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This paper establishes a correspondence between mutually orthogonal frequency
squares (MOFS) and nets satisfying an extra property (‘‘framed nets’’). In particu-
lar, we provide a new proof for the bound on the maximal size of a set of MOFS
and obtain a geometric characterisation of the case of equality: necessary and suf-
ficient conditions for the existence of a complete set of MOFS are given in terms of
the existence of a certain type of PBIBD based on the L2-association scheme. We
also discuss examples obtained from classical affine geometry and recursive
construction methods for (complete) sets of MOFS. © 2001 Academic Press

1. INTRODUCTION

The concept of a frequency square is a generalisation of that of a latin
square. In the case of latin squares there is a concept of orthogonality. It is
well known that the maximum number of mutually orthogonal latin
squares of order n is bounded by n−1. Sets of latin squares realising this
bound are called complete. Bose (see, e.g., [11]) established that the
existence of a complete set is equivalent to that of an affine plane.
There is a natural extension of the concept of orthogonality to frequency

squares. Laywine and Mullen (see [10, 11] for details and further references)
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investigated this situation with the aim of extending Bose’s theorem to
frequency squares. They established links between affine 2-designs and
complete sets of mutually orthogonal frequency squares (MOFS). How-
ever, they do not give equivalence. Indeed, Laywine [9] proved that there
are affine 2-designs which do not arise from complete sets of MOFS in the
way corresponding to the links mentioned.
The problem seems to stem from the fact that the theorem of Hedayat

et al. [5] on the maximum size of a set of MOFS does not explicitly give
any information about the optimal case that may possibly be used to con-
struct a corresponding design to the affine plane of the latin square case.
In this paper, we provide a definitive answer to the problem of finding a

geometric interpretation of MOFS by showing that they are equivalent to a
certain special type of nets which we decided to call framed nets. We use
this result to give a new proof for the bound on the maximum size of a set
of MOFS by a counting argument which permits us to show that the exis-
tence of a complete set (that is one realising the bound) of MOFS is
equivalent to the existence of a certain type of PBIBD. In the case of latin
squares, this PBIBD is an affine plane with two parallel classes deleted. In
consequence, we finally obtain the proper generalisation of Bose’s theorem
which had proved elusive for such a long time. We also discuss examples
obtained from classical affine geometry and provide recursive construction
methods for (completely) framed nets, in this way unifying all known
construction methods for complete sets of MOFS.

2. BASIC DEFINITIONS

A type F(n; m) frequency square over a set S of order m (\ 2) is an n×n
matrix over S such that each element of S appears exactly m times in every
row and column, so n=mm. Thus latin squares of order n are type F(n; 1)
frequency squares.
Two frequency squares M, N of type F(n; m) are orthogonal if they are

over the same set S and every element of S2 occurs exactly m2 times among
the pairs (Mij, Nij), 1 [ i, j [ n. This generalizes the concept of orthogo-
nality for latin squares.
A theorem of Hedayat et al. [5] (or see [4, 6, 11]) states that the order

of a set of MOFS of type F(n; m) is at most (n−1)2/(m−1); when this
bound is reached, the set of MOFS is said to be complete.
A 2-class partially balanced incomplete block design (2-class PBIBD) D

with parameters v, k, r, n1, n2, l1, l2 satisfies (a) there are v points, with k
on each block and r blocks on each point; (b) any two distinct points are
contained in l1 or l2 blocks and called first or second associates accord-
ingly; (c) the number of ith associates of each point is ni (i=1, 2); (d) for
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each j, k ¥ {1, 2} and for each pair of points, the number of points which
are jth associates of the first point and kth associates of the second point
depends only on the associate class of the pair of points. Thus, D is a
1-(v, k, r) design.
A PBIBD is said to be based on the L2-association scheme, and some-

times called an L2-design (see, e.g., Raghavarao [17]) if v=n2 and the n2

points can be put in an n×n square array so that distinct points are first
associates if, and only if, they are in the same row or column. We also refer
to Bailey [1] for a concise (and nice) introduction to PBIBSs.
A PBIBD with l1=l2=l is a balanced incomplete block design (BIBD)

or, simply, a 2-(v, k, l) design.
A design D is resolvable if its blocks can be partitioned into subsets

