
JOURNAL OF DIFFERENTIAL EQUATIONS 15, 308-321 (1974) 

Lyapunov Theory and Perturbation of Stable 
and Asymptotically Stable Systems 

SHUI-NEE CHOW* 

Mathematics Department, Michigan State University, East Lansing, Michigan 48823 

AND 

JAMES A. YORKE’ 

Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 
College Park, Maryland 20740 

Received February 28, 1973 

1. INTRODIJCTION 

In this paper WC study the vector ordinary differential equation 

* = f(t, x) 

for which the identically zero function is a solution, i.e., f(t, 0) = 0 for all 
time t. We denote this special solution simply by 0. Now suppose one knows 
that all the solutions of(E) which start near 0 remain near 0 for all future time, 
or even that they approach 0 as time increases. If the differential equation (E) 
is subjected to certain small perturbations, the above property concerning 
the solutions near 0 may or may not remain true. A more precise formulation 
of this problem is as follows: if 0 is asymptotically stable for (E), and if the 
functionp(t) is small in some sense, give conditions onf so that 0 is (eventually) 
asymptotically stable for the perturbed equation 

2 =f(t, x) + p(t). (P) 

In particular, an example is known [ 1, Theorem C] in which p (= E exp( -t2)) 
tends to 0 faster than exponentials and f is a real-valued, uniformly continuous, 
and locally Lipschitz function, and all solutions of(E) approach zero exponen- 
tially and monotonically as t + co; yet many solutions of (P) starting near 
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x = 0 fail to approach zero as t --f cc no matter how small E is. More 
precisely, if x is a solution such that x(t,) > 0 for some t, then 

lim zup x(t) > 0. i 

A great deal of work has been done in an attempt to provide positive 
answers to this problem. Historically, there have been two approaches. One 
approach is to set conditions off, such as being uniformly Lipschitz, and 
find out what kind of perturbations p(t) preserve stability (e.g., [I; 2; 3, 
Chap. 131). The second approach is to set the kind of perturbations p(t) that 
will be allowed, such as s: / p(t)/ dt < 00, and find out which differential 
equations (E) will have their asymptotic stability preserved by all such p(t) 
[4-7, 101. 

A monumental paper along the lines of the second approach was published 
in 1959 by Vrkoi: [4]. In this paper be defined the concepts of integral stability 
and integral asymptotic stability. A definition similar to integral stability had 
been given by Okamura (cf. [8, p. 891). VrkoE’s main results are that (i) 
integral stability of(E) (i.e., solutions of(P) remain small whenever sy 1 p(t)1 dt 
is small; precise statements appear in Section 4) is equivalent to the existence 
of a certain kind of Lyapunov function for (E), and (ii) integral asymptotic 
stability of (E) is equivalent to the existence of another kind of Liapunov 
function for (E). “Integral asymptotic stability” means “integral stability 
plus integral attraction”, i.e., solutions of (P) starting in some neighborhood 
of 0 become small after time T provided jr 1 p(t)1 dt is small. 

The first objective of our paper is to give substantially simpler proofs of 
VrkoE’s results based on methods used in [8], thereby relating VrkoE’s 
results to those of Okamura [9] and Yoshizawa [8]. This simpler proof allows 
us to extend VrkoE’s result on integral-asymptotic stability in two directions. 
First we show that (E) is integral-asymptotically stable if and only if (E) is 
integrally attractive (Theorem 3). That is, the assumption of integral stability 
is redundant. Second we show that every integral-asymptotically stable system 
behaves nicely not only for perturbations integrable on [0, cc) but also for the 
larger class B,, of interval bounded functions p(t), i.e., 

We prove specifically that an asymptotically stable system remains “attractive” 
for the class of interval bounded perturbations p if and only if the system is 
integral-asymptotically stable (Theorem 4). 

Throughout this paper the perturbation p(t) could have been replaced by 
a perturbation g(t, X) which satisfies / g(t, %)I < 1 p(t)1 for all x in a neighbor- 
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hood of 0. Since this would have introduced no new ideas, we chose to present 
the notationally simpler case. 

There is a large literature on applications of Lyapunov functions to the 
study of perturbations. Indeed, the study of perturbations is one of the 
motivations for studying Lyapunov theory. VrkoC’s results show that a 
superior theory can be derived if the perturbations are introduced during the 
development of the Lyapunov-type results so that necessary and sufficient 
conditions can be given for (E) to be perturbable. 

