A Family of Quadratic Forms Associated to Quadratic Mappings of Spheres

JoAnn S. Turisco
Mathematics Department
U.S. Naval Academy
Annapolis, Maryland 21402

Submitted by Olga Taussky Todd

Abstract

The general form of a real quadratic mapping of spheres can be determined by studying the diagonalization of each form in an associated family of quadratic forms. In particular, the eigenvalues provide a means for detecting maps which are of the Hopf type. When the eigenvalues are nonzero for every form in the family, the forms associated to $f: S^{n} \rightarrow S^{m}$ give rise to a quadratic form in the tangent bundle of the unit sphere S^{n}. If f is of the Hopf type, nondegeneracy of each form occurs only when $n=1,3,7,15$.

1. PRELIMINARIES

We will follow the notations and definitions which appeared in our previous work [9]. The symbols Z, R, and C denote the ring of integers and the fields of real and complex numbers, respectively. Let (U, q_{U}) and (V, q_{V}) be real positive definite quadratic spaces of dimension n and m, respectively, with $n, m \geqslant 2$. Let $S_{U}=\left\{x \in U: q_{U}(x)=1\right\}, S_{V}=\left\{x \in V: q_{V}(x)=1\right\}$, and $S(U, V)=\left\{f: U \rightarrow V: f\right.$ is a quadratic map and $q_{V}(f(x))=q_{U}(x)^{2}$ for all $x \in U\}$. Clearly, $f: S_{U} \rightarrow S_{V}$. For every $f \in S(U, V)$ we define a family of quadratic forms $f_{e}, e \in S_{U}$, as follows: $f_{e}(z)=\langle f(z), f(e)\rangle_{V}$, where \langle,\rangle_{V} denotes the symmetric bilinear form on V corresponding to q_{V}. Since (U, q_{U}) is a nondegenerate quadratic space, there is a linear self-adjoint map $F_{e}: U \rightarrow U$ such that $\langle f(z), f(e)\rangle_{V}=\left\langle F_{e}(z), z\right\rangle_{U}$ for $z \in U$, where \langle,\rangle_{U} denotes the corresponding symmetric bilinear form on (U, q_{U}). All of the eigenvalues of F_{e} are real. Let p_{e} be the multiplicity of the eigenvalue 1 . We have shown $[9, p$. 262] that $F_{e}(e)=e\left(p_{e} \geqslant 1\right)$. The following theorems show the relationship
between the form f_{e} and the general form of the map $f[9]$, p. 262, Theorem 1.

Theorem 1.1. Let $f \in S(U, V), e \in S_{U}, \varepsilon=f(e) \in S_{V}$. The form f_{e} and F_{e} are defined as above. Let $X=\left\{z \in U: F_{e}(z)=z\right\}$ and $U=X \perp Y, V=R \varepsilon$ $\perp V_{1}$. The quadratic map $\beta: U \rightarrow V_{1}$ is given by

$$
\beta(z)=f(z)-f_{e}(z) \varepsilon, \quad \text { where } \quad z=(x, y) \in U
$$

and $B: X \times Y \rightarrow V_{1}$ is the bilinear map given by

$$
B(x, y)=\frac{1}{2}[\beta(x+y)-\beta(x)-\beta(y)]=\frac{1}{2}[\beta(x+y)-\beta(y)]
$$

Then f has the following form:

$$
f(z)=f(x, y)=\left[q_{X}(x)+f_{e}(y)\right] \varepsilon+[2 B(x, y)+\beta(y)]
$$

where $q_{X}=q_{U} \mid X$, and the following are true:
(1) $q_{V_{1}}(\beta(y))+f_{e}(y)^{2}=q_{Y}(y)^{2}$, where

$$
q_{V_{1}}=q_{V}\left|V_{1}, \quad q_{Y}=q_{U}\right| Y
$$

(2) $\langle B(x, y), \beta(y)\rangle_{V_{1}}=0$,
(3) $2 q_{V_{1}}(B(x, y))+q_{X}(x) f_{e}(y)=q_{X}(x) q_{Y}(y)$.

Corollary. There is a basis of U over R with respect to which $f \in S(U, V)$ has the form

$$
f(z)=\left[\begin{array}{c}
x_{1}^{2}+\cdots+x_{p_{e}}^{2}+\lambda_{1} y_{1}^{2}+\cdots+\lambda_{q_{e}} y_{q_{e}}^{2} \\
2 B(x, y)+\beta(y)
\end{array}\right]
$$

where $e \in S_{U}, \quad z=(x, y), x=\left(x_{1}, \ldots, x_{p_{e}}\right) \in X_{e}=\left\{x \in U: F_{e}(x)=x\right\}, \quad y=$ $\left(y_{1}, \ldots, y_{q_{e}}\right) \in X_{e}^{\perp}=Y_{e}$, and $-1 \leqslant \lambda_{i}<1$ for all $i, 1 \leqslant i \leqslant q_{e}$, with $n=p_{e}+$ $\boldsymbol{q}_{e}=$ dimpnsion of U over R.

