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1. INTRODUCTION

Classical Schubert calculus, by which I mean the formulas of Giambelli
and Pieri encoding the product structure of the cohomology ring of a
complex Grassmannian, has been an essential tool in enumerative algebraic
geometry for over a century.

String theorists (notably [W]) recently introduced the notion of a
``quantum'' deformation of the cohomology ring of a smooth projective
variety X. This quantum deformation, or quantum cohomology ring, as it
is often called, is an algebra over a formal-power-series ring which spe-
cializes to the ordinary cohomology ring, and which is defined in terms of
intersection data (the Gromov�Witten invariants) on all the spaces of
holomorphic maps from pointed curves of genus zero to X.

A rigorous definition of the Gromov�Witten invariants, together with a
verification of the algebra structure of these quantum deformations, has
been established by two schools, namely the symplectic school of Ruan�
Tian ([RT]) and the algebra-geometric school of Kontsevich�Manin
([KM]). One interesting variant of the quantum deformation is a ``small''
deformation of the cohomology ring (terminology taken from [F2]) which
is an algebra over a polynomial ring (hence of finite-type over C) sitting
between the full quantum deformation and the cohomology ring itself. This
``small'' quantum cohomology ring can be defined independently, and we
will do so in the Grassmannian case, where it turns out to be an algebra
over a polynomial ring in one variable. We will let q stand for the variable.

In this paper, the rules for the Schubert calculus are modified so that
they are valid in the small quantum cohomology ring. In other words,
whereas the Giambelli and Pieri formulas are valid in the cohomology ring
of a Grassmannian, higher order terms (in q) may appear when the corre-
sponding products are taken in this ring. The main result here is the
computation of these higher order terms. Our computation relies on the
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recursive properties of a particular smooth compactification (the Grothen-
dieck quot scheme) of the space of holomorphic maps of a fixed degree
from P1 to a Grassmannian.

In order to fix notation and refresh the reader's memory, we begin with
an overview (following [GH]) of the classical Schubert calculus before
continuing with the introduction.

Let V be a vector space over C of dimension n,

0=V0/V1/ } } } /Vn=V be a full flag for V,

G :=G(n&k, n) be the Grassmannian of (n&k)-dimensional sub-
spaces of V,

4x/V be the subspace corresponding to a point x # G.

Given an n&k-tuple of integers a� :=(a1 , ..., an&k) satisfying the
inequalities k�a1� } } } �an&k�0, let:

Wa� =[x # G | dim(4x & Vk+i&ai)�i].

Then Wa� is a subvariety of G of complex codimension |a� | :=�n&k
i=1 ai .

Let

_a� # H 2 |a� |(G, C)

be the corresponding element in cohomology.
One calls Wa� the Schubert variety associated to a� (and the given flag).

The cohomology classes _a� produce a vector-space basis for H*(G, C) as
the a� =(a1 , ..., an&k) range over all tuples of integers with the given con-
straints.

The Schubert varieties a :=(a, 0, ..., 0) are called special Schubert
varieties. The corresponding cohomology classes _a coincide with the
image in cohomology of the chern classes ca (Q) where Q is the universal
quotient bundle on G. These special cohomology classes generate the
cohomology ring of the Grassmannian as an algebra over C via the follow-
ing determinantal formula:

Giambelli's Formula. By convention, let _a=0 if a<0 or a>k. Then:

_a1
_a1+1 _a1+2 } } } _a1+n&k&1

_a2&1 _a2
_a2+1 } } } _a2+n&k&2

_a� =2a� (_*
) := } _a3&2 _a3&1 _a3 }b b

_an&k&(n&k)+1 } } } _an&k

The other ``Italian'' formula explicitly computes the intersections of a
special cohomology class and a general one:
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Pieri's Formula. The product of _a and _a� in H*(G, C) is:

_a } _a� = pa, a� (_*�
) :=:

b9

_b9

where the b9 vary over all n&k-tuples satisfying:

|b9 |=a+|a� | and k�b1�a1� } } } �bn&k�an&k�0.

