3) 

and by Cq..%(x) the s-tuple [¢ia(x),..., ¢i,(x)] with i a < i 2 < . - ' <  i~. 
We denote by Rq..% the range of ~bq...i . 

Some definitions of "independence" of properties are now given, the 
first (Definition 5.1) is a formal definition of independence of two sets of 
properties; the second (Definition 5.2) introduces the notion of a set of 
independent properties. 

DEFINITION 5.1. Let  ~ =_ {p1 . . . . .  p M }  be a set of  M measurable properties 
defined in U and two subsets ~ =-- {pnl,..., phi} and ~ ~ {p1%..., p1c,} of ~ .  
~. and ~ are independent in U i f  and only i f  

Rhr..hskr..kr = Rhl...hs X Rkl...kr, (5.4) 

where X denotes the Cartesian product of sets. 

DEFINITION 5.2. The measurable properties p1,..., pM are independent in U 
i f  and only i f  any {PJ}(j = 1,..., M )  is independent of any set of other properties. 

By this definition and from Definition 5.1 a necessary and sufficient 
condition for a set of properties to be independent is obtained. 

PROPOSITION 5.1. M measurable properties p1 , . . . ,pM are independent 

i f  and only i f  

Rh..,58 = R h X "'" X Rj~ (5.5) 

for  any s by s (simple) combination Ja ,..., J~ of the indices 1,..., M ?  

1 We note that even if Eq. (5.5) is not related to statistical considerations it looks 
similar to the conditions of "statistical independence" of a set of M events E t ..... EM i f  
R~ ...j is formally replaced by the "probability" of the event Ej c~ ... c~ Ej8 Rjk by 

1 s . . . .  1 

the probabzhty of Ejk , and the Cartesmn product by the ordinary product. 
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I f  condition (5.5) is not satisfied, the properties PJ(j  = 1 " ' M )  will be 
called dependent. A pair of two orthogonal properties p1 and P~ is a simple 
example of dependent properties. In  fact, if ~i e R1 with i ~ A,  A denoting 
a certain continuous--or discrete--set of indices, then R 2 will contain all 
and only the elements 1 - -  c~, i a -//. R12 is formed by all and only the pairs 
(~i, 1 - -  ai) with i a A and is then strictly contained in R1 x R~ (except the 
trivial case when # A  = 1). 

Let  us consider M ( M  > 1) independent measurable properties p1,..., pM 
defined in U. It  is not meaningful to compare measures referring to different 
properties. Because of this, as we said in Section 3, a poset and no longer a 
chain is obtained as range of the generalized characteristic function defined 
on U. The  matrix of the values 

1 ¢,~(~)J 

of the measures of the properties ph,..., pJi~ taken into account in a certain 
element x of U can be interpreted as the "matrix degree" to which x enjoys 
the conjunction p h  ^ ... ^ pJ~ of the considered properties. I f  in U the 
orthogonal properties ~ p h  ..... ~pJk  are also defined then by means of (5.2) 
one can compute, starting from the previous matrix, the degree to which x 
enjoys each conjunction 71(P h) ^ - " ^  7k(PJ~), where 7s(P ~8) stands for 
either p h  or ~PJ , .  In  such a case the degree matrix is 

We observe that, also in the case of a single property P, it is not always 
meaningful to compare two measures. In  fact a measure of P can be very 
" rough"  in some objects (for instance, ~b e can assume only few values in 
[0, 1]: 1 for a "big"  object, 0 for a "small" one, 1/2 in all the other cases), 
or very "sophisticated" for other objects, being sensitive to very small 
variations of the property. This lack of comparability occurs any time one 
makes measurements with instruments of different precisions. In  this case, 
besides the numerical evaluation, one also gives the precision of the instrument 
used, defined as the distance between the next two lines. To express in 
mathematical terms the concept of "precision" of a measuring instrument, 
let us give the following: 
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DEFINITION 5.3. 

map 

defined as 

For any subset R of the interval [0, 1] the tolerance is the 

~'R : n - ~  [0, 1] (5.6) 

rR(y) ~ min[[ w -- y l, w C y a n d w e R ] .  (5.7) 

I f  P is a measurable property in U having measure $ and R ,  = range $, 
then ~-%(y) with y ~ R~ gives the minimum distance between the degree y of 
the property P and any other degree. I f  ~-, is constant in U we shall call P 
homogeneously measured in U by ~b. For any ~b one can consider the class C,  
of all measures {4J~} of P such that 

I ~ ( x )  - ¢(x)l < ,R,(¢(x)) ,  x ~ v .  