2. HOPF MAPS OVER R

We will define various subsets of $S(U, V)$ using the value of p_{e}, for $e \in S_{C}$. We begin with the following theorem (see [6], p. 166, Proposition 5):

Theorem 2.1. For $e \in S_{U}$ and $n, m, p=p_{e}, q=q_{e}$ defined as above, we have $p_{e} \geqslant n-m+1$.

Proof. Let $f(z)=f(x, y)=\left[q_{x}(x)+f_{e}(y)\right] \varepsilon+[2 B(x, y)+\beta(y)] \in$ $S(U, V)$ and $z=(x, y) \in U=X \perp Y$, with X defined as above and $\varepsilon=f(e) \in$ S_{V}. We have $B(x, y)=\lambda(x) y$, where $\lambda(x): Y \rightarrow V_{1}$ is linear. By statement (3) of Theorem 1.1, we see that $\lambda(x) y=0$ implies that $q_{X}(x) f_{e}(y)=q_{X}(x) q_{Y}(y)$. If $x \neq 0$, then $q_{x}(x) \neq 0$. Therefore, $f_{e}(y)=q_{Y}(y)=y_{1}^{2}+\cdots+y_{q}^{2}=\lambda_{1} y_{1}^{2}$ $+\cdots+\lambda_{q} y_{q}^{2}$. Since $\lambda_{i} \neq 1$ for all i, we must have $y_{i}=0, l \leqslant i \leqslant q$, and hence $y=0$. Thus, if $x \neq 0, \lambda(x)$ is injective and the dimension of Y over R is $q \leqslant m-1=$ dimension of V_{1} over R, i.e., $n-p_{e}=q_{e} \leqslant m-1$, and $p_{e} \geqslant n$ $-m+1$ for all $e \in S_{U}$.

Let $S_{0}(U, V)$ denote the subset of "constant" maps, i.e., $S_{0}(U, V)=\{f \in$ $\left.S(U, V): f(z)=q_{U}(z) \varepsilon, \varepsilon \in S_{U}, z \in U\right\}$. It is easy to see that for $f \in S_{0}(U, V)$, $p_{e}=n$ for all $e \in S_{V}$. The following was shown by R. Wood [10, p. 163, Theorem 2]: If n is a power of 2 , then all polynomial mappings of the unit spheres $S^{n} \rightarrow S^{n-1}$ are constant. A consequence of this is the following: for $n \geqslant 2 r$ all polynomial maps $S^{n} \rightarrow S^{r}$ are constant. We can prove this result, for quadratic maps, as follows:

Theorem 2.2. $S\left(R^{n+1}, R^{r+1}\right)=S_{0}\left(R^{n+1}, R^{r+1}\right)$ if $n \geqslant 2 r$.

Proof. $\quad f \in S_{0}\left(R^{n+1}, R^{r+1}\right) \Leftrightarrow p_{e}=n+1$ for some $e \in S^{n} \Leftrightarrow p_{e}=n+1$ for all $e \in S^{n}$.

Assume $f \in S\left(R^{n+1}, R^{r+1}\right)-S_{0}\left(R^{n+1}, R^{r+1}\right)$. Therefore we have $1 \leqslant p_{e}$ $=p \leqslant n, q_{e}=q=n+1-p, f_{e}(z)=\langle f(z), f(e)\rangle=\left\langle F_{e}(z), z\right\rangle, p$ is the dimension over R of $X=\left\{x \in R^{n+1}: F_{e}(x)=x\right\}, R^{n+1}=X \perp Y$, and $R^{r+1}=$ $R \varepsilon \perp V$, with $\varepsilon=f(e)$.

By Theorem 1.1, with $z=(x, y) \in R^{n+1}$, we have $f(z)=f(x, y)=\left[q_{x}(x)\right.$ $\left.+f_{e}(y)\right] \varepsilon+[2 B(x, y)+\beta(y)]$. As above, vee write $B(x, y)=\lambda(x) y=\mu(y) x$, where $\lambda(x): Y \hookrightarrow V, \mu(y): X \hookrightarrow V$ if $x \neq 0 \neq y$. Therefore, $p \leqslant r, q \leqslant r$, and $n+1-r \leqslant n+1-q=p \leqslant r$, i.e., $n+1 \leqslant 2 r, n<2 r$.