The two Italian formulas determine the ring structure on the cohomol-
ogy ring H*(G, C). Indeed, (see [BT], Proposition 23.2) one obtains a
convenient presentation of the cohomology ring as:

(V) : C[X1 , ..., Xk]�(Yn&k+1(X
*

), .., Yn (X
*

))$H*(G, C), Xa [ _a

where Yi (X*
) is the coefficient of ti in the formal-power-series inverse of

the polynomial 1+X1 t+ } } } +Xktk.
Finally, recall that if we set a� c :=(k&an&k , k&an&k&1 , ..., k&a1), then

_a� and _a� c are Poincare� dual. Equivalently, if we let (Wa� , Wb9 ) denote the
intersection number in G of general translates of Wa� and Wb9 (which is set
to zero if |a� |+|b9 |{dim(G)=k(n&k)), then

(Wa� , Wb9 ) ={1 if b9 =a� c

0 otherwise

The multiplication on H*(G, C) can be understood solely in terms of
intersection numbers as follows. If _a� 1

, ..., _a� N
are cohomology classes

corresponding to Schubert varieties, let (Wa� 1
, ..., Wa� N

) be the intersection
number of general translates of the Schubert varieties, set to zero, as above,
if �N

i=1 |a� i|{dim(G). Then in the cohomology ring of G,

_a� 1
} } } } } _a� N

=:
a�

(Wa� , Wa� 1
, ..., Wa� N

) _a� c .

This is an immediate consequence of the fact that the cohomology classes
_a� satisfy the Poincare� duality property above.

The key idea behind the quantum deformations is to introduce ``higher
order terms'' into the product by considering a sequence of intersection
numbers, starting with the intersections on G itself. To be more precise,
here is a definition for the small quantum deformation.

For each integer d�0, let (Wa� 1
, ..., Wa� N

) d # Z be the ``Gromov�
Witten'' intersection number defined as follows. Choose general points
p1 , ..., pN # P1 and general translates of the Wa� i

. Then (Wa� 1
, ..., Wa� N

) d is
``by definition'' the number of holomorphic maps f : P1 � G of degree d
with the property that f ( pi) # Wa� i

for all i=1, ..., N (and zero if the sum of
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the |a� i | is such that one expects this number not to be finite). In Section 2,
we make rigorous sense out of this definition and reinterpret it as an inter-
section of generalized Schubert cohomology classes in a Grothendieck quot
scheme, which in this case happens to be a smooth, projective variety of
dimension nd+dim(G). Notice that in particular, the Gromov�Witten
number (Wa� 1

, ..., Wa� N
) 0 is the original intersection number in G.

The ``quantum'' product of _a� 1
, ..., _a� N

, which we will denote with
asterisks as _a� 1

V } } } V _a� N
, is defined as follows. Let q be a formal variable.

Then:

_a� 1
V } } } V _a� N

= :
d�0

qd \:
a�

(Wa� , Wa� 1
, ..., Wa� N

) d _a� c+
Notice that setting q=0, one recovers the original product. Notice also

that this sum is finite, because the dimensions of the spaces of holomorphic
maps from P1 to G increase with d.

The really surprising aspect of quantum cohomology is the following:

Associativity Theorem. Extend the quantum product to a product on
elements of H*(G, C)[q] by linearity and by setting

(_a� 1
qd1) V } } } V (_a� N

qdN)=(_a� 1
V } } } V _a� N

)q(d1+ } } } +dN)

Then the pairwise quantum product is associative and gives H*(G, C)[q]
the structure of a C[q]-algebra. The quantum product of more than two
terms agrees with the product in this ring.

It would be confusing to refer to this ring as H*(G, C)[q] because the
quantum product is not the same as the natural product on this polyno-
mial ring, so we make the following:

Definition (of the Small Quantum Ring). The small quantum
cohomology ring QH*(G) is by definition the vector space H*(G, C)[q]
equipped with the extended quantum product.

As I said earlier, this theorem is a special case of more general
associativity results in Ruan�Tian [RT] or Kontsevich�Manin [KM]. It
is also a very powerful theorem, as it tells us that all quantum products are
determined by the pairwise products(!) For example, Siebert and Tian
([ST]), following ideas of Witten, use this idea to reduce the proof of the
following presentation for QH*(G) to a single computation for degree one
maps:

(V)q : C[X1 , ..., Xk , q] �(Yn&k+1(X
*

), .., Yn (X
*

)&(&1)k&1 q)$QH*(G),

where Xa [ _a , q [ q and the Yi (X*
) are defined as in (V).
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In this paper, we will compute versions of the Italian formulas where the
ordinary multiplication is replaced by quantum multiplication. Unlike
the presentation for the quantum cohomology ring above, it seems that the
best way to approach this problem is not by invoking the associativity
theorem, even though the quantum product is, of course, determined by
(V)q . Rather, both formulas follow rather quickly from a theorem of Kempf
and Laksov ([KL]) once we have analyzed the relevant Grothendieck
quot scheme in Section 3. To be precise, we will prove the following
formulas in Section 4:

Quantum Giambelli.

_a� =2a� (_*
),

when the determinant is evaluated in QH*(G) using the quantum product.
In other words, no higher order terms in q arise from the Giambelli deter-
minant!

Quantum Pieri.