I f  the measurements are performed by an instrument whose lines are just the 
values of ~b, then one is not able to discriminate with this apparatus two 
"measures"  belonging to the class C¢. Therefore  the introduction of real 
physical measuring instruments is equivalent to considering measures whose 
values are defined except for the tolerance % .  

6. INTERPRETATION OF THE ENTROPY OF L-FuzzY SETS 

In  Section 4 the notion of entropy of an L-fuzzy set was introduced in a 
purely formal manner,  just giving a more general and extensive definition 
than the one considered in the case in which L ~ [0, 1]. In  this section 
a possible interpretation of the previous notion is given and its possible use 
in decision theory is suggested. Let  us stress that in order to give an inter- 
pretation of the entropy of an L-fuzzy set as a measure of the amount  of 
uncertainty arising in decision taking we must first clarify the kind of decision 
one has to consider. 

Let  us consider M independent completely measurable properties P 
defined in U, j ~ J, J ~ {l,..., M}. For any PJ, j ~ J, we suppose that also 
the orthogonal property ~ P J ,  j ~ J, is defined in U. 

Let  I ~ {x z ,..., xn} be a finite subset of U. We suppose that for any 
object of I a variable number  of properties, less than or equal to M, is 
considered. In  such a way one has an L-fuzzy set f defined on I and M maps 

a~- of:  A j ( f )  --~ [0, 1], J ~ L 
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where ~3 °f(xk) ~ $~(xe) for x~ ~ Aj(f) .  Therefore ~. of(x~) has the meaning 
of degree to which xk enjoys the property PJ and 1 -- ~j of(x~) of degree to 
which xk enjoys ,-,PJ. 

We can then interpret the component d~(f) of the entropy matrix d ( f )  
as a measure of the total amount of uncertainty arising in a decision (P~, ~.~P~) 
for the elements of the subset Aj( f )  of L 

We stress that the above interpretation is correct if the precision of the 
measures of the property PJ is supposed to be homogeneous, that is, the map 
~-,j is equal to a constant. Otherwise to add the different contributions of the 
entropies due to different objects of I can be meaningless. 

The  homogeneity of a measure scale is generally an implicit assumption 
in the case of a single property. However, a stronger requirement we shall 
first make is that all the scales are homogeneous among themselves, that is, 
all the maps **j, j ~ J, are equal to a same constant. In  this case let us 
introduce for any x~ ~ I  the set R[f(xk) ] of the indices of all considered 
properties. We shall denote by D(xk) a decision in xk, that is, any choice 
between ph and ,..~PJ, for any j8 ~ R[f(x~)]. In  such a way one can give to the 
quantity ~(f),  formally defined by (4.6) 8(f)  --Zju=l dj(f) the meaning of 
total amount of uncertainty arising for all the decisions D(xk) when xk varies in L 

I f  we do not make the hypothesis of homogeneity for the properties PJ, 
j ~ J,  one cannot assume 3(f)  as a measure of the total uncertainty in decision 
taking since one cannot add the quantities dj(f), j ~ J. In  this case instead 
of a scalar quantity one has to consider, as measure of uncertainty, the matrix 
quantity d( f ) ,  defined by (4.4). 

