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Abstract
Requirements engineering is crucial for software projects, but formal requirements engineering
is often ignored in scientific software projects. Scientists do not often see the benefit of di-
recting their time and effort towards documenting requirements. Additionally, there is a lack
of requirements engineering knowledge amongst scientists who develop software. We aim at
helping scientists to easily recover and reuse requirements without acquiring prior requirements
engineering knowledge. We apply an automated approach to extract requirements for scientific
software from available knowledge sources, such as user manuals and project reports. The ap-
proach employs natural language processing techniques to match defined patterns in input text.
We have evaluated the approach in three different scientific domains, namely seismology, build-
ing performance and computational fluid dynamics. The evaluation results show that 78–97%
of the extracted requirement candidates are correctly extracted as early requirements.
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1 Introduction

Software requirements describe the software system to be built, and provide a basis for agree-
ment on what the software system is to do, a baseline for validation and verification, a basis for
enhancement, as well as for estimating development costs and schedules [1]. Usually, software
engineers use requirements to communicate ideas for the software to develop and many software
engineering methods are built upon requirements. In fact, successful software projects allocate
a significantly higher amount of resources to requirements engineering1 than average projects,
according to Hofmann and Franz’s study [13].

In computational science and engineering (CSE) projects, scientists develop software with a
great emphasis on implementing numerical methods to generate accurate scientific results and

1Requirements engineering refers to the process that deals with software requirements, including specifying,
documenting, analyzing requirements etc.
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improving the computational performance. These projects have many requirements such as a
computation method that needs to be carried out and various data that need to be handled in
software. We claim that the requirements must be specified and managed, because requirements
not only help describe complex software systems and problems to solve, but also serve as a
basis for applying software engineering methods. For instance, based on specified requirements,
applicable software architectures and design patterns can be employed and adapted to develop
modularized and maintainable software. Test oracles are defined according to requirement
specifications and various testing methods can be applied such as automated unit testing and
regression testing, to identify software defects early and resolve them timely.

However, recent studies found that requirements documentation is the least commonly pro-
duced type of documentation and that the majority of scientific software is developed without
a detailed requirements specification [14,18,19,21]. Reasons against producing documentation
were limited time and the high amount of required effort, as well as scientists refusal to spend
time on software issues that do not visibly and directly contribute to their research [14, 18].
Another cause for the lack of requirements documentation is scientists’ inadequate knowledge
of requirements engineering [12].

Motivated by these studies, in this work we develop an automated requirements extraction
approach to support requirements recovery in scientific software projects. The automated ap-
proach uses text analysis techniques for the extraction of requirement candidates. For reducing
information overload, it applies a topic modeling algorithm to group semantically related re-
quirements. This allows scientists to recover requirements from legacy systems automatically
and reuse the requirements in new projects, which considerably reduces the effort to manu-
ally create requirements from scratch. Unlike machine-learning based approaches, we use a
pattern-matching approach that does not require manually labeled training data.

In particular, we focus on the extraction of early requirements such as goals, functions and
constraints of software, to “understand the problem domain and the constraints on the range
of possible solutions” [20]. On the contrary, late-phase requirements focus on completeness,
consistency, and verification of requirements [22]. To address the root cause of the lack of
requirements specification in CSE projects, we need to first focus on early requirements, in
order to help scientists gain deep understanding about the project and resources and come
up with an initial set of requirements. Afterwards, other late-phase requirements engineering
methods can be adapted and applied to refine and formalize early requirements.

2 Related Work

Gervasi and his colleagues presented a web-based environment that supports creation, validation
and evolution of natural language requirements [3,10]. Their work focused on the completeness
and precision of requirements (i.e. late-phase requirements). Berry and his colleagues have
applied grammatical parsers, repetition-based approaches and signal processing algorithms to
identify abstractions from documents [2, 4, 11]. Abstractions are usually in forms of significant
words and short phrases that capture the main ideas or concepts in a document. The identified
abstractions can help humans to understand the document and further elicit and write formal
requirements. While their work focused on generating abstractions that serve as a prompt for
requirements, we aim to extract instances of early requirements from documents by utilizing
known abstractions in the scientific computing domain.

More recently, Cleland-Huang et al. [7] proposed an information retrieval based approach for
the detection of non-functional requirements, in both requirements specification and freeform
documents, such as meeting minutes and interview notes generated during the elicitation. While
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this approach requires pre-categorized training data, a semi-supervised approach was proposed
by Casamayor et al. [6]. This approach allows for the input of a small amount of training data
of pre-categorized requirements. Therefore, it reduces the manual effort required for labeling
requirement categories in a big training data set. Our approach targets the scientific domain
and predefines general domain-specific knowledge and rules which allow the detection and ex-
traction of requirements without any training data. The requirements candidates extracted
with our approach could be used as training sets in Cleland-Huang et al.’s and Casamayor et
al.’s approaches.