_a V _a� =pa, a� (_*�
)+q \:

c�

_c� +
where the c� range over all n&k-tuples satisfying:

|c� |=a+|a� |&n

and

a1&1�c1�a2&1� } } } �an&k&1�cn&k�0.

Notice that as is the case with the classical Giambelli and Pieri formulas,
the quantum versions determine all the quantum products.

In Section 5, as a quick application of quantum Giambelli, we see that
a residue formula of Vafa and Intriligator computing the Gromov�Witten
numbers for special Schubert varieties can readily be modified to compute
all the Gromov�Witten numbers.

Final remarks. By substituting the Giambelli determinant, one of course
has the identity: _a� V _a� 1

V } } } V _a� N
=2a� (_*

) V _a� 1
V } } } V _a� N

in QH*(G) for
any Schubert cohomology classes _a� and _a� 1

, ..., _a� N
. Similarly one can sub-

stitute for a product _a V _a� using quantum Pieri. This is obvious once the
associativity theorem is established. But it can be (and was originally)
proved directly using the methods of this paper without appealing to the
quantum ring, and can indeed be used to obtain an independent proof of
the associativity theorem in this context. (Quantum Giambelli implies
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H*(G, C)[q] is a quotient of the polynomial ring C[x1 , ..., xk , q] and
quantum Pieri implies that the kernel is an ideal, putting the quotient ring
structure, which is the quantum product, on H*(G, C)[q].)

Finally, it is possible to derive quantum Pieri from quantum Giambelli
and the presentation (V)q of the quantum cohomology ring, bypassing the
delicate geometric arguments in Section 4. Quantum Giambelli itself,
however, seems to require a special proof.

2. INTERSECTIONS ON THE SPACE OF MAPS

In this section, we will rigorously define the intersection of Schubert
varieties on the moduli spaces Md of holomorphic maps of degree d from
P1 to G. We will first prove a moving lemma, stating that the Schubert
varieties can be made to intersect in points when they ought to. Then we
will prove a cohomological lemma, interpreting the intersection as the
intersection of cohomology classes in a given smooth, projective variety.

We begin with Md itself. The usual way to prove that the space of maps
is represented by a quasiprojective scheme is to embed it as an open set in
a Hilbert scheme based on the product P1_G. However, there is another
moduli space available which contains Md as an open subscheme, namely
Grothendieck's quot scheme, which will be our compactification of choice.

Recall that a map f : P1 � G is equivalent to specifying a quotient vector
bundle V�OP1 � Q, or dually, a subbundle S=Q*YV*�OP1 (modulo
the action of GL(V)) where S has degree &d and rank k. The quot scheme
will parametrize maps SYV*�OP1 that are injective as maps of sheaves. In
other words, the cokernel F of such a map is not required to be a vector
bundle. Specifically, let /(m)=(m+1)(n&k)+d. That is, / is the Hilbert
polynomial of a vector bundle of rank n&k and degree d on P1. Then:

Grothendieck's Theorem. The functor Quot/(V*�P1) parametrizing
flat families of quotients V*�OP1 � F of Hilbert polynomial / is represent-
able by a smooth projective variety of dimension nd+dim(G). Moreover, if
we let Qd denote this fine moduli space, then Md is an open subscheme of Qd

via the canonical inclusion.

We will call Qd the quot scheme compactification of Md . ([Gro] is the
standard reference for the proof of Grothendieck's Theorem.)

Since Qd is a fine moduli space, there is by definition a universal exact
sequence:

0 � Sd � V*�O � Td � 0,
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on P1_Qd which is flat over Qd . The sheaf Td is certainly not usually a vec-
tor bundle, but it is an easy consequence of flatness that the kernel Sd is
a vector bundle.

We will be very interested in the dual (nonsurjective!) universal map:

u : V�O � Sd*

Next, we define the pull-back of Schubert varieties to Md .

Definition 2.1. If p # P1 and Wa� /G is a Schubert variety, then let:

Wa� (p)=[ f # Md | f ( p) # Wa� ]

We put a scheme structure on Wa� (p) via the universal evaluation map
ev: P1_Md � G by redefining:

Wa� (p) :=ev&1(Wa� ) & [[p]_Md].

We may extend Wa� (p) as a degeneracy locus to the quot scheme:

Definition 2.1A. Recall the flag of subspaces 0=V0/V1/ } } } /
Vn=V. For each i=1, ..., n&k, let Di, ai

/P1_Qd be the largest subscheme
on which the dimension of the kernel of u: Vk&i+ai

�O � Sd* is at least i,
and let Di, ai

(p) be the intersection: Di. ai
& [[p]_Qd] thought of as a sub-

scheme of Qd . Then exactly as in the definition of Wa� , we define:

W� a� (p) :=D1, a1
(p) & } } } & Dn&k, an&k(p).