I f f a  and f2 are two L-fuzzy sets such that d(fl)  ~ d(f2) , one can certainly 
state that the first one is "sharper"  than the second in the sense that, relatively 
to all considered properties, the total uncertainty related to f l  is less than or 
equal to the one of f2-  Furthermore d ( f )  ~ 0 if and only if there is no 
uncertainty in decision taking and d ( f )  is maximum, for any fixed cover o f / ,  
when ~. of(x) are equal to 1/2 for all the properties. We stress that in this 
case the entropies of L-fuzzy sets are not always comparable. 

The  meaning of the normalized entropy v(f) defined by (4.12) is that 
of average uncertainty, or uncertainty per decision. I f  v(f~) <~ v(f2), this means 
that the first L-fuzzy set is on the average sharper than the second one. 
T h e  infinite value given to vj(f) in the case in which Aj = ~ is intended to 
distinguish between the case in which the property PJ has not been taken 
into account from the one in which the function c 9 o f  takes the value 0 or 1 
so that the entropy dj(f) is 0. 

As we said in Section 4 the partial order relations between entropies and 
normalized entropies, except particular cases, are not comparable. Indeed, 
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for instance, in the case of two properties p1 and pc, if for the most objects 
of I the property p1 is taken into account, dx(f) can be very high and de(f) 
very small, whereas the uncertainty per decision vl( f )  can be very much 
smaller than re(f). 

We now propose to give a further interpretation of the entropy d ( f )  of 
an L-fuzzy set. To  this end we introduce some composition operations on 
the class of measurable properties. I f  P and Q are two measurable properties 
in U, also their disjunction P v Q and conjunction P A Q are measurable 
with respect to the measures ~Pvo and ~bp  ̂o defined as 

I/~e~ o(X) = m a x { ~ b p ( x ) ,  ~bo(x)}  , 

~be^o(X ) = min{~be(x), ~bo(x)}, for all x ~ U .  
(6.1) 

Let us now consider M pairs of orthogonal properties (PJ, ~PJ) ,  j ~ ] ,  
defined in U. 

If  we consider the disjunction P of the properties PJ, j ~ J, 

P(x) ~ Pl(x) v "" v pU(x), x ~ U, 

the measure of P according to (6.1)1 is given by 

~p(X) = max¢~bpl(x),..., ~bpM(X)}. 

~bp(x) for any x 6 U gives the degree to which x belongs to the set 

M 

Pl(U) = U P?(U). 
j = l  

We observe that in U one has 

e~ap(/~)  4-}  e , ~ p l ( x  ) A "'" A ~PM(x) 

so that the measure of ~-~P according to (6.1)2 is 

~b~p(x) = 1 - -  ~be(x), x e U. 

~'.~P is then measurable and orthogonal to P. 

In  the following, ~ P  will be supposed to be completely measurable. 
I f  I =~ {x 1 ." xw} is a subset of U, we can consider the measure ~p o f of 

P in I, having 

ap o f  = (al ° f )  v "'" v ((x M of) .  • (6.2) 
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ap o f  is a fuzzy set defined in l, and for any xk EI, ae of(x~) is interpreted 
as the degree to which xz~ enjoys P (or belongs to PI(U)) and 1 - -  (c~ e of)(xi) 
as the degree to which xk enjoys ,-~P. 

We stress that the value of ae o f  refer to different properties which are 
generally characterized by different precision measures T,. 

Let first suppose all the measures to be homogeneous. In  this case the 
entropy of the fuzzy set a e o f can be assumed as measuring the total amount 
of uncertainty in the decision taking (P, ~-~P) for all the objects of 1. 

One can consider f as an L-fuzzy set formed by M chains if for any x~ E I 
there exists only an index j such that (6.2) is satisfied, that is, 

o~p o f (xk) = 0 9 o f (xk). 

In  this case one has 

d(~, o f )  = ~(])  = Z d,(]) .  
J 

I f  there exist more indices j such that satisfy (6.2), denoting this set by 
W[f(xi)], one can measure the uncertainty by the quantity: 

1 T(o9 °](xi)). : (6.3) 

Let us now consider the case of not homogeneous measures. In  this case if 
# w [ f ( x k )  ] ~ 1 for all x~ E I the matrix d ( f )  can be assumed as a measure 
of the total uncertainty in the decision taking (P, ~P) f o r  all the elements of I. 
d ( f )  is 0 if and only if all the elements of I either enjoy P or ~ P ;  d ( f )  is 
maximum, for a fixed partition, if and only if ~e of(x) holds ]/2, for all the 
elements of I. 