We use the value of p_{e} to study mappings of spheres whose form resembles that of the classical Hopf fibrations [1, 2]. We make the following

Definition. A map $f: U \rightarrow V$ is a Hopf map if there exist orthogonal decompositions $U=X \perp Y$ and $V=R \varepsilon \perp V_{1}$, with $\varepsilon \in S_{V}$, and a bilinear map $B: X \times Y \rightarrow V_{1}$ with $q_{V_{1}}(B(x, y))=q_{X}(x) q_{Y}(y)$ where $q_{X}=q_{U} \mid X, q_{Y}=$
$q_{U} \mid Y$, and $q_{V_{1}}=q_{V} \mid V_{1}$, such that f has the form $f(z)=f(x, y)=\left[q_{X}(x)-\right.$ $\left.q_{Y}(y)\right] \varepsilon+2 B(x, y)$. Let $H(U, V)$ denote the set of Hopf maps $U \rightarrow V$.

Clearly, $H(U, V) \subseteq S(U, V)$.
It has been showi by R. Wood that every map in $S(U, V)$ is homotopic to a map in $H(U, V)$ [10, p. 163, Theorem 3].

We state the following results [6, p. 164, Theorem 3]:

Theorem 2.3. $H(U, V)=\left\{f \in S(U, V):\left|\lambda_{i}\right|=1\right.$ for all eigenvalues λ_{i} of F_{e}, for some $\left.e \in S_{U}\right\}$.

Define

$$
\begin{aligned}
& H_{0}(U, V)=\left\{f \in S(U, V): \lambda_{i}=1 \text { for all eigenvalues } \lambda_{i} \text { of } F_{e}\right\}, \\
& S_{1}(U, V)=\left\{f \in S(U, V): p_{e}=n-m+1 \text { for some } e \in S_{U}\right\} \\
& H_{1}(U, V)=\left\{f \in H(U, V): 1 \leqslant p_{e}, q_{e}=m-1 \text { for some } e \in S_{U}\right\}
\end{aligned}
$$

It follows that

$$
\begin{gathered}
S_{0}(U, V) \cap S_{1}(U, V)=\varnothing \\
H_{0}(U, V) \cap H_{1}(U, V)=\varnothing \\
S_{0}(U, V)=H_{0}(U, V)
\end{gathered}
$$

The result of R. Wood shows that if $f \in S_{1}(U, V)$, then f is homotopic to a map $g \in H_{1}(U, V)$. Therefore, $S_{1}(U, V) \neq \varnothing \Leftrightarrow H_{1}(U, V) \neq \varnothing$.

There is a close connection between the existence of a map in $H_{1}(U, V)$ and the existence of orthonormal vector fields on the unit sphere. If there is a bilinear map $B: R^{p_{e}} \times R^{q_{e}} \rightarrow R^{q_{e}}$ such that $|B(x, y)|=|x||y|$, then there are $p_{e}-1$ orthonormal vector fields on $S^{q_{e}-1}$. However, there are at most $\rho(m-1)-1$ orthonormal vector fields on S^{m-2} [4, p. 225, Theorem 13.10], where $\rho(n)$ is the Radon-Hurwitz number ($n=2^{4 a+b} n_{0}, n_{0}$ odd; $0 \leqslant b \leqslant 3$ $\Rightarrow \rho(n)=8 a+2^{b}$). Furthermore, a bilinear map $B: R^{p} \times R^{q} \rightarrow R^{q}$ with $|B(x, y)|=|x||y|$ exists if and only if $p \leqslant \rho(q)[6, p .208$, Theorem 7].

We have the following:

Theorem 2.4. $\quad H_{1}(U, V) \neq \varnothing \Leftrightarrow 1 \leqslant n-m+1 \leqslant \rho(m-1)$.

It was shown above that if $S\left(R^{n}, R^{m}\right)-\mathrm{S}_{0}\left(R^{n}, R^{m}\right) \neq \varnothing$, then $n=p_{e}+q_{e}$, with $p_{e} \leqslant m-1, q_{e} \leqslant m-1$, i.e., $n \leqslant 2 m-2$. Write $H_{i}\left(R^{n}, R^{m}\right)=H_{i}$, for $i=0,1$. We have the following theorems see [6, p. 177, Theorem 8],

Theorem 2.5.

