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ABSTRACT 

The general form of a real quadratic mapping of spheres can be determined by 
studying the diagonalization of each form in an associated family of quadratic forms. 
In particular, the eigenvalues provide a means for detecting maps which are of the 
Hopf type. When the eigenvalues are nonzero for every form in the family, the forms 
associated to f: S” -+ S” give rise to a quadratic form :n the tangent bundle of the 
unit sphere S”. If f is of the Hopf type, nondegenerzcy of each form occurs only 
when n = 1,3,7,15. 

1. PRELIMINARIES 

We will follow the notations and definitions which appeared in our 
previous work [9]. The symbols 2, R, and C denote the ring of integers and 
the fields of real and complex numbers, respectively. Let (U, 9”) and (V, 9”) 
be real positive definite quadratic spaces of dimension n and m, respectively, 
with n, m > 2. Let S, = {X E U: su(x) = l}, Sv = {x E V: 9”(x) = l}, and 
S(U,V)= {f: u+v: f is a quadratic map and 9v(f(x)) = 9&x)2 for all 
x E U}. Clearly, f: S, -+ S,. For every f E S(U, V) we define a family of 
quadratic fern-s f,, e E S,, as follows: f,(z) = (f(n), f(e)) “, where ( , ) v 
denotes the symmetric bilinear form on V corresponding to 9”. Since (U, 9rr) 
is a nondegenerate quadratic space, there is a linear self-adjoint map F, : U -+ U 

such that (f(z), f(e)) v = (F,(z), z) u for z E U, where ( , ) u denotes the 
corresponding symmetric bilinear form on (U, 9”). All of the eigenvalues of F, 

are real. Let p, be the multiplicity of the eigenvalue 1. We have shown [9, p. 
2621 that F,(e) = e (p, >, 1). The following theorems show the relationship 
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between the form f, and the general form of the map f [9], p. 262, Theorem 
1. 

THEOREM 1.1. Let f E S(U, V), e E S,,, e=f(e)ES”. The form f, and 

F,aredefinedasabove. LetX={zEU:F,(z)=z} andU=XIY,V=R& 

I V,. The quadratic map p: U + V, is given by 

P(4=f(+f,(+¶ where z=(x,y)EU, 

a& B: X x Y + V, is the bilinear map given by 

Then f has the following fmn: 

where qx = qcr j X, and the following are true: 

(1) q@(y))+ f,(y)’ = qy(y)‘, where 

qv, = qv I v,, 9r=9ulY, 

(2) (B(x> Y), P(Y))~, = 0, 
(3) 2q,JR(x, Y))+ qx(x)fe(y)= qx(X)qr(y). 

COROLLARY. There is a basis of U over R with respect to which 

f ES(U,V) has theform 

. . * +x;*+ h,y,2 + * *. + &y;e 1 ~B(~>Y)+L~(Y) ’ 

where e E S,, z=(x,y), x=(x, ,..., X,)EX,={XEU:F,(x)=x}, y= 

(Y 1,...,Y,)EXel = Y,, and - 1~ A, < 1 for all i, 1~ i < qe, with n = p, + 

q, = dimension of U over R. 

2. HOPF MAPS OVER R 

We will define various subsets of S(U, V) using the value of pP, for e E S,. 
We begin with the following theorem (see [6], p. 166, Proposition 5): 
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THEOREM 2.1. For e E S, and n, m, p = p,, q = qe defined as above, we 

havep,>n-m+l. 

proof. Let f(z) = f(x, Y> = [qx(x) + f,(y)]& + [2&x, y) + P(y)1 E 
S(U,V)and z=(x,y)~U=X~Y,with X definedasaboveand e= f(e)E 

Sv. We have B(x, y ) = X(x)y, where h(x) : Y + V, is linear. By statement (3) 
of Theorem 1.1, we see that A(x)y = 0 implies that qx(x)f,(y) = qx(x)qy(y). 

