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Abstract 

In this paper the notion of potential optimality without an assumption that a value function exists is used to investigate 
multicriterial optimization problems. Our results show that the notions of potential optimality and strong Pareto optimality 
(weak Pareto optimality, properly Pareto optimality) are equivalent for special forms of objective functions which are 
increasing with respect to strong Pareto relation (weak Pareto relation). 
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1. Introduction 

The notion of potential optimality was originally introduced in the context of an additive value or utility 
function with unknown parameters and finite number of alternatives. See, for e xample, [1, 2]. White [3] 
proposed a definition of potential optimality using the set of value fun ctions. Podinovski [4] introduced the 
notion of potential optimality without an assumption of value function existence. In this paper the author 
investigates the potential optimality for Pareto optima in multicriterial decision making problems. 

2. Basic definitions and some results for the potential optimality 

For convenience, the basic definitions and selected results from [4] are presented below. Let the preferences 
of the decision maker (DM) be described by the non-strict preference relation R on the set A of objects: aRb if 
the DM considers object a to be not less preferable than object b. Objects a and b are comparable if aRb or bRa 
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is true. Relation R is complete if any two elements of A  are comparab le. If relation R  is not complete it is called 
partial. The non-strict preference relat ion R induces the relations of (strict) preference relation P and 
indifference relation I on A: aPb holds if aRb is true but bRa is not true; aIb holds if both aRb and bRa are true. 
The relation R is assumed to be a quasi-order, i.e. R is a reflexive and transitive. 

Definition 1. An object a* is optimal (with respect to R), if a*Ra holds for any a A. 
Definition 2. An object a0 is non-dominated (with respect to P), if there exists no object a A such that aPa0. 

Otherwise object a0 is dominated (with respect to P). 
A quasi-order R  is a (consistent) extension of a quasi-order R  if the following is true: R   R; I   I; P   P 

(note that the first embedding implies the second). According to the theorem of Szp ilrajn  [5], any part ial quasi-
order R on A can be extended to a complete quasi-order R . Let  be the class (set) of all complete quasi-
orders on A that extend R, and  be some class (non-empty subset of ) of such complete quasi-orders. 

Definition 3. An object a* is potentially optimal for the class  if there exists a complete quasi-order 
R  with respect to which a* is optimal. 

Definition 4. An object a* is potentially optimal, if it potentially optimal for the class . 
Theorem 1. The following statements hold: 

1.1. Each potentially optimal for the class  object is non-dominated. 
1.2. Any non-dominated object is potentially optimal. 
1.3. Any object is non-dominated iff (if and only if) it is potentially optimal. 

3. Basic definitions and some results from the theory of multicriteria optimization 

Let X f = (f1 fm) be a vector criterion. Each 
criterion fi is a  function defined on X  and taking its values from the range Zi  Re = ( , + ); its larger values 
are preferred to smaller ones. The vector y = f(x) is called a criterial estimate of alternative x, and the set Y = 
f(X) is called  a set  of feasible criterial estimates. The set Z = Z1    Zm is a set of (all) criterial estimates. It 
is located in the m-dimentional arithmetical space Rem called the criterial space. 

The fundamental role in multicriterial optimizat ion problems belong to the (strong) Pareto relation R . It is 
defined on the set Z as follows: 

 
mizzzRz ii ...,,1, . 

 
If all non-strict inequalities are satisfied as equalities, then z I z  (and therefore I  is an equality relation for 
vectors from Z), otherwise z P z . 

Definition 5. A point y0 Y that is non-dominated in Y with respect to P  is (strongly) Pareto optimal, or 
(strongly) efficient, or a (strong) Pareto optimum. 

Weak Pareto relation P> on the set Z is defined as follows: 
 

mizzzRz ii ...,,1, . 
 

Let R> be a union of P> and the equality relation for vectors from Z. 
Definition 6. A point y0 Y that is non-dominated in Y with respect to P> is weakly Pareto optimal, or Slater 

optimal, or a weak Pareto optimum. 
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Definition 7. A Pareto optimal point y0 Y is properly Pareto optimal, or properly efficient, or Geoffrion 
optimal, if there exists a positive number (y0) such that for any point y Y the following statement is true: if 

0
ii yy  then there exists j M m} such that 0

jj yy  and 
 

)( 0
0

0

y
yy
yy
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ii . 