(1)

$$
\begin{array}{llll}
n=2 m-2 & (m=2,3,5,9) & \Rightarrow & H=H_{0} \cup H_{1} \\
n=2 m-2 & (\text { all other } m) & \Rightarrow & H=H_{0}
\end{array}
$$

(2)

$$
\begin{array}{ll}
n=2 m-3 & (m=3,5,9) \\
n=2 m-3 & \quad \\
\text { (all other } m) & \Rightarrow \quad H=H_{0} \cup H_{1} ; \\
\end{array}
$$

Proof. (1): $H \supseteq H_{0} . H-H_{0} \neq \varnothing \Rightarrow n=2 m-2=p+q$, with $p, q \leqslant m$ -1 . Therefore, $n-m+1=m-1=p=q$. A map $f \in H$ corresponds to a bilinear map $B: R^{p} \times R^{p} \rightarrow R^{p}$ with $|B(x, y)|=|x||y|$ for all $x, y \in R^{p}$. By a theorem of Hurwitz [3], $p=1,2,4$, or 8 if and only if such a bilinear map exists.
(2): $H-H_{0} \neq \varnothing \Rightarrow 2 m-3=p+q$, with $p, q \leqslant m-1$. Therefore, (p, q) $=(m-2, m-1)$, or $(p, q)=(m-1, m-2)$. Now $n-m+1=m-2=p$ $\Rightarrow f(x, y)=\left[q_{X}(x)-q_{Y}(y)\right] \varepsilon+2 B(x, y) \in H_{1}$. However, $f(x, y)=\left[q_{Y}(y)\right.$ $\left.-q_{X}(x)\right](-\varepsilon)+2 B(x, y) \in H_{1}$ if $q=m-2 . \Lambda$ map $f \in H_{1}$ corresponds to a bilinear map $B: R^{m-2} \times R^{m-1} \rightarrow R^{m-1}$, with $|B(x, y)|=|x||y|$. This map exists if and only if $m-2 \leqslant p(m-1)$. But $m-2 \leqslant \rho(m-1)$ if and only if $m=3,5,9$.

Note that $H\left(R^{n}, R^{n}\right) \neq \varnothing$, since we have the following map $f \in$ $H_{1}\left(R^{n}, R^{n}\right)$:

$$
f\left(x, y_{1}, \ldots, y_{n-1}\right)=\left[\begin{array}{c}
x^{2}-y_{1}^{2}-\cdots-y_{n-1}^{2} \\
2 x y_{1} \\
\vdots \\
2 x y_{n-1}
\end{array}\right]
$$

We have

$$
\begin{aligned}
& H\left(R^{2}, R^{2}\right)=H_{0} \cup H_{1} \\
& H\left(R^{3}, R^{3}\right)=H_{0} \cup H_{1} .
\end{aligned}
$$

$H\left(R^{4}, R^{4}\right) \supsetneqq H_{0} \cup H_{1}$, since the map

$$
f(x, y)=\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-y_{1}^{2}-y_{2}^{2} \\
2\left(x_{1} y_{1}+x_{2} y_{2}\right) \\
2\left(x_{1} y_{2}-x_{2} y_{1}\right) \\
0
\end{array}\right] \in H-\left(H_{0} \cup H_{1}\right)
$$

3. ACTIONS BY THE ORTHOGONAL GROUP

There is a double action by the orthogonal group on the set $S(U, V)$. Let $\mathrm{O}(U), \mathrm{O}(V)$ be the orthogonal groups on U, V with respect to q_{C}, q_{V} respectively. Let $\phi: O(V) \times S(U, V) \times O(U) \rightarrow S(U, V)$ be defined by $\phi(\tau, f, \sigma)$ $={ }^{\tau} f^{\sigma}$, and ${ }^{\tau} f^{\sigma}(z)=\tau(f(\sigma(z)))$ for all $z \in U$. This action defines an equivalence relation on $S(U, V)$. Denote by $\bar{S}(U, V)$ the resulting set of double cosets:

$$
\bar{S}(U, V)=\mathrm{O}(V) \backslash S(U, V) / \mathrm{O}(U)
$$

While it is clear that for any map $f \in S(U, V)$ we have $f_{e}={ }^{\tau} f_{e}$, the forms $\left\{f_{e}\right\}_{e \in S_{V}}$ are independent of the class of f in $\bar{S}(U, V) \Leftrightarrow f_{\sigma e}(\sigma z)=f_{e}(z)$ for all $z \in U, \sigma \in \mathrm{O}(U) \Leftrightarrow{ }^{t} \sigma F_{\sigma e} \sigma=F_{e}$, where $F_{e} \in \operatorname{Sym}(n)$, with $\operatorname{Sym}(n)$ the set of real symmetric matrices of order n, is the matrix of f_{c} with respect to a fixed basis. This leads to the following definitions:
(1) A map $f \in S(U, V)$ induces a map $f^{\#}: S_{U} \rightarrow \operatorname{Sym}(n)$ given by $f^{\#}(e)$ $=F_{e}$.
(2) We have the following action by $\mathrm{O}(U)$ on $\operatorname{Sym}(n)$:

$$
\begin{gathered}
\tau: \mathrm{O}(U) \times \operatorname{Sym}(n) \rightarrow \operatorname{Sym}(n) \\
\tau(\sigma, A)=\sigma A \sigma^{-1}={ }^{\sigma} \mathrm{A}
\end{gathered}
$$