called parallel classes, each of which partitions the point set of the design.
If the resolution of D is such that any two blocks from different parallel
classes (i.e., non-parallel blocks) meet in a constant number of points m,
then D is said to be affine. An (m, r; m)-net N (see [2]) is an affine
1-(mm2, mm, r) design. The number of blocks in a parallel class of N is m,
any two non-parallel blocks meet in m points and there are r parallel
classes.
The dual of a net is also known as a transversal design or semi-regular

group divisible design.
It is well known (see, e.g., [2]) that r [ (mm2−1)/(m−1) for a (m, r; m)-

net N, with equality if and only if N is a 2-design. In this case N is a
2-(mm2, mm, l) design with l=(mm−1)/(m−1) and is known as a
complete net. Since the parameters of the complete net N are determined by
m and m, we can refer to N as a complete (m, m)-net. This is denoted by
AD(mm, m) in [11] and by Am(m) in [2].
If the dual design N* of an (m, r; m)-net N is resolvable, it follows that

r [ mm; furthermore, N* is a net if, and only if, r=mm (see [2, II.8.18 and
II.8.21]). We say that N is a symmetric net in the latter case, and call the
block classes of N* point classes of N. The parallel classes of N will be
called block classes of N if there is any danger of confusion. Since the
parameters of a symmetric net N are determined by m and m, we can refer
to N as an (m, m)-symmetric net.
Note that the complete (m, 1)-nets are precisely the affine planes of order

m. The (m, 1)-symmetric nets are precisely the designs obtained by deleting
one parallel class from an affine plane of order m.

3. NETS AND MOFS

The maximum size of a set of MOFS was obtained by Hedayat et al. (see
[4, 6, 11]). In [6, Theorem 8.23] the existence of a set of MOFS is shown
to imply that of an orthogonal array. Orthogonal arrays are closely linked
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to nets (see, e.g., [2]). In Theorem 3.2 we obtain the above results in terms
of nets but we also give a converse. That is, the existence of a certain type
of net implies that of a set of MOFS.
In Theorem 3.5 we show that the maximum cardinality for a set

of MOFS is achieved if, and only if, the net is a PBIBD based on the
L2-association scheme.

Definition 3.1. Let D be any design with n2 points and mn points on
each block. A frame [X : Y] of D consists of two partitions X=
{X1, X2, ..., Xn} and Y={Y1, Y2, ..., Yn} of the points of D into subsets of
order n, such that for all i, j:

(a) |Xi 5 Yj |=1;
(b) |Xi 5 B|=|Yj 5 B|=m for all blocks B.

D is a framed design if it has a frame.

Clearly, any subdesign of a framed design obtained by removing blocks
will also be framed.

Theorem 3.2. There exists a set of r MOFS of type F(n; m) if, and only
if, there exists a framed (m, r; m2)-net, where n=mm.

Proof. Let F (1), F (2), ..., F (r) be MOFS of type F(n; m) defined over
S={1, 2, ..., m}. Define a design D whose points are the ordered pairs
(i, j), 1 [ i, j [ n, and whose blocks are the point-sets B (u)t ={(i, j) |
F (u)ij =t} for 1 [ u [ r, t ¥ S.
Since a given t ¥ S appears m times in each row of a square F (u), B (u)t has

nm points. Clearly, {B (u)t | t ¥ S} partitions the point set of D, for any u,
1 [ u [ r. Furthermore, B (u)t and B (x)y do not meet if u=x and t ] y. If
u ] x, B (u)t and B (x)y meet in m2 points, using the orthogonality of F (u) and
F (x). It follows that D is an (m, r; m2)-net. Define Xi={(i, j) | 1 [ j [ m},
Yj={(i, j) | 1 [ i [ m}, and X={X1, X2, ..., Xn}, Y={Y1, Y2, ..., Yn}.
Then [X : Y] is easily verified to be a frame.
Conversely, suppose D is an (m, r; m2)-net with a frame [X : Y], where