Suppose now that a� 1 , ..., a� N are (n&k)-tuples describing Schubert
varieties, and let A=�N

j=1 |a� j | . Then:

Moving Lemma 2.2. For any points p1 , ..., pN # P1, corresponding
general translates of the Wa� j

/G, and a fixed subvariety Z/Md , the inter-
section: Wa� 1(p1) & } } } & Wa� N

(pN) & Z is either empty, or has pure codimen-
sion A in Z.

Proof. It suffices by induction to prove that given a subvariety Z/Md ,
a point p # P1, and a general translate of Wa� (p), the intersection Z & Wa� ( p)
is empty or has codimension |a� | in Z. But if we let T/G be the image of
Z/[[p]_Md] under the evaluation map ev, then by an argument of
Kleiman (see [H], III.10.8), a general translate of Wa� intersects T in
codimension |a� | . More generally, the general translate intersects each locus
in T over which ev |Z has constant fiber dimension in codimension |a� | .
Since Wa� (p) & Z=ev&1(Wa� & T) & Z, the lemma follows.
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The lemma implies that when A=dim(Md), the schemes Wa� i
(pi) can be

chosen to intersect in (reduced) points. Recall that the Gromov�Witten
intersection number is defined as the number of these points when the pi

are in general position. However, it turns out that it suffices for them to be
distinct:

Moving Lemma 2.2A. If p1 , ..., pN # P1 are distinct points, then for
general choices of N full flags on V, an intersection W� a� 1

(p1) & } } } &
W� a� N

(pN) of generalized Schubert varieties is either empty, or has pure
codimension A in Qd . Moreover, the intersection Wa� 1

(p1) & } } } & Wa� N
(pN) is

Zariski dense in W� a� 1
(p1) & } } } & W� a� N

(pN). In particular, if A=dim(Qd),
then

W� a� 1
(p1) & } } } & W� a� N

(pN)=Wa� 1
(p1) & } } } & Wa� N

(pN).

In order to prove this lemma, we will need to analyze the structure of the
boundary Bd :=Qd&Md . This we will do in the next section. For now, we
list the main consequences of the lemma.

Corollary 2.3. The cohomology class _a� # H 2 |a� | (Qd , C) associated to
W� a� (p) is independent of p # P1 and the choice of flag on V. We will call this
the generalized cohomology class associated to the Schubert variety Wa� .

Proof. It follows immediately from Definition 2.1A that the W� a� (p) are
fibers of a morphism from a subscheme X/P1_F_Qd to P1_F, where F
is the full flag variety associated to V.

Because the automorphism groups of P1 and F are transitive, the map
X � P1_F is even a fiber bundle, of fiber codimension A by the lemma,
and the corollary follows. (The reader may check that X is not empty!)

Corollary 2.4. If A=dim(Md), then the total degree of the intersec-
tion in Lemma 2.2 is independent of the (general) translates of the Wa� j

and
the points pj # P1 as long as the pj are distinct.

Proof. If the pj are distinct, then the latter part of Lemma 2.2A applies
and the intersection number may be interpreted as the degree of the
product of the _a� j in the cohomology ring of the quot scheme.

It is very important that the points are distinct in Corollary 2.4. If the
corollary were true for any collection of points, then the quantum Schubert
calculus would be trivial! (But see quantum Giambelli in Section 4.)

Conclusion. If �N
i=1 |a� i |=dim(Md), then the Gromov�Witten number

(Wa� 1
, ..., Wa� N

) d from the introduction is well-defined, and coincides with the
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degree of the product of the generalized Schubert cohomology classes
_a� 1

, ..., __� N
in the cohomology ring of Qd .

Remark. In Section 4, we will use this conclusion to extend the defini-
tion of the Gromov�Witten numbers to situations where the cohomological
interpretation is the correct one, and the naive definition from Section 1 is
not correct.

Thus, the definition of the quantum product is now secure, and the
Gromov�Witten numbers have a cohomological interpretation. As another
application of the moving lemmas, we prove the following formula for the
``trivial'' quantum product.

Lemma 2.5. _b9 = :
d�0

qd \:
a�

(Wa� , Wb9 ) d _a� c+
Proof. We need to prove that (Wa� , Wb9 ) d=0 for all pairs of Schubert

varieties Wa� and Wb9 , and all positive values of d.
The Gromov�Witten number is zero if |a� |+|b9 |{dim(Md) by definition.

So we assume equality, and by the Moving Lemmas, we know that the
intersection number is realized as the degree of W� a� (p) & W� b9 (o) for distinct
points o, p # P1, and general translates of Wa� and Wb9 . Moreover, we know
that the intersection is contained in Md .