If x#O, then q,(x)ZO. Therefore, f,(y)=q,(y)=y,2+ ... +y,2=hlyF 
+ ... +X,yt. Since A,#1 for all i, we must have y,=O, lgi<q, and 

hence y = 0. Thus, if x # 0, X(x) is injective and the dimension of Y over R 
is q < m - 1 = dimension of Vi over R, i.e., n - p, = q, < m - 1, and p, > n 
- m+lforalleES,. n 

Let S&J, V) denote the subset of “constant” maps, i.e., S,(U, V) = { f E 
S(U,V): f(z)=qr,(z)e, &ES,, z~U}.Itiseasytoseethatforf ESa(U,V), 
p, = n for ail e E S,.. The following was shown by R. Wood [lo, p. 163, 
Theorem 21: If n is a power of 2, then ah polynomial mappings of the unit 
spheres S” + S”-’ are constant. A consequence of this is the following: for 

n > 2r ail polynomial maps S” + S’ are constant. We can prove this result, 
for quadratic maps, as follows: 

THEOREM 2.2. S(Rn+l,Rr+l)=So(~n+l,~'+l) ifn >, 2r. 

Proof. f ESO(R”+l,R’+l) a p,=n+lforsomeeES” - p,=n+l 

for all e ES”. 
Assume f E S(R”+l, R’+‘) - SO(Rntl, R’+‘). Therefore we have 1~ p, 

= pin, qe=q=n+l-p, f,(z>=(f(z), f(e))=(F,(z),z), p is the di- 
mension over R of X= {TER”+‘: F,(x)=x}, R”“=XLY, and II’+‘= 

R&IV, with e= f(e). 

By Theorem 1.1, with .z =(x, y)~ R”+i, we have f(z)= f(x, y)= [q,(x) 

+~,(Y)I~+[~B(KY)+P(Y)I. A s a b ove, we write B(x, y) = X(r)y = p(y)r, 
where X(x):Y-V, p(y):X-V if x#O+y. Therefore, p<r, q<r, and 
n+l-r<ntl-q=p<r,i.e., n+1<2r, n<2r. n 

We use the value of p, to study mappings of spheres whose form 
resembles that of the classical Hopf fibrations [l, 21. We make the following 

DEFINITION. A map f: U - V is a Hopf map if there exist orthogonal 
decompositions U = X _L Y and V = RE I V,, with E E Sv, and a bilinear map 
B:XxY-+V, with q”,(B(x, Y)) = q,(x)qr(y) where qs = qr7 I X, qr = 
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9rr(Y,and9v,=9vIV,,suchthatfhastheformf(z)=f(x,y)=L9,(x)- 
9r(y)]s+2B(x,y). Let H(U,V) denote the set of Hopf maps U-+V. 

Clearly, H( U, V) c S( U, V ). 
It has been shown by R. Wood that every map in S( U, V ) is homotopic to 

a map in H(U,V) [lo, i. 163, Theorem 31. _ - . ’ 
We state the following results [6, p. 164, Theorem 31: 

THEOREM 2.3. H(U,V)= {f=S(U,V): ]A,]=1 for all eigenvalues 
of Fe, for sollze e E S,). 

Define 

H,,(U,V)={fES(U,V):hi=lforalleigenvaluesXiof Fe}, 

‘i 

S,(U,V)={fES(U,V):pe=n-m+lforsomeeES,}, 

Hi(U,V)={fEH(U,V):l<p,, q,=m-lforsome eES,}. 

It follows that 

S,(U,V)nS,(U,V)=0, 

H&LV)nH,(U,V)=0, 

S,(U,V)=H,(U,V). 

The result of R. Wood shows that if f E S,(U, V), then f is homotopic to 
a map g E Hi(U,V). Therefore, S,(U,V)#0 CJ Hr(U,V)#0. 

There is a close connection between the existence of a map in H,(U, V) 
and the existence of orthonormal vector fields on the unit sphere. If there is a 
bilinear map B: RP= X RQe + Rqe such that IB(x, y)I = 1x1 Iyl. then there are 
p, - 1 orthonormal vector fields on SQe- ‘. However, there are at most 
~(m - 1) - 1 orthonormal vector fields on S”-2 [4, p. 225, Theorem 13.101, 
where p(n) is the Radon-Hurwitz number (n = 24a+bna, no odd; 0 < b G 3 
* p(n) = 8a +zb). Furthermore, a bilinear map B: RP X Rq + Rq with 
IB(x, y)l = 1x1 IyI exists if and only if p 6 p(9) [6, p. 208, Theorem 71. 

We have the following: 

THEOREM 2.4. H,(U,V)#0 - l<n-m+l<&m-1). 
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It was shown above that if S(R”, Rm) - S,(R”, R”) # 0, t&n n = P, + qe9 
kfi p, 6 m - 1, qe ( m - 1, i.e., n Q 2m - 2. Write Hi(R”, R”)= HiV for 
i = ~1. We have the following theorems see [6, p. 177, Theorem 81, 

THEOREM 2.5. 

n=2m-2 (m=2,3,5,9) a H=H,UH,; 
n = 2m - 2 (all other m) ==b H=H,. 