X={X1, X2, ..., Xn} and Y={Y1, Y2, ..., Yn}, with n=mm. Then each
point of D is uniquely expressible as an intersection Xi 5 Yj. For a general
parallel class K={K1, K2, ..., Km}, define a frequency square F by Fij=t
if, and only if, X1 5 Yj is on Kt. It is straightforward to verify that F is a
frequency square using the fact that [X : Y] is a frame.
Let F and FŒ be the frequency squares corresponding to different parallel

classes K and KŒ. Then, for a given pair x, y (1 [ x, y [ m), the number of
ordered pairs (i, j) with Fij=x and F −ij=y is |Kx 5K −

y |=m
2. Hence, F and

FŒ are orthogonal. Thus, the r parallel classes of D give a set of r MOFS of
type F(n; m). L
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Consider the case m=1. Given an (m, r; 1)-net D, with r \ 2, choose
two distinct parallel classes X and Y. Then the subnet of D obtained by
deleting the blocks of X and Y from D is a framed net with frame [X : Y].
Conversely, by adjoining the frame to a framed (m, r; 1)-net we get an
(m, r+2; 1)-net. This proves the following theorem.

Theorem 3.3. An (m, r; 1)-net is framed if, and only if, it can be
extended by 2 parallel classes; that is, it is a subnet of some (m, s; 1)-net,
where s \ r+2.

By a theorem of Shrikhande (see, e.g., [6, p. 170]) any (m, m−1; 1)-net
with m ] 4 is an affine plane of order m with two parallel classes deleted; so
the net is framed and is a PBIBD with l1=0 and l2=1. The exceptional
net for m=4 is unique. Its points are the elements of the group G=H×H,
where G is the cyclic group of order 4, and its blocks are all subsets of the
form Ui g with i=1, 2, 3 and g ¥ G, where the Ui are the three subgroups
H×{1}, {1}×H and {(h, h): h ¥H}. This net is therefore a non-framed
(4, 3; 1)-net; in fact, it is a PBIBD based on the pseudo L2-association
scheme with l1=0 and l2=1. To sum up, we have the following corollary
to Theorem 3.3.

Corollary 3.4. Any framed (m, m−1; 1)-net is embeddable in an affine
plane of order m. There is a unique non-framed (m, m−1; 1)-net and this net
has m=4.

In the next theorem we give a new proof for the known upper bound on
the size of a complete set of MOFS by counting arguments applied to the
corresponding net, as obtained in Theorem 3.2. More importantly, we will
be able to characterise the case of equality.

Theorem 3.5. Suppose there exists a framed (m, r; m2)-net or, equiv-
alently, a set of r MOFS of type F(n; m), where n=mm and m > 1. Then
r [ (n−1)2/(m−1) with equality if, and only if, the net is a PBIBD based on
the L2-association scheme. In this case, l1=(n−1)(m−1)/(m−1) and l2=
(mn−2m+1)/(m−1).

Proof. Consider the framed (m, r; m2)-net D. Let D have frame [X : Y],
where X={X1, X2, ..., Xn} and Y={Y1, Y2, ..., Yn}. Any point of D is
uniquely expressible in the form Xi 5 Yj. Choose a fixed point P. We can
assume P=X1 5 Y1. Let N1 be the set of points Xi 5 Yj ] P with either
i=1 or j=1.
Let lQ be the number of blocks containing P and Q, for any point Q of
D. Then, since [X : Y] is a frame, it follows that |B 5N1 |=2m−2 for any
block B containing P. So, counting pairs (Q, B), where B is a block on P
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andQ ¥ B 5N1, we get;Q ¥N1 lQ=2r(m−1) and;Q ¨N1 lQ=r(mn−2m+1).
Next, counting ordered triples (Q, B, BŒ), where B and BŒ are distinct

blocks on P and P ] Q ¥ B 5 BŒ, we get ;Q lQ(lQ−1)=r(r−1)(m2−1). In
this summation, we have used the fact that distinct blocks of D meet in 0 or
m2 points and we sum over all points Q different from P. It follows that
;Q l2Q=r(mn−1)+r(r−1)(m2−1).
Let l̄1=r(m−1)/(n−1) and l̄2=r(mn−2m+1)/(n−1)2.
Next, we compute V=;Q ¥N1 (l̄1−lQ)

2+;Q ¨N1 (l̄2−lQ)
2. Simplifying,

with the help of the above equations and the definitions of l̄1 and l̄2, we
obtain V=r(n−m)(m−r(n−m)/(n−1)2).
Since r > 0 and n=mm> m, we get r [ m(n−1)2/(n−m)=(n−1)2/(m−1),

with equality if, and only if, D is a PBIBD based on the L2-association
scheme, with l1=l̄1 and l2=l̄2. In this case, the rows and columns of the
association scheme are the subsets Xi and Yj of the frame [X : Y] of D. L

Definition 3.6. In view of the above theorem we shall refer to the net
D corresponding to a complete set of MOFS as a complete-framed net.