Now suppose that the intersection is nonempty. Then we have just seen
that there is a map f : P1 � G of degree d such that f (p) # Wa� and
f (o) # Wb9 . But there are an entire C* of automorphisms *: P1 � P1 which
fix p, o, and the compositions f b * all produce different elements of
W� a� (p) & W� b9 (o). Since the intersection was proven to be finite, we get a
contradiction.

(Notice that there is no contradiction in case d=0 because if f is a
constant map, then all the f b * are the same!)

3. THE RECURSIVE STRUCTURE OF THE QUOT SCHEME

Recall from Section 2 the definition of the boundary of Qd :

Bd :=Qd&Md .

As we noted in Section 2, the universal quotient sheaf Td on P1_Qd is
not locally free. In fact, Md is the largest subset U of the quot scheme with
the property that Td has constant rank n&k on P1_U. In the following
theorem, we obtain precise information about a stratification of the
boundary determined by the loci where Td has rank at least n&k+r.
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Theorem 3.1 (Structure Theorem for the Quot Scheme). For all
positive integers r�k, let ?r : Gd, r � P1_Qd&r be the Grassmann bundle of
r-dimensional quotients of Sd&r on P1_Qd&r , and let S� d&r be the kernel of
the tautological quotient ?r*Sd&r � Q. Then there are maps ;r : Gd, r � Qd

satisfying:

(i) If Td has rank at least n&k+r at a point (p, x) # P1_Qd , then
x is in the image of ;r .

(ii) The restriction of ;r to ?&1
r (P1_Md&r) is an embedding.

(iii) The preimage of Schubert varieties in Gd, r is given by

;&1
r (W� a� (p))=?&1

r (P1_W� a� (p)) _ W� a� &r� (p)

where r� =(r, r, ..., r), W� a� &r� (p)=�n&k
i=1 D� i, ai&r (p) and D� i, a (p) is the

degeneracy locus inside ?&1
r (p_Qd&r) where the kernel of Vk&r+i&a�

O � S� *d&r has rank at least i.

Proof of the Structure Theorem. To construct the maps ;r , we need to
find bundles Ed, rYV*�O on P1_Gd, r which have rank k and relative
degree &d over Gd, r . We obtain these from the ?r*Sd&r by elementary
modifications. Namely, let ?*2Sd&r � ?*2Q be the pull-back of the
tautological quotient to the preimage of 2_Qd&r in P1_Gd, r . (2/P1_P1

is the diagonal.) Let ?*Sd&r be the pull-back of Sd&r to P1_Gd, r , and con-
sider the composition:

fd, r : ?*Sd&r � ?*2Sd&r � ?*2 Q.

Since the quotient is a vector bundle of rank r supported on a divisor
which intersects each fiber of the projection P1_Gd, r � Gd, r in a point, the
kernel of fd, r is a vector bundle Ed, r with the desired properties. Since
the quot scheme is a fine moduli space, moreover, we know that
(id, ;r)* Sd=Ed, r .

It may be more illuminating to think of the maps ;r pointwise. Namely,
if SYV*�OP1 is a vector bundle subsheaf of rank k and degree &d+r,
then a point p # P1 and rank r quotient S(p) � Cr(p) determine a point
x # Gd, r . The kernel of the map S � Cr(p) is a new vector bundle E of rank
r and degree &d which becomes a subsheaf of V*�OP1 via its inclusion as
a subsheaf of S. The resulting subsheaf EYV*�OP1 is the image ;r (x).

Now, suppose that V*�OP1 � T is a quotient with /(P1, T(m))=/, and
that the rank of T at p # P1 is at least n&k+r. Then let i: EYV*�OP1 be
the kernel, and consider the dual map i*. The fact that T has rank n&k+r
at p implies that at p, the map on fibers: i*(p): V(p) � E*(p) has a coker-
nel of rank at least r. Thus, we may choose a quotient E* � Cr(p) such
that i* factorizes through the kernel, S*, which proves (i). Moreover, if the
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sheaf T has rank exactly n&k+r at exactly one point p # P1, then the
bundle S* is uniquely determined, which proves (ii) on the level of sets.

To prove (ii) completely, we observe that the map ;r may be inverted
on the image of ?&1

r (P1_Md&r) by globalizing the previous paragraph.
Namely, on this image, the cokernel N of the map u: V�O � Sd* is tor-
sion, supported on a section Z of P1_Qd over Qd , and of rank r on its sup-
port. The projection of Z to P1, kernel E* of the map Sd* � N (which is
a bundle!), and the cokernel of the map Sd |Z � E | Z will give us the
inverse to ;r .