3 Prerequisites

We employ the DRUMS (Domain specific ReqUirements Modeling for Scientists) requirements
meta-model throughout the automated requirements extraction process. DRUMS was formerly
introduced in [16] as a SCRM2. The meta-model provides abstractions and notations targeted
at scientific software development.

The core requirement types defined in DRUMS include Model, Computation Method, As-
sumption, Data Definition, Process, Interface, Hardware, Performance and Constraint. Model

represents concepts that are used when solving a scientific problem, such as geometry models
and mathematical models. The governing principles and physical laws can be described in
models. Computation Methods contain the logic and strategies for solving the problem, they
are usually expressed in algorithms. Models and computation methods are often created on
certain Assumptions. Data Definition defines the data to be processed in a software pro-
gram. It contains information such as data format, range and accuracy. Process defines steps
or tasks that need to be carried out in the software program. The software product might
require or provide a software Interface for communicating with external libraries or a user
Interface that supports end-user interaction. Furthermore, software might rely on certain
Hardware, e.g. types of computer platform, memory, graphic card or compiler. Performance is
another big concern to scientific software. There might be specific requirements on processing
speed, response time, latency, bandwidth and scalability of the software product. Finally, other
Constraints that will limit developers’ design choices should be specified.

In our approach, we create gazetteers [8] and rules for pattern-matching based on DRUMS
requirement types, to extract requirement candidates. In Section 4.2 we introduce the gazetteers
and rules in more detail.

4 Approach

This section presents an automated approach to extract early requirements for CSE projects.
The three main phases of our approach are input data preparation, pattern matching, as well as
topic modeling. First, the knowledge sources are prepared as input data. Second, statements in
text are extracted into a set of requirement candidates based on defined pattern-matching rules.
In the third step, topic modeling is performed to group the extracted requirement candidates.
This is an optional step to perform for reduce information overload.

2Scientific Computing Requirements Model
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4.1 Input Data Preparation

We utilize software user manuals and project reports as the main knowledge sources for ex-
tracting requirements. Software user manuals give users an introduction to various “How-to”
guides, which include a wide variety of themes, such as installation instructions and getting
started descriptions. Installation guides often contain requirements about hardware, computer
platforms and external software interfaces, among others. In getting-started guides, common
features of the software are mentioned and the procedure to use these features is described.
Another type of knowledge source are project reports. Scientific projects that involve software
development often define work packages and the features that need to be realized in project
reports. High-level functional and non-functional requirements, as well as constraints on soft-
ware development can be identified in these reports. The mentioned textual documents contain
noise, such as the table of content and references. We first manually remove these parts. Then,
the text is tokenized into a sequence of words and punctuation symbols.

4.2 Pattern Matching

In this phase, we apply natural language processing techniques to automatically analyze the
input data and extract requirement candidates from the text that match defined pattern rules.
We employ the GATE tool [9] for text analysis.

As a first step, keywords in the input text are looked up in a gazetteer [8]. A gazetteer
consists of lists of entity names. In our approach, we provide default lists of names for the
entities of the DRUMS types defined in Section 3. The sources of entity names in our gazetteer
include text books and wikipedia entries. The lists provided by the approach can be extended to
include additional entities and domains. When the gazetteer processes a document, it annotates
the occurrence of the different DRUMS types in the text. For instance, the list belonging to
the Computation Method type contains entities describing classic computation methods such
as “Gaussian Elimination”, “Monte Carlo” and “Finite Element”. Whenever these terms are
found in the text, they are annotated as a Computation Method DRUMS type.

However, the gazetteer can only find a limited set of occurrences of DRUMS types in text.
For example, the following text describes a computation method for calculating illuminance.

“Radiance overcomes this shortcoming with an efficient algorithm for computing
and caching indirect irradiance values over surfaces, while also providing more
accurate and realistic light sources and surface materials.” – (1)

The text above does not contain any of the names specified in our gazetteer. Consequently,
it will not be annotated, although it certainly describes a computation method. Hence, only
using gazetteers is not enough to identify requirement statements in text.