Note that D is a PBIBD based on the L2-association scheme. D is not a
complete net in the usual sense (see Section 2).
Consider the case m=1 of Theorem 3.5. Then n=m and the MOFS are

MOLS. The theorem asserts r [ m−1 with equality if, and only if, the
associated framed net is a PBIBD based on the L2-association scheme.
Adjoining the frame subsets as lines gives an affine plane of order m. Thus,
Theorem 3.5 is equivalent to Bose’s theorem for the case m=1.
A theorem of Raghavarao is the key to characterising the framed nets

which are also PBIBDs based on the L2-association scheme.

Theorem 3.7. Let D be a PBIBD based on the L2-association scheme
and suppose D is an (n/m, r; m2)-net.
Then D is a complete-framed net if, and only if, l1=r(m−1)/(n−1) and
l2=r(mn−2m+1)/(n−1)2. In this case, r=(n−1)2/(m−1).

Proof. If l1 and l2 have the values given, it is easily verified that the
relation r+(n−2) l1=(n−1) l2 holds. By a theorem of Raghavarao
[17, Theorem 8.9.3], it follows that D is framed by the rows and columns
of the association scheme. The value of r and the converse follow from
Theorem 3.5. L

The next result is in Hedayat et al. [6, Theorem 8.23] in the language of
orthogonal arrays and frequency squares.

Theorem 3.8. If there exists a framed (m, r; m2)-net or, equivalently, a
set of r MOFS of type F(mm; m), and there exists an (m, s; m/m)-net, then
there exists an (m, r+2s; m2)-net.
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Proof. If the frame is [X : Y], define an (m, s; m2)-net on the mm
subsets of X (as point set), and similarly define an (m, s; m2)-net on the mm
subsets of Y. Then a routine verification shows that these two nets may be
used to extend the (m, r; m2)-net to an (m, r+2s; m2)-net. L

Remark 3.9. In the above theorem, [X : Y] is not a frame in the
extended net since a new block does not meet each subset Xi in X in m
points but either contains Xi or is disjoint from Xi.

4. THE CLASSICAL CASE

The construction of a complete set of MOFS obtained from classical
affine geometry has appeared in various forms. It is not immediately
obvious what the corresponding complete-framed net is (see, e.g., [15]).
We give a direct construction for this complete-framed (q, (q2d−1)/
(q−1); q2d−2)-net for any prime power q and positive integer d.
Denote by V=V(2d, q) the 2d-dimensional vector space over the field

GF(q) and by AG(2d, q) the corresponding 2d-dimensional affine geometry.
Let P and Q be any two d-dimensional subspaces of V which satisfy

P 5 Q={0}.
Let D be the net whose points are those of AG(2d, q) and whose blocks

are the affine hyperplanes U for which |P 5 U|=|Q 5 U|=qd−1. Then D is
a net since, if U is a block of D, so is every block in the parallel class of U.
The number of (2d−1)-dimensional subspaces containing a d-dimensional

subspace S is the number of (d−1)-dimensional subspaces in the quotient
space V/S 4 V(d, q); namely, (qd−1)/(q−1). Since P+Q=V, no
hyperplane contains both P and Q. So the number of parallel classes of
hyperplanes containing neitherP norQ is (q2d−1)/(q−1)−2((qd−1)/(q−1)
=(qd−1)2/(q−1). Therefore, D is an (m, r; m)-net with m=q, m=qd−1