(3) A map $f \in S(U, V)$ is invariant with respect to $\sigma \in \mathrm{O}(U)$ if $f^{\#}(\sigma e)$ $={ }^{\circ} F_{e}$.

We would like to determine those maps $f \in S(U, V)$ which are invariant with respect to every $\sigma \in G$, where G is a subgroup of $O(U)$ which acts transitively on S_{U}. We have the following results, the proofs of which are straightforward.

Theorem 3.1. Maps in $S(U, V)$ are invariant with respect to $\sigma \in G$ in the following cases:
(1) $m=1, n \geqslant 2, f \in S(U, V), \sigma \in G=O(U)$.
(2) $n, m \geqslant 2, f \in \mathrm{~S}_{0}(U, V), \sigma \in G=\mathrm{O}(U)$.
(3) $n=m=2, f(z)=z^{2}$, where $z \in C$ and $\sigma \in G=\{\sigma \in O(U): \operatorname{det} \sigma=$ $1\} \approx\{\sigma \in C: N \sigma=1\}$.

Let H denote the Hamiltonian quaternion algebra over R and $H^{(1)}=$ $\{z \in H: N z=1\} . H^{(1)}$ acts transitively on itself by right multiplication. Write $\sigma(z)=z \cdot \sigma=\hat{\sigma} z$ for $z, \sigma \in H^{(1)}$ and $\hat{\sigma} \in \mathrm{O}\left(R^{4}\right)$. We identify H as a vector space with R^{4}, and the norm $N: H \rightarrow R$ with $N z=\bar{z} z$ with the quadratic form $q_{4}(z)={ }^{t} z z$. The corresponding bilinear form is $\langle x, y\rangle=\frac{1}{2} T(\bar{x} y)$, where the trace $T: H \rightarrow R$ is given by $T(z)=\bar{z}+z$.

Theorem 3.2. Let $f(z)=\bar{z} i z, z \in H, i \in H$ with $\bar{i}=-i$. Then $f_{o e}(\sigma z)$ $=f_{e}(z)$ for any $e \in H^{(1)}$, where $\sigma(z)=z \cdot \sigma$ with $\sigma \in H^{(1)}$.

Proof. $\quad f_{e}(z)=\langle f(z), f(e)\rangle=\frac{1}{2} T(\overline{f(z)} f(e))=-\frac{1}{2} T((\overline{z i z})(\bar{e} i e)) \quad$ and $f_{\sigma e}(\sigma z)=-\frac{1}{2} T(\overline{z \sigma} i(z \sigma)(\overline{e \sigma}) i(e \sigma))=-\frac{1}{2} T((\bar{\sigma} \bar{z} i z)(\sigma \bar{\sigma}) \bar{e} i e \sigma)=\frac{1}{2} T\left(\sigma^{-1} \bar{f}(z)\right.$ $f(e) \sigma)=f_{e}(z)$.

The map $f(z)=\bar{z} i z \in S\left(R^{4}, R^{3}\right)$ is the classical Hopf fibration $S^{3} \rightarrow S^{2}$. We suspect that the other classical Hopf fibrations $f: S^{2 n-1} \rightarrow S^{n}, n=4,8$, also are invariant with respect to a subgroup of the orthogonal group.

The next section deals with a more general problem, namely, that of determining when the forms $\left\{f_{e}\right\}_{e \in S_{U}}$ are always nondegenerate.