Finally, reconsider the maps V�O � ?*S*d&r � E*d, r=(id, ;r)* Sd* of
vector bundles on P1_Gd, r . The latter map is an isomorphism off of the
preimage of 2_Qd&r , and when restricted to the preimage of 2_Qd&r , it
factors through S� *d&r . Thus the degeneracy locus where Vk+i&ai�O � E*d, r

has the kernel of rank i is the union of the same degeneracy loci for ?*Sd&r

generically and for S� *d&r on the preimage of 2_Qd&r . Since the rank of
S� *d&r is k&r, we get (iii) when we restrict the degeneracy loci to p_Gd, r .

As our first application of the structure theorem, we will prove the
second moving lemma.

Proof of Moving Lemma 2.2A. Note that the lemma is identical to
Lemma 2.2 in case d=0, and anyway it is easy in case d=0 because
Q0=M0=G. We prove the lemma in general by induction on the degree.

Notice first of all that the codimension of the intersection cannot be
larger than A because each W� a� (p) has codimension at most |a� | , by [F1],
Theorem 14.3(b). Since Lemma 2.2 already takes care of the restriction to
Md , it therefore suffices to show that

W� a� 1
(p1) & } } } & W� a� N

(pN) & Bd

has codimension greater thatn A in Qd .
By the structure theorem, it suffices to show that:

,
N

j=1

[?&1
r (P1_W� a� j

(p j)) _ W� a� j&r� (p j)]

has codimension greater than A&(dim(Qd)&dim(Gd, r)) in each Gd, r . (In
fact, it suffices to show this for r=1, but we will need the other cases
below.)

Since the points are distinct and W� a� &r� (p) is concentrated in
?&1

r (p_Qd&r), it follows that the only nonempty intersections admit one or
zero occurrances of an W� a� j&r� (pj). Moreover, since we are assuming
the Lemma for lower degree, we find that the intersection
�N

j=1 ?&1
r (P1_W� a� j

(p j)) has codimension exactly A in Gd, r , and since
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dim(Gd, r)<dim(Qd) (either by the structure theorem or a dimension
count), we only have to prove (rearranging indices!) that intersections of
the form:

(-) ?&1
r \P1_ ,

N&1

j=1

W� a� j
(pj)+& W� a� N&r� (pN)

are of codimension greater than A&(dim(Qd)&dim(Gd, r)) in Gd, r .
Now consider the (largest) open subscheme Ud, r (pN)/?&1

r (pN_Qd&r)
over which the restriction of the map V�O � S� *d&r to pN_Gd, r is surjec-
tive. This restriction determines a map (which we may call evaluation at
pN) evpN

: Ud, r (pN) � G(n&k+r, n). By the same argument as Lemma 2.2,
one concludes that for any Z/Ud, r (pN), the intersection Z & W� a� N&r� (pN)
has codimension at least |a� N|&r(n&k) (and greater if (aN)n&k&r<0) in
Z. If we let Z be the (codimension A&|a� N | ) intersection of the
P1_W� a� j

(pj) with Ud, r (pN), then the open subset of (-) obtained by restrict-
ing to Ud, r (pN) has codimension at least A&r(n&k)+1 in Gd, r , and from
the dimension count:

dim(Qd)&dim(Gd, r)=dn&[(d&r)n+1+r(k&r)]

=r(n&k)+r2&1

we get the desired result for the restriction of (-) to Ud, r (pN).
On the other hand, by (i) of Theorem 3.1, if x # Qd is in the image of

?&1
r (pN_Qd&r) but not in the image of Ud, r (pN) and r<k, then Td has

rank at least n&k+r+1 at (pN , x), so x is in the image of Gd, r+1.
Recall that we needed to prove the codimension estimate for (-) on Gd, 1

(since this surjects birationally onto the boundary). We could get the
estimate for the open intersection with Ud, 1(pN), and observed that the
complement maps to the image of Gd, 2 (which is birational to Gd, 2). By
the same reasoning and induction on r, we are therefore reduced to proving
the codimension estimate for Gd, k . (In other words, we still need to con-
sider the case where pN is a base point.)

But in this case, we have:

Gd, k=P1_Qd&k ,

W� a� N&k9 (pN)=pN_Qd&k

and the sum �N
j=1 |a� j |=A&|a� N | is certainly at least A&k(n&k). This

implies that the codimension of (-) in Gd, k is at least A&k(n&k)+1, by
induction on the degree, and we obtain the last case by the same dimension
count as before with r=k.
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Remark 3.2. If b9 =(b1 , ..., bn&k+1) is an (n&k+1)-tuple of integers
satisfying k�b1� } } } �bn&k+1�0, then we define W� b9 (o) as in 2.1A. If
bn&k+1=0, then W� b9 (o)=W� b9 t (o), where b9 t=(b1 , ..., bn&k). However if
bn&k+1{0, then W� b9 (o)/Bd and Theorem 3.1(iii) applies here, too, to
give

;&1
1 (W� b9 (o))=?&1

1 (P1_W� b9 (o)) _ W� b9 &19 (o).