2. NOTATIONS AND ASSUMPTIONS 

For c > 0 write S, for {x E R”: 1 x j < c>, letting 1 . 1 denote some norm 
in Rn. We assume the following conditions throughout this paper. 

(Hl) For some c > 0, f: [0, CO) x S, --+ R”. 

(H2) f(., x) is measurable for each x. 

(H3) f(t, .) is continuous for each t. 

(H4) j f 1 is bounded on every compact subset of [0, co) x S, . 

(H5) f(t, 0) = 0. 

(H6) p: [0, co) + Rn is measurable. 

Remark. (H4) can be replaced by the following more general assumption 
(notationally more difficult to work with): 

(H4*) For each compact SC S, , there is a locally integrable function 
ms(t) such that / f (t, x)1 < ms(t), for all t E [0, co), x E S. The results in the 
paper still hold true. 

We will denote a solution of (E) through (to, x,,) by &(t; to, x,,), and 
similarly that of (P) by &(t; t, , x0). 

Let 0 < a < c. For each x E S, and each t E (0, co), A,(& x) will denote 
the set of absolutely continuous functions Y: [O, co) + R” satisfying: 

Y(0) = 0, Y(t) = x, and sup I q(s); < a. 
seIo.tl 

Let I’: [0, co) x S, + R be a function. By “v(t, x) taken along solutions 
of(E)“, we mean 

V(t, x) = li:, ;up(l/h){l/(t + h, x.E(t + h)) - v(t9 X)> (2.1) + 

where xc(*) is a solution of (E) satisfying xE(t) = x. We say that T/ is 
Lipschitzeun with respect to x with constant L if / I’(t, x1) - V(t, x,)1 < 
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Lj x1 - X, ( for all t 3 0 and all X, and X, near 0. If V is Lipschitzean with 
respect to X, then for r(t, X) taken along solutions of (E), we have 

P(t, X) = liF;;p(l/h){V(t + h, x + hf(t, x)) - V(t, CC)>, a.e. in t 
+ 

(see [3, pp. 4-5; 10-l l] for example). 
We sometimes write “‘C)i&t, x)” to mean “P(t, x) is taken along solutions 

of (E).” 

3. UNIQIJENESS OF SOLUTIONS AND LYAPUNOV FUNCTIONS 

The main technique of this paper is the study of certain natural “Lyapunov 
functions”. First we define a measure of how much an absolutely continuous 
function differs from being a solution. This measure is only defined on [0, t] if 
4(s) andf(s, d(s)) are defined for all s E [0, t]. We define 

W, LO, iI> = Lt I &, - fh d(4I ds. 

Letting p(s) = &t) - f(~, $(s)), we see 4 satisfies Eq. (P), so E is also a 
measure of the size of the perturbation s 1 p 1 dt required for # to be a solution 
on [0, t]. Notice E = 0 if an only if $ is a solution. We now define a function 
Vo(t, X) which measures the minimum “energy” or minimum perturbation 
required for an absolutely continuous C# to start at 0 at time 0 and be at x 
at time t, restricting 1 $(s)l < a. Define 

(3.1) 

This function was first used by Okamura [4] in his investigation of uniqueness 
of solutions. His definition was equivalent to the one here. Our definition is 
due to Yoshizawa. The significance of V, is that V,-,(t, , x1) = 0 for t, > 0 if 
and only if there is a solution x(t) in {I x I < a} such that x(0) = 0 and 
x(tJ = X, . The function V,, will be used in our investigation of integral 
stability. 

We are interested in functions V: [0, co) x S, + R which have the 
following properties for some a 6 (0, c]. 

V is continuous on [0, co) X S, . (3.2) 

0 < VP, 4 < I x I for all (t, X) E [0, co) X S, . (3.3) 

I V(4 4 - w, r)l 6 I x - Y I if (6 4, (4 Y) E [O, ~0) x s, . (3.4) 
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v(t, x) < 0 along solutions of (E) for all (t, x). (3.5) 

V(t, 0) = 0, and 0 < I’(t, X) for x # 0 for all t 3 0. (3.6) 

r(r, X) 6 -V(t, X) along solutions of(E) for all (t, x). (3.7) 

We will say x = 0 is unique in thefuture for (E) if x = 0 is a solution and 
whenever x(t) satisfies (E) and x(t,,) = 0 for t,, 3 0, we have x(t) = 0 for 
t > t, . The following uniqueness theorem was proved by Okamura using V,, 
to prove that such a function V always exists (see [S]). This result can be 
strengthened in a sense as will be seen in Lemma 2. 