4. THE NONDEGENERACY OF $\left\{f_{e}\right\}_{e \in S^{n-1}}$

Fix orthonormal bases in $\left(U, q_{U}\right)$ and $\left(V, q_{V}\right)$. For $f \in S(U, V), e \in S_{U} \approx$ $S^{n}{ }^{1}$, we write $f_{e}(z)=\langle f(z), f(e)\rangle_{V}=\sum_{i=1}^{m} f_{i}(z) f_{i}(e)={ }^{t} z F_{e} z$. Therefore, F_{e}
$=\left(f_{i j}(e)\right)$, where $f_{i j}(e)$ is a quadratic form in $e=\left(e_{1}, \ldots, e_{n}\right) \in \mathrm{S}^{n-1}$. The map $s: e \rightarrow F_{e}$ is a continuous map $R^{n} \rightarrow R^{m}$, with $m=n(n+1) / 2$. There is a nonsingular matrix T_{e} such that

$$
{ }^{t} T_{e} F_{e} T_{e}=\left[\begin{array}{cc}
I_{p_{e}} & 0 \\
0 & I_{q_{e}}
\end{array}\right]
$$

if the determinant $\left|F_{e}\right| \neq 0$, where I_{k} is the $k \times k$ identity matrix.
If we assume that f_{e} is a nondegenerate form for every $e \in S^{n-1}$, then it follows from the continuity of the map s that $q_{e}=q_{e_{0}}$ for all $e, e_{0} \in S^{n-1}$. That is, if the forms are all nondegenerate, then they must be isometric over R.

Lemma 4.1. $f \in H\left(R^{n}, R^{m}\right)$. The quadratic forms $\left\{f_{e}\right\}_{e \in S^{n-1}}$ are all nondegenerate only if n is even.

Proof. There exist decompositions $R^{n}=X \perp Y, R^{m}=R \varepsilon \perp V_{1}$, with $\varepsilon=$ $f(e) \in \mathrm{S}^{m-1}, e \in \mathrm{~S}^{n-1}$, and a bilinear map $B: X \rightarrow Y \rightarrow V_{1}$ with $|B(x, y)|=$ $|x||y|$ such that f has the form $f(z)=f(x, y)=\left(x_{1}^{2}+\cdots+x_{p_{e}}^{2}-y_{1}^{2}-\cdots\right.$ $\left.-y_{q_{e}}^{2}\right) \varepsilon+2 B(x, y)$. We have $f_{e}(z)=x_{1}^{2}+\cdots+x_{p_{e}}^{2}-y_{1}^{2}-\cdots-y_{q_{e}}^{2}$. If $\{f(e)\}_{e \in S^{n-1}}$ are all nondegenerate, then there is a map $f^{\#}: S^{n-1} \rightarrow \operatorname{Sym}_{q}(n)$, where $\operatorname{Sym}_{q}(n)$ denotes the set of real symmetric matrices of order n with q negative eigenvalues; i.e., q is independent of $e \in S^{n-1}$. Therefore, $\left\{f_{e}\right\}_{e \in S^{n-1}}$ are all nondegenerate $\Rightarrow f^{\#}(e)=F_{e} \in \operatorname{Sym}_{q}(n), q=q_{e}$. Let α be the vector

$$
(0, \ldots, 0,1,0, \ldots, 0)
$$

We have $f(\alpha)=-\varepsilon$ and $f_{\alpha}(z)=-\left(x_{1}^{2}+\cdots+x_{p_{e}}^{2}\right)+y_{1}^{2}+\cdots+y_{q_{e}}^{2}$ with $f^{\#}(\alpha)=F_{\alpha} \in \operatorname{Sym}_{p_{c}}(n)$. Therefore, $p_{e}=p=q=q_{e}$.

Lemma 4.2. $f \in S\left(R^{n}, R^{m}\right)$. If the family of forms $\left\{f_{e}\right\}_{e \in S^{n-1}}$ are all nondegenerate, then S^{n-1} admits a quadratic form of signature k.

Proof. $\quad f \in S\left(R^{n}, R^{m}\right)$ induces a continuous map $f^{\#}: S^{n-1} \rightarrow \operatorname{Sym}_{k}(n)$, $f^{\#}(e)=F_{e}$, where k is the number of negative eigenvalues of F_{e}, which is by definition the "signature" of the quadratic form $f_{e}\left[8\right.$, p. 204]. The map $f^{\#}$
gives rise to a section of the product bundle:

$$
\begin{array}{cc}
\mathrm{S}^{n} \\
\stackrel{1}{\downarrow} \times \mathrm{Sym}_{k}(n) \\
\mathrm{S}^{n-1} & \uparrow \\
s
\end{array} \quad s(e)=\left(e, \phi_{e}\right), \quad \phi_{e}(x, y)={ }^{t} x F_{e} y
$$