 
Let Y , Y * and Y> denote the sets of Pareto optimal points, properly Pareto optimal points and weakly  Pareto 

optimal points respectively. Note that Y *  Y   Y> and these embeddings are generally strict. If the set Y is 
finite then each Pareto optimal point is properly Pareto optimal: Y * = Y . 

Theorem 2. [6] A point y0 Y is weakly Pareto optimal iff  
0)(minmax 0

iiMiYy
yy . (1) 

 
Let  be a positive number such that  < 1/m. Using vectors  j( ): 
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define  a polyhedral cone in Rem: 
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Let 0(m) m and 
 

Y  y0 = {u Rem u = y  y0, y Y}. 
 

Theorem 3. [6] A point y0 Y is properly Pareto optimal iff there exists a positive number  < 1/m such that 
 

(Y  y0)   = 0(m). (2) 
 
The set Y is called effectively convex if its Edgeworth-Pareto hull mYY Re , where mRe  

}0...,,0Re{ 1 m
m uuu , is convex. Note that if the set X is convex and all criteria fi are concave functions 

then Y is effectively convex [7]. 
Theorem 4. Let the set Y be effectively convex. The following statements hold : 

4.1. [7, 8] A point y0 Y is weakly Pareto optimal iff there exist non-negative numbers c1 cm not all 
equal to zero such that 
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4.2. [9] A point y0 Y is properly Pareto optimal iff there exist positive numbers c1 cm such that (3) is 

true. 
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Let Y be polyhedral (see, e.g., [10]) and therefore effect ively convex. (If X  is polyhedral and all criteria fi are 
linear functions then Y is polyhedral.) In  this case the set of Pareto optimal points and the set of properly Pareto 
optimal points are equal (see, e.g., [11]). Note that if the criterial estimate y = f(x) of the alternative x is Pareto 
optimal (weakly Pareto optimal, properly Pareto optimal) then the alternative x is called Pareto optimal (weakly 
Pareto optimal, properly Pareto optimal respectively). 

4. Potential optimality for Pareto optima 

Let YR  and YR  be restrictions of the relat ions R  and R> to Y respectively. The relations YR  and YR  are 
partial quasi-orders and can be extended to a complete quasi-order. Theorem 1 shows that the following 
statement is true. 

Theorem 5. A point y0 Y is potentially optimal for the class of all complete quasi-orders on Y that extend 
YR  (respectively, YR ) iff it is Pareto optimal (respectively, weakly Pareto optimal) . 

But for some classes of quasi-orders, the Pareto optimal point may  not be potentially  optimal (see, e.g., [12]). 
A function (z) is said to be increasing with respect to P  (increasing with respect to P>) on the set Z if 
 

z P z   (z ) > (z )  (respectively, z P>z   (z ) > (z )). 
 

Each such function induces on Z a complete quasi-order R : 
 

z R z   (z )  (z ), 
 

and the set of maximum points of this function on Y is equal to the set of points that are optimal with respect to 
YR . Let  ( ) be a class (set) of complete quasi-orders that are induced on Y by all functions that are 

continuous and increasing on Z (therefore, on Y) with respect to P  (increasing with respect to P>). Many 
multicriterial optimization methods use such (objective) functions. Therefore question of potential optimality 
for the classes  and  could be interesting for application. Note that  . 

Theorem 6. A point y0 Y is weakly Pareto optimal iff it is potentially optimal for the class . 
P roof  o f Theo re m 6 .  If a  point y0 Y is potentially optimal for the class , then, according to Theorem 

1, y0 is weakly Pareto optimal. Now assume that y0 Y is weakly Pareto optimal. The complete quasi-order R  
induces on Z by the function 

 
(z b) = )(min iiMi

bz , (4) 

 
where b Z, extends R> on Z. According to Theorem 2, y0 is a maximum point of (z y0) on Y. Hence, y0 is 
optimal with respect to YR . Therefore, y0 is potentially optimal for the class .                                              

Using the function (4) with b Rem, define the following lexicographic quasi-order Rlex(b) on Rem: 
 

zRz lex   [ (z b) > (z b)]  [ (z b) = (z b)  ]
11

m

i
i

m

i
i zz . 