The following Lemma is the basis of Okamura’s results on necessary and 
sufficient conditions for uniqueness in the future, and will be applied to the 
study of integral stability (see [S], p. 8). 

LEMMA 1. The function V, satisfies (3.2), (3.3), (3.4), and (3.5). Further- 
more (3.6) is satisjied if x = 0 is unique in the future. 

Okamura proved that the solution x = 0 of (E) is unique in the future if 
and only if there exists a function V: [0, cc) x S, + [0, co) (for some u) 
such that V satisfies conditions (3.2) through (3.6). It is immediate that if 
such a function V exists, then the uniqueness of 0 in the future follows. The 
more difficult converse follows from Lemma 1. 

We shall investigate integral-asymptotic stability by means of the function 

qt, x) = PEtl$,d (t-u) / p(u) -f (u, Y(u))1 du, 
t > OF (3.8) 

I xl, t = 0. 

LEMMA 2. The function U in (3.8) satisfies (3.2), (3.3), (3.4), and (3.7), and 
if the solution x = 0 of(E) is unique in the future, U satisjies (3.6). 

Another definition of U which would satisfy Lemma 2 would be U(t, x) = 
e-t V,,(t, x), but this choice of U would not be useful later. The advantage of U 
in (3.8) is that if(E) is integrally attracting, U is “positive definite”. 

It may be seen that for t > 0 and x E S, if U(t, x) = 0, then there is a 
solution + of (E) such that 4(O) = 0 and either $(t) = x or 4 leaves S, before 
time t, so future uniqueness of x = 0 implies (3.6). The proof of this result 
is almost identical to the “Ascoli” argument in [8, p. 61 and so it is omitted 
here. Write M(T) = sup{/ f (t, y)i: 0 < t < T and y E S,}. 

LEMMAS. Foranyt>s>Oandx,yES, 

I w, 4 - w, y)l < I x - y I + I s - t /M(t) + (1 - es-t)a* (3.9) 
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Proof ofLemma 3. Considering 1 U(s, x) - U(s, y)l + I U(s, y) - U(t, y)l 
we see it is sufficient to prove two facts: 

and 
I U(s, 4 - w, Y)l < I 3 - Y It (3.10) 

I U(s, y) - U(t, y)I ,< l s - t WV> + (1 - es-%. (3.11) 

For YE A,(s, x) and h E (0, s), let Y/, E A,(s, y) be a function such that 
!Yh = Y on [0, s - h] and such that the graph of !P& on [S - h, y] is a straight 
line between (S - h, Y(s - h)) and (s, y). Then for all h > 0 

U(s, y) < jo' e-+t" I %h, - f (u, Y&4)l du 

d s 
*-’ e-s+u I p(u) -f(u, Y(u))] du + eh 1’ 1 qh(u)! du 

0 s-h 

+ js;, I f (s> Yk))! ds 

I 

s 
d eds+u 1 !#‘(u) - f(u, Y(u))1 du + eh I y - Y(s - h)! 

; hM(t). 

Since this is true for all h > 0, we may take the infimum (as h + 0). Also 
since this is true for all YE A,(s, x), we may replace the integral by U(s, x), 
yielding 

U(s,y) < q&x)+ IY--XI* 

This inequality is symmetric in x and y so (3.10) is proved. 
Note that U(t, 0) = 0 by definition of U (letting Y = 0 in (3.8)). Hence, 

0 < U(S,Y) G IY I. 

Let Y be in A,(t, y). Then (writing h for t - s > 0), 

(3.12) 

s 
t e-+u) I !#‘(u) -f (u, Y(u))1 du 

0 

3 e-t+s [I’ e-(s-u) I p(u) -f (u, Y(u))1 du + jst I p(u>l du] 
0 

- s t I f (u, #(u))l du 

> e&+:[U(s, Y(s)) + 1 y - Y(s)l] - M(t)h 

> e-t+8U(s,y) - M(t)h 



314 CHOW AND YORKE 

from (3.10), replacing x in (3.10) by #(s). S ince this is true for all YE A,(t, y), 

U(t, y) > U(s, y) - M(t)h - (1 - es+ (3.13) 

since from (3.12) (e-t+s - 1) U(s, y) > (e-t+s - l)j y / 3 -(l - es-t)u. For 
any YE A,(s, y) define Y* E A,(t, y) by Y* = Y on [0, s] and Y* s y on 
(s, a). Then for any # E A,(s, y) 

e-tt+ 1 ?#‘*(u) - f(u, p*(u))1 du 

= ectf8 iseu--s j p(u) -f(u, #(u))l du + It I f(u, y)l du. 
0 s 

Since this inequality is satisfied for all YE A&s, y), and since e-t+s < 1 and 
e”-s < 1, 

up, y) < U(s, Y) + (t - 4 Wt). 