We claim that we can construct a section of the bundle of quadratic forms of signature k over S^{n-1}, i.e., a section of the bundle

$$
\begin{gathered}
\operatorname{Sym}_{k}\left(T S^{n-1}\right) \\
\downarrow \\
S^{n-1}
\end{gathered}
$$

where $T S^{n-1}$ is the tangent bundle of S^{n-1}. We have the following:

$$
\begin{aligned}
& F_{e}(e)=e, \quad e \in S^{n-1}, \\
& T_{e} S^{n-1} \cong(R e)^{\perp}, \\
& T S^{n-1} \underset{i}{\hookrightarrow} S^{n-1} \times R_{j}^{n} \rightarrow S^{n-1} \times R e
\end{aligned}
$$

where j is the projection along the vector e. Therefore, $S^{n-1} \times R^{n} \cong T S^{n-1} \oplus$ $\left(S^{n-1} \times R e\right)$ and

$$
\begin{gathered}
\operatorname{Sym}_{k}\left(\mathrm{TS}^{n-1}\right) \\
\downarrow \\
S^{n-1}
\end{gathered} i_{i * s} \text { where }\left(i^{*} s\right)_{e}\left(u_{e}, v_{e}\right)=s_{e}\left(u_{e}, v_{e}\right)
$$

Note that the signature of the restricted symmetric bilinear form $i^{*} s$ is k, since at each $e \in S^{n-1}$ there is an orthogonal matrix T_{e} such that

$$
{ }^{t} T_{e} F_{e} T_{e}=\left[\begin{array}{c|c}
1 & 0 \\
\hline 0 & G_{e}
\end{array}\right] \quad \text { with } \quad G_{e} \in \operatorname{Sym}_{k}(n-1)
$$

Theorem 4.1. $f \in H\left(R^{n}, R^{m}\right)$. The family of forms $\left\{f_{e}\right\}_{e \in S^{n-1}}$ are all nondegenerate only if $n=2,4,8$, or 16 .

Proof. By Lemma 4.1, the forms $\left\{f_{e}\right\}_{e \in S^{n-1}}$ are all nondegenerate \Rightarrow $n=2 k(p=q=k)$. By Lemma 4.2, S^{n-1} admits a quadratic form of signature k. Therefore, S^{n-1} admits a continuous field of tangent k-planes [$8, p$. 207, Theorem 40.11]. By duality, S^{n-1} admits a continuous field of tangent $(n-1-k=k-1)$-planes. Since $2(k-1)=2 k-2=n-2<n-1, S^{n-1}$ admits $k-1$ continuous linearly independent vector fields [8, p. 144, Theorem 27.16]. Therefore, $k-1 \leqslant \rho(n)-1$, where $\rho(n)$ is the Randon-Hurwitz number; i.e., $k=n / 2 \leqslant \rho(n)$. This is true only when $n=2,4,8$, or 16 .

We can improve this result if we restrict ourselves to maps defined over certain R-lattices. Write $f(x)=\sum_{i, j=1}^{n} x_{i} x_{j} s_{i j}$, where $s_{i j} \in R^{m}, f \in$ $S\left(R^{n}, R^{m}\right)$. Let $\Lambda \subset V=R^{m}$ be an R-lattice. Define

$$
\begin{aligned}
S_{n, m}(\Lambda)= & \left\{f \in S\left(R^{n}, R^{m}\right): f=\sum_{i, j=1}^{n} x_{i} x_{j} s_{i j}\right. \\
& \text { where } \left.s_{i j} \in \Lambda \text { for all } i, j, 1 \leqslant i, j \leqslant n\right\}, \\
H_{n, m}(\Lambda)= & H\left(R^{n}, R^{m}\right) \cap S_{n, m}(\Lambda) .
\end{aligned}
$$

It has been shown by T. Ono [5, p. 158] that $H_{n, m}(\Lambda)=S_{n, m}(\Lambda)$ if Λ is an R-lattice such that $q_{U}(z) \in Z$ for all $z \in \Lambda$.

Theorem 4.2. Let $\Lambda \subset V \approx R^{m}$ be an R-lattice such that $\Lambda=\sigma A^{m}$, where $\sigma \in O(V)$ and A^{m} is the standard lattice in R^{m} with integral coordinates. For $f \in S_{n, m}(\Lambda)=H_{n, m}(\Lambda)$, the forms $\left\{f_{e}\right\}_{e \in S^{n-1}}$ are all nondegenerate if and only if $n=2(m-1)$ and $m=2,3,5,9$.