(2) 

n = 2m - 3 (m = 3,5,9) ==a H=H,UH,; 
n=2m-3 (dotherm) * H=H, 

Proof (1): HzH,. H-H,#0 * n=2m_2=p+q,withp,q,<m 
- 1. Therefore, n - m + 1 = m - 1 = p = q. A map f E H corresponds to a 
bilinear map B: RP X RP + RP with IB(x, y)I = 1x1 IyI for all x, y E RP. By a 
theorem of Hurwitz [3], p = 1, 2, 4, or 8 if and only if such a bilinear map 
exists. 

(2): H-H,#0 * 2m-3=p+q,withp,q<m-l.Therefore,(p,q) 
=(m-2,m-l), or (p,q)=(m-1, m-2). Now n-m+l=m-2=p 

= f(x, Y) = tqx(x) - qy(Y)IE +,‘Wr, Y) E HIa However, f(x, Y) = tqdy) 
- qx(x)]( - e)+2B(x, y) E H, if q = m - 2. A map f E H, corresponds to a 
bilinear map I?: R”‘-‘X R”-’ -+ R”‘-‘, with IB(x. y)l = 1x1 IyI. This map 
exists if and only if m - 2 < p( m - 1). But m - 2 < P(m - 1) if and only if 
m = 3,5,9. n 

Note that H(R”, R”) # 0, since we have the following map f E 
H,(R”, R”): 

x2- y;- *-- -t& 

2XY, 

2XY,- 1 I* 
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H( R2, R2) = H, u H,, 

H( R3, R3) = H, u H,. 

H(R4, R4) 2 H, U Hi, since the map 

x1” + x2” - Y12 - Yz" 

f(x,y)= I 1 2(%Y, -t X2Y2) 

2hY2 - X2YA 

EH-(HoUzfl). 

0 

3. ACTIONS BY THE ORTHOGONAL GROUP 

There is a double action by the orthogonal group on the set S(U, V). Let 
O(U), O(V) be the orthogonal groups on U, V with respect to qr., ov respec- 
tively. Let +:O(V)XS(U,V)XO(U) -+ S(U, V) be defined by t$(r, f, a) 
= Tf", and ‘f”(z) = r( f(a(z))) for all z E U. This action defines an equiva- 
lence relation on S(U, V). Denote by .?( U, V) the resulting set of double 

cosets: 

S(U,V) = o(v)\s(u,v)/o(u). 

While it is clear that for any map f E S(U, V) we have f, = ‘f,, the forms 
{ f, }, E ,+ are independent of the class of f in s(U, V) e f,,( az) = f,(z) for 
all z E U, u E O(U) e ‘uF,,u = F,, where F, E Sym(n), with Sym(n) the set 
of real symmetric matrices of order n, is the matrix of f, with respect to a 
fixed basis. This leads to the following definitions: 

(1) ,4map f ES(U,V)inducesamap f*:S,-+Sym(n)given by f?e) 
= FP. 

(2) We have the following action by O(U) on Sym(n ): 

r:O(U)XSym(n)+Sym(n), 

r(u, A) = UAU-’ = “A 
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(3) A map f E S(L;,V) is inuariunt with respect to u E O(U) if f”(ae) 
= “F,. 

We would like to determine those maps f E S(U, V) which are invariant 
with respect to every (I E G, where G is a subgroup of O(U) which acts 
transitively on S,. We have the following results, the proofs of which arc 
straightforward. 

THEOREM 3.1. Maps in S(U, V) are invariant with respect to u E G in 

the following cases: 

(1) m=l, n>,2, fES(U,V), UEG=O(U). 

(2) n,m>2, f ES,(U,V), UEG=O(U). 

(3) n=m=2, f(z)=z’, wherezECanduEG={uEO(U):detu= 
l}= {uEC:Nu=l}. 

Let H denote the Hamiltonian quatemion algebra over R and H(l) = 
{zEH:Nz=l}. II(‘) acts transitively on itself by right multiplication. Write 
u(z)=z.u=Bz for z,uEH(‘) and 6 E 0(R4). We identify H as a vector 
space with R4, and the norm N: H -+ R with Nz = % with the quadratic 
form q4(z) = %z. The corresponding bilinear form is (x, y) = gT(%y), where 
thetraceT:H+RisgivenbyT(z)=E+z. 