We stress, however, that the entropies d are not always comparable. 
I f  there are more indices j such that (6.2) is satisfied a (matrix) measure in 
the decision taking (P, ~ P )  can be given by the matrix g ( f )  whose 
components are 

1 
# w [ f  (x~D] -7 

In  the case of homogeneity of measures one has 

of) = E u,(]). 



ENTROPY GF L-FUZZY SETS 71 

We observe that the matrix u( f )  can be expressed as 

1 ~ d~(f), (6.4) 
¢e(f) = ]-[k #w[f(x~)] 

where {d~(f)} is the set of all entropy matrices that one can obtain disposing, 
for any x~ ~ I, f(x~) in any one of the chains of order index belonging to 

w[f(x~)]. 
Let us stress that the above rule of giving the some contribution 

1 T(~ of(x~)) 
#w[f(xk)] 

to all chains whose index belongs to w[f(xk)] ,  in the construction of the 
uncertainty matrix ~(f) ,  leads to the result (6.4), that is quite natural to 
expect. In the case of a possible set of entropy matrices, in absence of other 
information, one can consider as a measure of uncertainty the ensemble 
average of these matrices; that is equivalent to consider them on the same 
footing for what concerns the information they give. 

7. CONCLUDING REMARKS 

Shannon's entropy plays an essential role in information theory. Apart 
from the similarity with the thermodynamic entropy, the main argument 
for the use of this quantity is the fact that the basic coding theorem of 
information theory is true only for Shannon's entropy. 

However, the entropy measures can be used not only in problems of 
transmission of information, but also in other fields. For this reason in some 
applications other entropy measures have been introduced (see, for instance, 
Schiitzenberger, 1953; R6nyi, 1960). 

It  has been shown (Vajda, 1969) that in statisticalpattern recognition a class 
of entropy measures (see Eq. 2.4) which includes Shannon's entropy can be 
taken into account. These measures enjoy only some of the properties of 
Shannon's entropy as the basic one of the concavity of the function - -p  in p. 

Often the use of entropies different from Shannon's is more convenient 
in order to relate the uncertainty measures to some typical quantities of the 
decision-taking processes. The functional one has to use generally depends 
on the particular considered problems. 

One can also consider measures of uncertainty outside of a statistical 
context, in decision-taking processes performed on ensembles of objects 
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described by fuzzy sets (De Luca and Termini, 1972; Capocelli and De Luca, 
1972). 

It  has been shown (Capocelli and De Luca, 1972) that some measures 
of entropy and "energy" of the considered systems can be easily related to 
the results of deterministic or probabilistic decisions performed on them. 

A further and more substantial generalization of the classical concept of 
entropy has been presented in this paper. The  entropy is no longer a numerical 
quantity but a column matrix (or vector). This kind of quantity is considered 
for a macroscopic description of systems formed by objects individually 
described by a given set of independent and measurable properties. 

In  such a way not all the possible situations (or macroscopic states) may 
be compared by means of their entropies. 

I t  seems to us that the previous situation occurs very frequently in pattern 
recognition where often the systems are described by means of independent 
measurable properties that may have different weights in order to classify 
the patterns, and whose measures scales only in some cases are homogeneous. 

As we have seen in Section 5 an interpretation of the previous entropy 
is attained in decision processes: its meaning is still the one of an uncertainty 
(matrix) measure. 

We note, however, that some specifications of the decisions process and 
further information on the homogeneity and relevance of the properties may 
allow extracting from the matrix-entropy a numerical evaluation of the 
uncertainty. 

We think that the previous generalization of the classical concept of 
entropy are necessary in order to attain a "good" macroscopic description 
of the systems on which decision processes take place. 

RECEIVED: April 19, 1973 
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