The proof of Moving Lemma 2.2A can be applied to distinct points o,
p1 , ..., pN # P1, W� b9 (o) (bn&k+1{0), and ``ordinary'' Schubert varieties
W� a� 1

(p1), ..., W� a� N
(pN). In this case, it tells us that the intersection has the

expected codimension |b9 |+� |a� i | in Qd , and that the image under ;1 of:

W� b&19 (o) & ?&1
1 ([o]_W� a� 1

(p1) & } } } & W� a� N
(pN) & Md&1)

is Zariski dense in that intersection. But ;1 is an embedding when restricted
to ?&1

1 ([o]_Md&1), so when the intersection consists of distinct points,
they may be counted in Qd or in ?&1

1 ([o]_Md&1), or even in ?&1
1 ([o]

_Qd&1) (any extra points in the intersection W� b9 &19 (o) & ?&1
1 ([o]_

W� a� 1
(p1) & } } } & W� a� N

(pN)) would map to extra intersection points in Qd).

4. QUANTUM SCHUBERT CALCULUS

In this section, we use Theorem 3.1 to prove the quantum versions of
Giambelli and Pieri as stated in Section 1.

Proof of Quantum Giambelli. Suppose M(W
*�

)=c >a� W na�
a� is some

monomial in the Schubert varieties. We define the Gromov�Witten
invariants of M in the obvious way, by setting

(M(Wa� )) d :=c( ..., Wa� , ..., Wa� , ...) d ,

where each Wa� appears na� times on the right. This definition extends in the
obvious way to define Gromov�Witten invariants of any collection
P1(W

*�
), ..., PN(W

*�
) of polynomials in the Schubert varieties. Also, the

conclusion following Corollary 2.4 applies to show that the Gromov�
Witten invariant defined in this way coincides with the degree of the
product of the Pi (_*�

), thought of as polynomials in the generalized
Schubert cohomology classes (see Corollary 2.3) when evaluated in the
cohomology ring of the quot schemes Qd .

Thus, for example, the Giambelli determinantal formula for Wa� ,
evaluated with a quantum product, becomes:

:
d�0

qd \:
b9

(Wb9 , 2a� (W
*

)) d _c
b9 + .
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If we put this together with Lemma 2.5, then the quantum Giambelli
formula is equivalent to the statement:

(Wb9 , Wa� ) d=(Wb9 , 2a� (W
*

)) d for all d�0 and Schubert classes Wb9 .

But because these invariants are just the evaluations of the corre-
sponding cohomology classes in the corresponding quot scheme, quantum
Giambelli follows from the (even stronger!) assertion:

_a� =2a� (_*
) in the cohomology ring of each Qd .

Choose p # P1. Then since _a� is the image in cohomology of W� a� (p),
which by the moving lemma has pure codimension |a� | in Qd , this statement
is a direct application of a theorem of Kempf and Laksov ([KL]) to the
universal map V�O � Sd* of vector bundles on P1_Qd , or rather, to the
restriction of the universal map to [p]_Qd .

Proof of Quantum Pieri. There is a polynomial identity:

_a 2a� (_*
)=:

b9

2b9 (_
*

)

where 2a� and the 2b9 are the Giambelli determinants and b9 varies over
all (n & k + 1)-tuples (b1 , ..., bn&k+1) with k � b1 � a1 � b2 � } } } �
bn&k+1�0. (See Lemma A.9.4 of [F1] for a proof of this.)

Note that the b9 are not (n&k)-tuples! In the classical Schubert calculus,
any b9 with nonzero bn&k+1 gives rise to the empty variety in the
Grassmannian, so if one sets those _b9 to zero, then the classical Pieri's for-
mula results. However, when we evaluate them in the cohomology ring of
Qd for positive d, we have seen in Remark 3.2 that such b9 may give rise to
nonzero varieties. In fact, I claim that if d>0 and Wa� is any Schubert
variety, then:

(2b9 (W
*

), Wa� ) d

={0
(W (b2&1, ..., bn&k+1&1), Wa� ) d&1

if bn&k+1>0;
if bn&k+1>0; b1=k.