This inequality with (3.13) yields (3.11). 1 

Proof of Lemma 2. Lemma 3 shows U satisfies (3.3) and (3.4) and continuity 
at (t, x) if t > 0. To see that U is continuous at (0, x) and thereby prove (3.2) 
is satisfied, it suffices to prove 

U(t, x) > ect( x 1 - M(t). 

For YE A,(t, x), 

s 
t e-t+u 1 p(u) - f(u, Y(u))] du 

0 

> e-t j-” I %4 du - /” lfh WN du 

oe-‘l~~~(u)dui-:M(1)=r-‘lxl-t”(t) 

which proves our claim. 
To prove (3.7) let #r be a solution of (E) with &(t) = x. For YE A,(t, X) 

define ul, E A,(t + h, &(t + h)) equal to Y on [0, t] and equal to +r on 
[t, t + h]. Then 

U(t + 4 y$(t + h)) < Jot+, e-(t+h-u) 1 !#‘(u) - f (u, Yh(u))l du 

= e-h 
s 

t e-+“) I p(u) -f (u, Y(u))/ du 
0 

for all YE A,(t, x) 

which, implies U(t + h, +r(t + h)) < e-hU(t, &(t)). Computing 0 (with 
respect to h at h = 0) gives (3.7), completing the proof of the lemma. 1 
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4. ASYMPTOTIC STABILITY UNDER PERTURBATION 

Let B be a normed vector space of measurable functions p: [0, co) + Rn. 
The norm of p will be denoted 11 p ]IB . 

DEFINITION 1. We say x = 0 is stable under B perturbations for (E) if for 
every E > 0, there exists 6(e) > 0, such that 

Ixol<~ and IIPIIB < 6 imply IM,h,~Jl <E 

for all / x,, j < 6 and t 3 to 3 0. When B = Ll[O, co), we sometimes say 
x E 0 is integrally stable. It is clear that x = 0 is a solution when x = 0 is 
stable under B perturbations. 

DEFINITION 2. A function V: [0, co) x S, -+ R is called positiwe dejkite 
if there exists a continuous, nondecreasing, real-valued function b(a), and 
b(r) = 0 if and only if r = 0, such that 

41 x I) < W 4 for all (t, x) E [0, co) x S, . (4.1) 

Theorems 1 and 2 were given by Vrkoi: [4], and Theorem 3 is apparently new. 

THEOREM 1. The followirsg conditions are equivalent. 

(IS): x E 0 is integrah’y stable for (E). 
(VI,): For some a E (0, c) there exists a continuous function 

V: [0, co) x S, --+ R 

having the following four properties: 

V(t, x) is positive definite, (4.2) 

V(t, x) < I x j for all (t, x) E [0, co) x S, , (4.3) 

I w 4 - w, Y>l < I x - Y I, for au (t, 4, (4 r) E LO, ~0) x S, , (4.4) 

r(t, x) < 0 taken along solutions of(E). (4.5) 

DEFINITION 3. We say x = 0 is attracting under Bperturbations for (E) if 
there exists 6, > 0 and for each E > 0 there exists T = T(E) > 0 and 
77 = T(E) > 0 such that 

I x0 I < 80 and IIPIIB <rl imply IMt,tO,xO)I <c 

for all t > to + T and to 3 0. When B = L,[O, co), we sometimes say 
x = 0 is integrally attracting for (E). 
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DEFINITION 4. We say x = 0 is asymptotically stable under B perturbations 
for (E) if it is stable under B perturbations and attracting under B perturba- 
tions. When B = L,[O, co) we sometimes say x = 0 is integral-asymptotically 
stable for (E). 

For a function U: [0, co) x S, + R we will write 0~~) or ou,) for the 
“trajectory derivative” (see (2.1)) taken along solutions of (E) and (P), 
respectively. 