Because DRUMS types cannot be identified by only using gazetteers, we define rules to
match patterns that represent DRUMS types. These rules are based on parts of speech (e.g.
nouns, verbs, adverbs). Therefore, we use part-of-speech (POS) tagging to annotate the dif-
ferent parts of speech present in text. In Table 1 we define the patterns for DRUMS types.
For simplicity, in each rule, we only present the base form of each word (e.g. “calculate”
represents {“calculate”, “calculates”, “calculated”}). With the inclusion of these patterns the
phrase in boldface shown in (1) could be identified as a Computation Method, as it matches
the “...method for {doing verb}...” pattern, where method stands for any word from the set
{method, technique, approach, algorithm}.

In this process, matched patterns and keywords are annotated in the text. However, without
context a pure sequence of words (e.g. “algorithm for computing and caching”) will not help
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Table 1: Patterns for DRUMS types.

DRUMS
type

Patterns Remarks

Computation – method of {noun | noun phrase} method denotes the word “method”, and its
synonyms, including {method, technique,
approach, algorithm}.

Method – method of | for {doing verb}
– {adjective | doing verb | noun} method

Data – require ... data of | for... data denotes the word “data”, its synonyms
and words related to defining data, including
{data, information, file, accuracy, format},
require denotes the words {require, use, need,
accept, allow, take}.

Definition – data {modal verb}...

Process – {noun | noun phrase} process process denotes the word “process”, its
synonyms and words related to processing
data, including {process, calculate, compute,
discretize, input, output}.

– {proper noun} {modal verb} {verb}
– {proper noun} {do-verb}

Constraint – constraint of | that | ... constraint denotes the word “constraint”,
and its synonyms {restraint, limitation}.
restrict denotes the words {restrict, limit}.

– {modal verb} restrict
– {be-verb} restricted to

Assumption – assume that | ... –
– assumption | hypothesis of | for ...

Interface – {proper noun} interface interface denotes the word “interface” and
words related to software interface and user
interface, including {API, library}.

– interface of | for ...

Model – {noun | noun phrase} model –
– model of | for ...

Performance – no pattern specified. We only find keywords
in gazetteer, such as “efficient”

Hardware – no pattern specified. We only find keywords
in gazetteer, such as “CPU”

scientists understanding the requirements, instead it will be confusing to figure out what these
words represent. Through a manual evaluation of examples of extracted sequences and their
context we found that the sentence that contains a matched pattern can in most cases be
understood in isolation. Hence, we extract these sentences and export them together with their
DRUMS types. We call these sentences requirement candidates. Table 2 shows examples of
extracted requirement candidates and their classified DRUMS type.

4.3 Topic Modeling

For large input documents, the pattern matching process can extract hundreds of requirement
candidates. It is challenging to manually review and reason about these hundreds of require-
ments all at once. To avoid such an information overload, we perform topic modeling to group
requirement candidates containing similar content together. Then, the grouped requirement
candidates can be more easily processed.

Before giving the requirement candidates text to the topic modeling algorithm we perform
the following additional preprocessing steps: (1) Remove stopwords: We remove stopwords
to eliminate terms that are very common in the English language, but are not informative,
such as “the” and “with”. The approach uses the stopword list provided by Lucene3, (2)
Lemmatize: To group different inflected words, we lemmatize the words in the text. With

3https://lucene.apache.org/
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Table 2: Example of extracted requirement candidates.

Extracted Requirement Candidate DRUMS
type

Instead Reynolds-averaged simulation (RAS) turbulence models are used to solve for the
mean flow behavior and calculate the statistics of the fluctuations.

Model

The overall application performance is highly dependent on the properties of the data
storage and management service, which needs to be able to efficiently leverage a large
number of storage resources that are distributed across local infrastructures of the VERCE
partners and large European scale infrastructures (HPC, Grid and emerging Cloud).

Performance

The two-phase algorithm in interFoam is based on the volume of fluid (VOF) method in
which a specie transport equation is used to determine the relative volume fraction of the
two phases, or phase fraction a, in each computational cell.

Computation
Method

The SPECFEM 3D software package relies on the SCOTCH library to partition meshes
created with CUBIT.

Interface

Again this is a geometric constraint so is defined within the mesh, using the empty type
as shown in the blockMeshDict.

Constraint

The program assumes that the surface temperatures on both sides of the surface are the
same.

Assumption

The mesher at these resolutions however needs temporary access to more shared memory
(50 GB).

Hardware

What file format could be used for the meshes to allow flexibility (e. g., SCEC community
model approach)

Data

During the processing step, depending on the application, seismograms must be filtered
and normalized in a certain way.

Process

this step, for example, the terms “big” and “larger” are grouped into the term “big”, while the
terms “sees” and “saw” are grouped into the term “see”, (3) Extract bigrams: To produce
more explanatory topics, we extract bigrams from the requirement candidate text. We apply a
collocation algorithm using a likelihood metric [17]. In the following paragraph we will use an
example to illustrate why we extract bigrams.