We'll prove this claim later. Let us first see how quantum Pieri follows.
The polynomial identity above, together with quantum Giambelli and

classical Pieri, gives the following identity among quantum products:

(-) __ V _a� =_a V 2a� (_*
)=pa, a� (_*�

)+ :
[b9 | bn&k+1{0]

2b9 (_*
)
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Multiply the formula in Lemma 2.5 by q to get:

q_c� = :
d>0

qd \:
a�

(Wa� , Wc� )d&1 _a� c+
for any Schubert cohomology class _c� . Using this formula applied to the
Schubert cohomology class _ (b2&1, ..., bn&k+1&1) together with the claim, we
see that the last terms in (-) evaluate under the quantum product as
follows:

2b9 (_
*

)={0
q_ (b2&1, ..., bn&k+1&1)

if b1<k
if b1=k.

Putting this together with (-) gives the quantum Pieri formula.

Proof of the Claim. Suppose that b9 =(b1 , ..., bn&k+1) satisfies the
inequalities k�b1�b2 , ...�bn&k+1>0. Then by the theorem of Kempf�
Laksov again, together with Remark 3.2, we know that when evaluated in
the cohomology ring of Qd , the Giambelli determinant 2b9 (_*

) is equal to
_b9 , the image in cohomology of the degeneracy locus W� b9 (p).

For such b9 , let us define the Gromov�Witten invariants (Wb9 , Wa� ) d to
be the degree in the cohomology ring of Qd of the product of _b9 and _a� .
Equivalently, these Gromov�Witten invariants are the number of points in
the quot scheme (as opposed to Md , which would trivially give zero) in
W� b9 (o) & W� a� (p) for general translates of the flags and distinct points o,
p # P1. Then with this definition, the claim is equivalent to the equalities:

(Wb9 , Wa� )d={0
(W (b2&1, ..., bn&k+1&1) , Wa� ) d&1

if bn&k+1>0; b1<k
if bn&k+1>0; b1=k

for all d>0 and Wa� .
Notice that the dimensions work out(!) In other words, if b1=k, then:

|b9 |+|a� |=dim(Qd) � |(b2&1, ..., bn&k+1&1)|+|a� |=dim(Qd&1).

We assume that this equality holds (otherwise the claim is trivial). Then
by Remark 3.2,

(Wb9 , Wa� ) d=number of points in W� b9 &19 (o) & ?&1
1 (o_W� a� (p)),

where ?&1
1 ([o]_Qd&1)/Gd, 1 is the projectivization of the restriction

Sd (o) of Sd to [o]_Qd&1 , and W� b9 &19 (o) is the degeneracy locus for the
map from V�O to S� *, where S� is the universal subbundle of ?1*Sd (o).
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Thus the claim follows if we can show that in the homology of the
smooth varieties ?&1

1 ([o]_Qd&1)/Gd, 1 and Qd&1 ,

(?1)
*

([W� b9 &19 (o)] } ?1*[W� a� (p)])

={0
[W� (b2&1, ..., bn&k+1&1)(o)] } [W� a� (p)]

if b1<k;
if b1=k.

But Kempf�Laksov applied to W� b9 &19 (o) and W� (b2&1, ...)(o) makes this a
special case of a formula of Jo� sefiak, Lascoux, and Pragacz (see Example
14.2.2 of [F1] and [JLP]).

5. THE FORMULA OF VAFA AND INTRILIGATOR

There is a marvelous residue formula due to Vafa and Intriligator which
uses the presentation (V)q of the quantum cohomology ring to compute the
Gromov�Witten intersection numbers:

(Wa1
, ..., WaN

) d

of special Schubert varieties. (See [I], [ST], [B].) The formula is the
following:

(Vafa and Intriligator's) Formula. Fix ` a primitive n th root of (&1)k

and assume that 0�ai�k and a1+ } } } +aN=dim(Md). Then

(Wa1
, ..., WaN

) d=(&1)(
k
2) n&k :

i1> } } } >ik

_a1
(`I) } } } _aN

(`I) \
> j{l (` ij&` il)

>k
j=1 `(n&1) ij + ,

where `I=(` i
1 , ..., ` ik) and _ai

are the elementary symmetric polynomials in
k variables (i.e., _0(`I)=1, _1(`I)=` i1+ } } } +` ik, etc.)

The point I want to make is that because of quantum Giambelli, the same
formula computes all the Gromov�Witten intersection numbers. That is:

Corollary (of Quantum Giambelli). Assume Wa� 1
, ..., Wa� N

are Schubert
varieties on G satisfying |a� 1|+ } } } +|a� N |=dim(Md). Then the Gromov�
Witten intersection number:

(Wa� 1
, ..., Wa� N

) d

may be computed by the Vafa�Intriligator formula, where the elementary
symmetric polynomials _ai

(`I) are replaced by the Giambelli determinants
2a� i

(_
*

(`I)) of the elementary symmetric polynomials.
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