Proof. Assume that $f \in H_{2 p, m}(Z)=H_{2 p, m}\left(A^{m}\right)$, and $\left\{f_{e}\right\}_{e \in S^{n-1}}$ are all nondegenerate. Then f has the following form:

$$
f(x, y)=f(z)=\left[q_{X}(x)-q_{Y}(y)\right] \varepsilon+\sum_{i, j=1}^{p} x_{i} y_{j} b_{i j}
$$

with $b_{i j} \in(R \varepsilon)^{\perp}, \varepsilon \in Z^{m}$, and $X \approx Y \approx R^{p}$. Each of the p^{2} monomials $\pm x_{\alpha} y_{\beta}, 1 \leqslant \alpha, \beta \leqslant p$, appears once in $f_{i}(z)$, for some $i, 2 \leqslant i \leqslant m$ (since
$b_{i j} \in Z^{m}$ and $\left|b_{i j}\right|=1$ for all i, j [9, p. 267]. Each coordinate map $f_{i}(z)$ contains at most p monomials, and $p \leqslant m-1$. By the theorem of Hurwitz, if $p=m-1$ then $m=2,3,5,9$. If $p<m-1$, there is a $j, 2 \leqslant j \leqslant m$, such that $f_{j}(z)$ contains l monomials, with $l<p$. Clearly $f_{j}(z)$ is a degenerate form. Now $f_{j}(z)$ contains the monomial $\pm x_{\alpha} x_{\beta}$ for some α, β. Let $e \in S^{n-1}$, $e=\left(e_{1}, \ldots, e_{n}\right)$, with

$$
e_{i}= \begin{cases}1 / \sqrt{2} & \text { if } i=\alpha \text { or } i=p+\beta \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
f_{i}(e)=\left\{\begin{array}{ccc}
\pm 1 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array}\right.
$$

and $f_{e}(z)= \pm f_{j}(z)$ is a degenerate form.
Assume that $f \in H_{n, m}(\Lambda)$. There is a $\tau \in O(V)$ such that ${ }^{\tau} f \in H_{n, m}(Z)$. By the above argument, if $p<m-1$, then ${ }^{\tau} f_{e}$ is a degenerate form for some $e \in S^{n-1}$. But

$$
{ }^{\tau} f_{e}(z)=\langle\tau(f(z)), \tau(f(e))\rangle_{v}=\langle f(z), f(e)\rangle_{V}=f_{e}(z)
$$

Let $f \in H_{2(m-1), m}(\Lambda)$ with $m=2,3,5,9$. A calculation shows that if $\mathrm{g}: \mathrm{S}^{2 m-3} \rightarrow S^{m-1}$ is the classical Hopf fibration, then $\left\{g_{e}\right\}_{e \in S^{2 m-3}}$ are all nondegenerate. There is a $\tau \in \mathrm{O}(U)$ such that ${ }^{\tau} f \in H_{2(m-1), m}(Z)$. Therefore, there is a $\psi \in \mathrm{O}(U), \phi \in \mathrm{O}(U)$ such that ${ }^{\top} f={ }^{\phi}{ }^{\mathrm{g}}{ }^{\psi}[9, \mathrm{p} .267$, Theorem 2] and ${ }^{\phi} g_{e}^{\psi}(z)=g_{e}^{\psi}(z)=\left\langle g^{\psi}(z), g^{\psi}(e)\right\rangle={ }^{t} z^{t} \psi G_{\psi e} \psi z={ }^{t} z F_{e} z=f_{e}(z)={ }^{\top} f_{e}(z)$. Therefore, ${ }^{t} \psi G_{\psi e} \psi=F_{e}$, and the determinant

$$
\left|t \psi G_{\psi e} \psi\right|=\left|G_{\psi e}\right|=\left|F_{e}\right| \neq 0 \quad \text { for all } \quad e \in S^{n-1}
$$

REFERENCES

1 H. Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Ann. 104:637-665 (1931).
2 \qquad , Über die Abbildungen von Sphären auf Sphären neidrigerer Dimension, Fund. Math. 25:427-440 (1935).
3 A. Hurwitz, Über die Komposition der quadratischen Formen, Math. Ann. 88:1-25 (1923).

4 D. Husemoller, Fibre bundles, Springer, Berlin, 1966.
5 T. Ono, A note on spherical quadratic maps over Z, in Algebraic Number Theory, International Symposium, Kyoto, 1976 (S. Iyanaga, Ed.), Japan Society for the Promotion of Science, Tokyo, 1977.

6 \qquad , Variations on a Theme of Euler (in Japanese, untranslated), Jikkyo, Tokyo, 1980.
7 J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1:1-14 (1922).
8 N. Steenrod, The Topology of Fibre Bundles, Princeton U.P., Princeton, N.J., 1951.

9 J. Turisco, Quadratic mappings of spheres, Linear Algebra Appl. 23:261-274 (1979).

10 R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5:163-168 (1968).

Received 13 January 1984; revised 16 March 1984