We use Latent Dirichlet Allocation (LDA) [5], a topic modeling algorithm to group require-
ment candidates that refer to the same theme or have the same topic. LDA is a probabilistic
distribution algorithm which uses Gibbs sampling to assign topics to documents, in our case
requirement candidates. In LDA, a topic is modeled as a probability distribution over all words
contained in the analyzed documents. An example of a topic can be the set of words {water,
flow, rate, mass, ...} which describes a topic referring to mass flow rate or water mass flow
rate. LDA models each requirement candidate as a probability distribution of topics. This
means that each requirement candidate can be associated with more than one topic. To in-
crease the descriptiveness of our topics we input word bigrams instead of single words to the
LDA algorithm. Our previous topic example can be described with the following set of bigrams
{flow rate, mass flow, water mass, ...}. The use of topics containing bigrams instead of single
words can help scientists get a more accurate idea of the content shared by the requirement
candidates assigned to the same topic. Our approach, however, can also handle single word
topics.

For our approach we used the Matlab Topic Modeling Toolbox4. Table 3 shows an example
of two extracted topics and of two of the requirement candidates associated to each of the topics.
The topics generated by the LDA algorithm are used to group the requirement candidates by
their content. Therefore, requirement candidates belonging to the same topics can be analyzed

4http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
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together. This reduces the information overload that would occur if scientists would need to
analyze and process all requirement candidates at once.

Table 3: Extracted requirements and their topics from EnergyPlus user manual.

Topic: flow rate, mass flow, design water, water flow, low temp, radiant design, temp radiant,
water mass

– The internal variable called “Hydronic Low Temp Radiant Design Water Mass Flow Rate for Heating”
provides information about the cooling design water flow rate for radiant systems defined using a Zone-
HVAC:LowTemperatureRadiant:VariableFlow input object.

– The model operates by varying the flow rate to exactly meet the desired set-points.

Topic: power level, design level, internal variable, provide information, power associate

– The internal variable “Process District Heat Design Level” provides information about the maximum
district heating power level associated with each HotWaterEquipment input object.

– The internal variable “Lighting Power Design Level” provides information about the maximum lighting
electrical power level associated with each Lights input object.

5 Evaluation

In the following, we evaluate the quality of the extracted requirement candidates and report
the evaluation results.

5.1 Experimental Setting

We chose scientific software from three domains for the evaluation, namely, computational fluid
dynamics (CFD), seismology and building performance. We input two documents for each
domain from two different scientific projects. ANSYS Fluent and OpenFOAM are two major
software products in the computational fluid dynamics domain. SPECFEM 3D is a software
package for simulating seismic wave propagation. Verce is a research project which supports
data intensive applications in the seismology field. Radiance is a research tool for analysis
and visualization of lighting in buildings. EnergyPlus is an energy analysis and thermal load
simulation program. Table 4 lists the input documents for the evaluation, their domains, the
size of the documents, and the number of extracted requirement candidates. Five of the input
documents are user manuals and a project report. All documents are publicly available.

Table 4: Overview of the evaluation dataset.

Input Domain Size Size #Req.
(#pages) (#sentences) candidates

ANSYS Fluent User Manual (Chap. 9)
(www.ansys.com)

Computational Fluid
Dynamics

29 650 35

OpenFOAM User Guide
(www.openfoam.com)

Computational Fluid
Dynamics

185 1853 214

SPECFEM 3D User Manual
(www.geodynamics.org/cig/software/specfem3d)

Seismology 46 1500 125

Verce project report D-JRA1.1
(www.verce.eu)

Seismology 36 640 90

Radiance User Manual
(www.radiance-online.org)

Building Performance 38 587 41

EnergyPlus Basic Concepts Manual
(www.eere.energy.gov/buildings/energyplus)

Building Performance 66 1493 91
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We manually reviewed each extracted requirement candidate and rated: (1) is-requirement:
if a candidate can be considered an early requirement that describes the objectives, functions,
properties and constraints of the system, (2) clarity: a requirement candidate is clearly under-
standable to reviewers (to the evaluator in our case), and (3) relevance: a requirement candidate
is considered relevant if it describes some idea that conforms to the identified DRUMS type.
We used a three-level scale for the rating, i.e. yes, yes/no and no, where yes/no represents a
borderline case. For each metric, we calculated a strong form and a weak form. The strong
form is the percentage of requirement candidates that are rated as “yes”. The weak form is the
percentage that also takes the borderline cases (“yes/no”) into account, e.g., claritystrong =
|{ratingclarity=“yes”}|

#requirement candidates and clarityweak =
|{ratingclarity=“yes”}|+|{ratingclarity=“yes/no”}|

#requirement candidates .