THEOREM 3.2. Letf(z)=Ziz, ZEH, iEHwithi= -i. Thenf,,(uz) 
= f,( x ) for any e E H(l), where u(z) = .z. u with u E H(l). 

Proof. f,(z) = (f(z), f(e)) = iT(f(z)f(e)) = - &T((Ziz)(Zie)) and 

f$;;))=;;tT(iOi(;o)(Z)i(eu)) = - +T((5iz)(u5)Zieu) = +T(u-‘m 
fl 

The map f(z) = ,dz E S(R4, R3) is the classical Hopf fibration S3 + S”. 
We suspect that the other classical Hopf fibrations f: S’“--’ + S”, n = 4,8, 
also are invariant with respect to a subgroup of the orthogonal group. 

The next section deals with a more general problem, namely, that of 
determining when the forms { f, } e E s, are always nondegenerate. 

4. THE NONDEGENERACY OF { fe}ecS”-~ 

Fix ortbonormal bases in (U, qU) and (V, qv). For f E S(U, V), e E S,, = 

Y-l, we write f,(z) = (f(z), f(e))” = Zulus = ‘zF,z. Therefore, F, 
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=($&e)), where xi(e) is a quadratic form in e =(e,,...,e,)E S”-‘. The 
map 8: e + F, is a continuous map R” + R”‘, with m = n(n + 1)/2. There is 
a nonsingular matrix T, such that 

if the determinant IF,1 # 0, where I, is the k X k identity matrix. 
If we assume that f, is a nondegenerate form for every e E Sn-‘, then it 

follows from the continuity of the map s that 9, = 9,, for all e, e, E S”-‘. 
That is, if the forms are all nondegenerate, then they must be isometric 
over R. 

LEMMA 4.1. f E H(R”, R”). The quadratic forms { fe}eES”-l are all 
nondegenerate only if n is even. 

Proof. There exist decompositions R” = X I Y, R” = RE _L V,, with E = 
f(e) E Sm-l, e E SnP1, andabilinearmap B:X-+Y+V, with IB(r,y)l= 
1x1 IyI such that f has the form f(z)= f(x, y) = (xf + * * * + r:,- y: - . * * 

y2)&+2Z3(x, y). We have &(2)=x:+ +** +xE,- y:- ... - yfe. If 

;f(G, ecS”-l are all nondegenerate, then there is a map f”: S”-’ -+ Sym,(n), 
where Sym q( n) denotes the set of real symmetric matrices of order n with 9 
negative eigenvalues; i.e., 9 is independent of e E S”-‘. Therefore, { f,}, E s”m~ 

are all nondegenerate * f#(e) = F, E SymJn), 9 = 9,. Let a be the vector 

(0 )..., 0, +o ,...) 0). 

Pe + 1 

We have f(a)= --E a.nd f,(z)= -(xf+ ... +x:~)+Y;+ ... +Y4”, with 
f”<a) = F, E Sym,Jn). Therefore, p, = p = 9 = 9,. n 

LEMMA 4.2. f E S(R”, R”). Zf the family of forms { fe}ecsn-~ are all 
nondegenerate, then S n- ’ admits a quadratic foTm of signature k. 

Proof. f E S(R”, R”) induces a continuous map f * : S”- ’ + Symk( n), 
f#(e) = F,, where k is the number of negative eigenvalues of F,, which is by 
definition the “signature” of the quadratic form f, [8, p. 2041. The map f" 



QUADRATIC MAPPINGS OF SPHERES 257 

gives rise to a section of the product bundle: 

S-l X Sym,(n) 

J t s(e) = (e, &J. &Lx, y) = ‘xF,y. 
S”_’ s 

We claim that we can construct a section of the bundle of quadratic forms of 
signature k over Sn-‘, i.e., a section of the bundle 

where TS”-’ is the tangent bundle of S”-‘. We have the following: 

F,(e) = e, e E Snpl, 

TeSnpl E (Re) I, 

Ts”-’ L) S”-’ X R” + s”-’ X Re, 
I i 

where j is the projection along the vector e. Therefore, S”-’ X R” z TS”- ’ CB 
(S”-1 X Re) and 

Symk(TS”-‘) 

L t where 
S”-’ i*s 

(i*s),(u,, v,)= a,(~,, 0,). 