 
This quasi-order is complete and extends R  on Z. 

Theorem 7. A Pareto optimal point y0 Y is optimal with respect to )( 0yRlex
Y . 
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P roof  o f Theo re m 7 . Let a point y0 Y be Pareto optimal. Since R>  R , this point is weakly Pareto 
optimal. Let y  be any point from Y. Assume that 00 )( yyyPlex

Y  is true. Theorem 2 shows that inequality 
(y y0) > (y0 y0) is not true. Therefore, (y y0) = (y0 y0) = 0 holds and 
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The equality (y y0) = 0 implies that 0)(min 0

iiMi yy , hence 
 

miyy ii ...,,1,0 . (6) 
 
According to (5), at  least one of inequalities in (6) is strict. Th is contradicts the assumption tha t y0 is Pareto 

optimal. Hence, yyRy lex
Y )( 0

0  is true. Therefore, y0 is optimal with respect to )( 0yRlex
Y .                                      

Theorem 8. A Pareto optimal point may not be potential optimal for the class  . 
The following example shows that Theorem 8 is true. 
Example 1. Let  m = 2, Z = Re2, Y = [0, 1)  [0, 1)  {(1, 0)}. The point y0 = (1, 0) is Pareto optimal. Let   

be any continuous function, increasing with respect to P  on Re2. Suppose that y0 is the maximum point of  on 
Y. Since z*P y0, where z* = (1, 1), the inequality (z*) > (y0) holds. The function  is continuous, 
consequently there is a point y* Y for which the inequality (z*)  (y*) < (z*)  (y0) is true. Therefore, 

(y*) > (y0). But this is impossible, because by assumption y0 is the maximum point of  on Y. Since  is 
an arbitrary continuous function, increasing with respect to P  on Re2, the point y0 is not potential optimal for 
the class .                                                                                                                                                          

Theorem 9. A properly Pareto optimal point is potential optimal for the class . 
P roof  o f Theo re m 9 .  Let a point y0 Y be properly Pareto optimal. According to Theorem 3, there exists 

a positive number  < 1/m such that (2) is true. Let us consider the function 
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ii
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bzbz
1

))((min)),(( . (7) 

 
where  < 1/m and b Rem. It  is continuous and increasing with respect to P  on Rem. Its hypersurface defining 
by the equation 0)0),(( )(mz coincides with the frontier of the cone . It is easy to see that y0 is the 
maximum point of the function (7) on Y. Hence y0 is optimal with respect to the complete quasi-order YR  that 
is induced on Y by this function. Therefore, y0 is potential optimal for the class .                                           

Note that a point y0 Y that is potential optimal for the class  may not be properly Pareto optimal. 

Example 2. Let m = 2, 2ReZ , Y = {z 2Re 12
2

2
1 zz }. The point y0 = (1, 0) is Pareto optimal but is 

not properly Pareto optimal. The function 2
2

2
14)( zzz  is continuous and increasing with respect to P  on Z. 

It is easy to see that y0 is the maximum point of  on Y. Therefore, y0 is optimal for the class .                     
Let L

Y  ( L
Y ) be a class of complete quasi-orders induced on Y by all functions 

 
m

i
ii yccy
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where all ci > 0 (respectively, all ci  0 and at least one of them is positive). Each such function is  continuous 
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and increasing with respect to P  (respectively, with respect to P>) on Rem. Note L
Y   L

Y . 
The following statements are corollaries of Theorem 4. 

Theorem 10. Let the set Y be effectively convex. The following statements hold: 
10.1. A point y0 Y is properly Pareto optimal iff it is potentially optimal for the class L

Y . 
10.2. A point y0 Y is weakly Pareto optimal iff it is potentially optimal for the class L

Y . 
10.3. Let the set Y be polyhedral. A point y0 Y is Pareto optimal iff it is potentially optimal for the class 

L
Y . 

 5. Conclusion 

The notion of potential optimality is one of the basic notions in the theory of multicriterial opt imization. 
This paper reveals the interdependence of (strong, week, properly) Pareto optimality and potential optimality in 
multicriterial optimization  problems. A lso, it  demonstrates that the methods, developed for constru ction of 
Pareto optimal sets of alternatives (particularly, for convex problems), can be employed to form a set of 
potentially optimal alternatives. 
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