5.2 Evaluation Results

The results of the evaluation of the requirement candidates are presented in Table 5. The
high is-requirement scores indicate that 78–97% of the extracted candidates can be considered
early requirements such as goals, constraints and functions of the software. The candidates
are reusable knowledge and examples of relevant ideas that scientists should think about when
developing software in a similar domain. Radiance has the lowest is-requirement score. A
manual inspection shows that the writing style and the tone of all ratingisrequirement = “no”
candidates in Radiance were different than other requirement candidates we evaluated. For
instance, a candidate is “you have heard good things about 3D Studio, so you make use of the
export and import options to get your model over to this package and start to play around with
it”. This example sounds like storytelling and does not provide clear information for how the
‘import and export option’ can be included in the software to build. We rated such candidates
as non-early requirements.

We rated many candidates as borderline cases in the clarity metric. The main reason for
this, is that many extracted candidates contain a coreference to some previous part in the input
text. For example, a candidate contains “...these files” that refers to files specified in a previous
part of text, but not in the extracted candidate. Hence, it is difficult to comprehend such
requirement candidates individually. Another reason behind the rated borderline cases is that
many requirement candidates are at a low-level of abstraction, such as a particular command
line. They are not clearly understandable, but they do give some hints of certain software
functionality.

Table 5: Measurements of extracted requirement candidates.

Is-requirement Clarity Relevance
Input strong weak strong weak strong weak
ANSYS Fluent User Manual 0.97 0.97 0.57 0.60 0.66 0.86
OpenFOAM User Guide 0.88 0.93 0.50 0.60 0.59 0.71
SPECFEM 3D User Manual 0.89 0.93 0.44 0.72 0.58 0.77
Verce project report D-JRA1.1 0.93 0.95 0.52 0.78 0.62 0.82
Radiance User Manual 0.78 0.80 0.33 0.63 0.60 0.83
EnergyPlus Basic Concepts Manual 0.81 0.92 0.40 0.81 0.54 0.70

Regardless of the clarity in which they are expressed, the majority of the extracted require-
ment candidates present ideas that conform to the identified DRUMS type. This is reflected
in the relevance scores shown in Table 5. Many candidates were rated as borderline cases in
this metric too, because our approach only assigns a single DRUMS type to a candidate, while
often a candidate can be associated to various DRUMS types. Nevertheless, these score values
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are a good indicator of the potential of using the requirement candidates for stimulating more
ideas for related requirements.

5.3 Discussion

Our evaluation results show that the majority of the extracted requirement candidates are valid
early requirements and have a high relevance for their domain. This meets our goal that the
extracted requirements should be reusable knowledge and examples of relevant development
ideas without scientists being overloaded with information. Scientists can further get started
with requirements engineering by reusing relevant requirements from past projects and eliciting
more requirements based on the extracted sample requirements.

Through our evaluation, we found that requirements extracted from project reports cover
a wide range of development aspects, such as functionalities, known interfaces and design con-
straints. On the other hand, requirements extracted from user manuals elaborate more informa-
tion but have less varieties. The extracted requirements are mostly about the user interaction
and data handling.

We have also identified limitations of our approach. We found some of the extracted can-
didates have low clarity. This can be improved by substituting the coreferences in extracted
requirement candidates (e.g. substitute “this” to its referred noun phrase from previous text).
The gazetteers used in our approach are an initial set of entities manually collected from
wikipedia entries and text books that can be applied to all scientific computing domains, how-
ever they can be incomplete. The available gazetteers can be manually extended to include
additional entities and domains. The approach can also be customized through the application
of automatic gazetteer techniques, such as the one presented by Kozareva [15]. Our approach
can also be improved with the inclusion of additional patterns.

6 Conclusion

We presented an approach to automatically extract requirement candidates from given resources
such as user manuals and project reports. Depending on the size of the requirement candidate
sets, topic modeling can be carried out to group candidates that share the same topic. We
believe this is a first step to introduce scientists in CSE projects from “no requirements” to
“some requirements” to get started with, by automatically extracting requirements without
requiring prior requirements engineering knowledge and much effort. We evaluated the quality of
the extracted requirement candidates from six documents in three different domains. The results
show that most extracted requirement candidates are true early requirements, which describe
software development knowledge from different aspects. Besides helping recover requirements,
we also recommend scientist to extract requirements from past projects and reuse the extracted
development knowledge in new projects.
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