THEOREM 2. The following conditions are equivalent. 

(IAS): x = 0 is integral-asymptotically stable for (E). 

(U,,,): For some a E (0, c) there exists a continuous function U: [0, a~) x 
S, + S, satisfying (4.2), (4.3), (4.4), and 

THEOREM 3. The above conditions (IAS) and (TJ,,,) are equivalent to 

(IA+): x = 0 is a solution and is unique in the future and is integrally 
attracting for (E). 

Notice that integral stability of 0 implies x = 0 is a unique-in-the-future 
solution of (E), which explains why the uniqueness hypothesis of Theorem 3 
is not needed in Theorems 1 and 2. 

EXAMPLE. For the following scalar equation 0 is integrally attracting but 
0 is not even a solution: 

2 = --x $ (t + I)-‘. 

Integral asymptotically stable systems can in fact be perturbed by a larger 
class of functions and still maintain their stability and attraction. 

DEFINITION 6. A function p: [0, co) -+ Rn is said to be interval bounded 
if it is measurable and 

sup t>O j)‘+ll p(s)1 ds < 00. 
, 

We will denote the space of interval bounded functions by B,, with norm 

II P IbIB = =J; I’+’ I p(s)1 ds. 
, t 
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Notice that a measurable function p(.) is interval bounded if for example 
1 p(t)/ is bounded or if for some y 2 1 

s oa 1 p(s)iy ds < 00. 
Since L, C B, , if x = 0 is asymptotically stable under B,B , then x = 0 

is also integral-asymptotically stable. It is perhaps surprising that the converse 
is true. 

THEOREM 4. The solution x = 0 is integral asymptotically stable (IAS) if 
and onlry af the following condition is satisjied: 

(AS,,): x = 0 is asymptotically stable under perturbations in the space of 
interval bounded functions. 

5. PROOFS THAT (IS) IMPLIES (V,,) AND (IAS) IMPLIES (U,,,) 

To prove that there exist functions satisfying (V,,) and (U,,,) we need only 
prove that the functions F’s (in (3.1)) and U (in (3.8)) are positive definite. 
Lemmas 1 and 2 have shown that, respectively, V,, and U satisfy all the other 
conditions of (V,,) and (U,,,). Actually we omit the proof in the case of V,, 
since the proof is quite similar to the one we now present showing (IA+) 
implies U is positive definite. 

Proof that (IA+) implies U is positive definite 

Suppose that x = 0 is unique in the future and is integrally attracting for(E). 
Let 6, correspond to the 6, in Definition 3. Letting a = 6, , we only have to 
prove that U: [0, co) x S, --f Rn is positive definite. We assume the contrary 
and will arrive at a contradiction. Since U is not positive definite there exists 
an E E (0,&J and sequences {tn} and {xn} with t, -+ co and E < x, < So 
such that 

U(t, , 4 + 0 as n--too. 

Let T(e) and r)(c) b e numbers corresponding to those in Definition 4. 
Let N be sufficiently large that tN > T + 1 and 

WN y xN) < rl ew[-(T + 111 
and let !PN E Aa,(tN , xN) be chosen such that 

s 
tN epctNeS) / pN(s) -f (s, YN(s))I ds < e-(r++. 



318 CHOW AND YORKE 

Then (writing t, = t, - (T + 1)) 

s tN &-‘) / pN(s) - f(s, Y,(s))1 d.s < eccr+%j 
to 

j e-tr+u s tN / !PN(s) -f(s, Y,(s))] ds < e-(T+l)T 
to 

s 

tN 

* I %&> -fb YN(s))I ds < v 
to 

Define 

PN(O - fk YNW 
PW = lo, 

for t E [0, t,v] 
for t E (tN , Go). 