Note that the signature of the restricted symmetric bilinear form i*s is k, 
since at each e E S”- ’ there is an orthogonal matrix T, such that 

1 0 
%F,T, = 6 [+I G with G, E Symk(n - 1). 

e 
w 

THEOREM 4.1. f~ H(R”, R”). The family offorms {fe}_s”-~ are all 
nondegenerate only if n = 2, 4, 8, or 16. 



‘258 JOANN S. TURISCO 

Proof. By Lemma 4.1, the forms { f, }e E s”- I are all nondegenerate * 
n = 2k (p = 9 = k). By Lemma 4.2, S”-’ admits a quadratic form of signa- 
ture k. Therefore, S”-’ admits a continuous fie!d of tangent k-planes [8, p. 
207, Theorem 40.111. By duality, S”-’ admits a continuous field of tangent 
(n-l-k=k-l>planes. Since 2(k-1)=2k-2=n-2<n--1, S”-’ 
admits k - 1 continuous linearly independent vector fields [8, p. 144, Theo- 
rem 27.161. Therefore, k - 1 < p(n) - 1, where p(n) is the Randon-Hurwitz 
number; i.e., k = n/2 < p(n). This is true only when n = 2, 4, 8, or 16. n 

We can improve this result if we restrict ourselves to maps defined over 
certain R-lattices. Write f(x) = Cr, j=lxixjsij, where sij E R”, f E 
S(R”, R”). Let A c V = R” be an R-lattice. Define 

f ES(R”,Rm): f= t XiXjSij> 
i,j=l 

\ where~,~EAforalli,j,l,<i,j,<n , 
I 

H,,,(A) = H(R”, R”)nS,,,(A). 

It has been shown by T. Ono [5, p. 1581 that H,,(A) = S,,,(A) if A is an 
’ R-lattice such that 9”(z) E 2 for all z E A. 

THEOREM 4.2. Let A c V = R” be an R-lattice 
where u E O(V) and A” is the standard lattice in R” 

mes. Forf E S,,,(A)= H,,,(A), thefm { f,}ecsn 
ate if and only if n = 2(m - 1) and m = 2,3,5,9. 

such that A = aA”, 
with integral coordi- 
1 are all rwndegener- 

Proof. Assume that f E H,,,,(Z) = Hz,,,( A”), and { f,}, E s”-l are all 
nondegenerate. Then f has the following form: 

f(xyy)=f(z)= [9x(r)-9y(~)]s+ 5 riYjbij7 
i,j=l 

with bijE(Re)‘, EEZ~, and X = Y = RP. Each of the p2 monomials 
f x,ys, 16 a, j3 < p, appears once in A(z), for some i, 2 < i d m (since 
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bij E Z" and lbijl = 1 for all i, j [9, p. 2671. Each coordinate map x(z) 
contains at most p monomials, and p < m - 1. By the theorem of Hurwitz, if 
p=m-lthenm=2,3,5,9.If p<m_l,thereisaj,2,<j<m,suchthat 
fj(z) contains 2 monomials, with I < p. Clearly fj(z) is a degenerate form. 
Now 4(z) contains the monomial + xaxB for some cw,p. Let e E S”-l, 
e = (e,,. .., e,), with 

i=a or i=p+p, 

Then 

and f,(z) = +_ fj( z) is a degenerate form. 
Assume that f E H,,,(A). There is a 7 E O(V) such that ‘f E H,,,(Z). 

By the above argument, if p < m - 1, then ‘f is a degenerate form for some 
e E S”-‘. But 

‘X&4 = b(fb>L 4fW)), = lf@L f(e)>, = f,b). 

Let f E H2,,-,,,,(A> with m = 2,3,5,9. A calculation shows that if 
g:s 2m-3 + S”-’ is the classical Hopf fibration, then { ge}eEs2.Zm3 are all 
nondegenerate. There is a T E O(U) such that ‘f E H2(,,_ 1j, ,( Z). Therefore, 
there is a 4 E O(U), $ E O(U) such that ‘f = @gq [9, p. 267, Theorem 21 and 
*g:(z) = g:(z) = (g+(z), g+(e)) = ‘z’~G,,~z = W,Z = f,(z) = ‘f,(zj. 
Therefore, t$G,,~ = Fe, and the determinant 

~~~G,,~~,/=IG~,I=(F,(#o forall eES”-‘. n 
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