Then &(t, t, , YN(t,)) = Y(u(t) for 0 < t < tN and I $p(& , GJ , Y&o))1 = 
1 yN(to)l < 8o9 and 

(4.7) 

However 1 v$-(h , to , yN(tO)l = I x, / > E since Y,(a) is a solution of (P) 
through (to , YN(to)), which contradicts the definition of integral attraction 
since tN > to + T. 1 

6. PROOF OF THEOREM 4: (IAS) 3 (AS,,) 

LEMMA 5 [8, pp. 4, 51. Let a E (0, c) and let U: [0, CO) x S, --+ [0, ~0) be a 
continuous function satisfying (3.4). Then 

q#& x) < b(4 4 + I PWI. (6.1) 

LEMMA 6. Assume 

s 
t+1 

I p(s)1 ds < 6 for al2 t > 0. (6-2) 
t 

Then for every t, > t, 

s t:’ I p(s)1 ds G (tz - t, + 1)s. (6.3) 

This result is clear and the proof is omitted. 
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Assume (MS) is true for the remainder of this section. Then from 
Theorem 2, (VI,,) is true. From Theorem 2, there is a continuous function 
U: [0, co) x S, -+ R satisfying (4.3), (4.4), and (for some 6 as in Def. 2) 

&I x I) < w, 4 < I 32 I9 for all (t, X) E [0, co) x S, (6.4) 

U(E)(4 4 < -w, 4 (6.5) 

where b( .) is a continuous, nondecreasing, real-valued function and b(r) = 0 
if and only if Y = 0. With these hypotheses we prove two lemmas whose 
proof will complete the proof of Theorem 4. 

LEMMA 7. x E 0 is stable under B,B perturbation for (E). 

Proof. Suppose not. Then there exists E > 0 such that for any 6 > 0 
there exists an absolutely diminishing p with I/p lldim < 6 and x,, with 
1 x,, I < 6 and t, > 0 and a solution &. = &( ., t, , x,,) such that for some 
t2 > to 

I Mt2 9 to Y x0)1 3 c. 

We may assume 6 is sufficiently small that 

s < b(b(c/2)) < &E/2) < b(E) 

b(42) + s < b(E). 
(6.6) 

Since I x0 I < 6 < b(~/2) < E (from (6.4)), there is some t, (to , t2) such that 

I Mdl = W4h I AIWI > &49 for t E (tl , t2). 

I $+)I G - U(t, 4 + p(t). 

From Lemma 5 and Eq. (6.5) 

%9(4 4 d &a$9 4 + 

Using (6.4) we have for t E [tl , tz] 

%9(4 4&N d - w MN t I m G --b(ldPw + I P(t>l 
G --bW4N + I ml < -4 + I zwl. 

Now integrating from t, to t, and using Lemma 6 

Wz , ~&)) - u(4 ,4&d) < -(tz - W + f’ I $@>I dt < 6. 
h 
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But this means that 

which contradicts (6.6), proving the lemma. 1 

LEMMA 8. x = 0 is attracting for (E) under interval bounded perturbations 

for w 
Proof. Let 6 = 6(e) and 77 = T(E) be from Lemma 7, i.e., 

IlPllre <? implies I MC to 9 x0)1 < 6 

for all 1 x0 1 < 6 and t > to 3 0. Choose So = 6(c). Let E > 0 be given. We 
claim that 

and 
~(4 = minh(c), UP) WY+) 

T(c) = cc + UP) @(4Nl(~/2) W(4) 

are the required estimates in Definition 3 for our system. In view of Lemma 7, 
we only need to show that there exists t* E [to, T(E) + to], for any to 3 0, 
such that 

I Mt*; to 9 x0)1 < qc), where / x0 / < 6, = S(c). 

Since T(E) < T(E), we have from Lemma 7, 

I 4dt; t0 , X0)i < 6 for all t > to + T 2 t*. 

Now suppose there does not exist such t*, then 

8(E) < I $b(t)l < c> for all t E [to , to + T(E)] 

where &p(t) = &.(t; to, ’ x0). As m the proof of Lemma 7, we obtain 

< Wo + T, Adto + TN 

G wo ? MO)) - WV - &ON T + &o) 
< c - [b(a) - 71 T + rl 
< c - [b(s) - (1 PI WI T + (1 PI W 
=c-c=o. 

This is a contradiction. 1 
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7. AN APPLICATION 

LEMMA 9 (Massera [I 11). Let f(t, x) be Lipschitzean in x and assume 0 is 
uniform asymptotically stablefor (E). Then for some a E (0, c), there is a function 
v: (0, co) x s, --f [0, 03) such that V has an injklesimal upper bound, 
r (taken along solutions of(E)) is negative dejkite, and V is Lipschitzean in x. 

COROLLARY. Let f be Lipschitzean in x and assume 0 is unijorm-asymp- 
totically stable for (E). Then 0 is integral-asymptotically stable. 

This Corollary follows immediately from Lemma 9 and Theorem 3. It was 
proved in [I] using quite different methods. 
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