and r=(mm−1)2/(m−1). Furthermore, the cosets of P and Q (i.e., the
d-dimensional affine subspaces parallel to P or Q in AG(2d, q)) are easily
shown to form a frame for D, since P and Q each has qd=mm=n cosets
and, moreover, P+x and Q+y meet in exactly one point in AG(2d, q), for
any x, y ¥ V.
The following algebraic presentation of the above construction is essen-

tially the ‘‘permutation polynomial’’ construction of Mullen described in
[11, Theorem 4.2].
First, note that the equation of any hyperplane U of AG(2d, q) is

uniquely expressible in the standard form a ·x=a1x1+a2x2+·· ·+a2dx2d
=c, where x=(x1, x2, ..., x2d) is a general vector in V, the ai and c are
constants and, for some j with 1 [ j [ 2d, we have aj=1 while ai=0 for
any i < j. We get the parallel class of U by varying c.
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Choose a basis for V so that P={x | xi=0, d+1 < i [ 2d} and
Q={x | xi=0, 1 [ i [ d}. Let a be any vector satisfying ai ] 0 for some
i ¥ {1, ..., d} and also aj ] 0 for some j ¥ {d+1, ..., 2d}. A frequency
square F, corresponding to the parallel class determined by a, can be
formed as follows: the rows and columns of F are labelled by the vectors in
P and Q, respectively, and one sets Fxy=a · (x+y).
By taking all parallel classes determined by vectors a satisfying the above

restriction, we obtain a complete set of MOFS of type F(qd, qd−1). Observe
that the parameters of D and the frequency squares just obtained have the
properties that m=n/m is a prime power and m a power of m. We shall
refer to complete-framed net parameters with these properties as classical.
We will see that a complete-framed net endowed with a suitable auto-
morphism group necessarily has such parameters.
Let D be a net. A translation of D is any automorphism a which fixes

every parallel class and either a is the identity or a is fixed-point-free. D is a
translation net if D admits a group G of translations which is point transi-
tive. In this case, G is called a translation group for D. (One has to be a bit
careful here, as the set of all translations of a net does not necessarily form
a group, and as the same net may admit more than one translation
group—though these phenomena cannot occur in the special situation we
consider now.) Note that the exceptional net described after Theorem 3.3
provides an example of a translation net.
The next theorem shows that if a complete-framed net is a translation

net, then the parameters, in general are classical.

Theorem 4.1. If the complete-framed net corresponding to a complete
set of type F(n; m) MOFS is a translation net and m=n/m ] 4, then its
parameters are classical.

Proof. We consider separately the cases m=1 and m > 1.

m=1. D is then a translation plane of order n (=m) with 2 parallel
classes deleted. It is well known that n=|G| is a prime power and G is
elementary abelian (see, e.g., [7, Theorem 2.1]).
m > 1. By a result of Jungnickel [8, Theorem 1.7], m and m are

powers of some prime p and G is elementary abelian as r=(n−1)2/
(m−1) \ k=mn. So, m=p i and m=p j for some i and j. Since
r=(n−1)2/(m−1) is an integer, m−1 divides (n−1)2 and elementary
arguments show that i divides j. Hence m is a power of m. L

We conclude this section with a remark. The construction of the classical
examples of framed nets presented above admits obvious generalisations.
For instance, we might use three mutually skew d-dimensional subspaces in
a vector space V(3d, q) to define nets framed by 3 partitions from which we
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may then obtain classical examples of mutually orthogonal frequency cubes
by an analogue of Theorem 3.2. It seems clear that bounds corresponding
to Theorem 3.5 could be obtained, and that the classical examples will turn
out to be complete. We do not feel that it is worthwhile doing so now, but
this observation should provide a good topic for a graduate student thesis.

5. GENERAL CONSTRUCTIONS

The two constructions we shall describe cover between them all known
constructions for complete sets of MOFS. We adopt the following labelling
practice. If R is a parallel class of a resolvable design, the blocks of R are
labelled R1, R2, ... .
The following construction is motivated by a design construction

technique in Mavron [13, Theorem 1].

Theorem 5.1. Suppose there exists an (m, r; m/m)-net C and an
(m, s; m)-net D and the dual of D is resolvable. Then:

(a) There exists a framed (m, r(s−1); m2)-net and therefore a set of
r(s−1) MOFS of type F(mm; m).

(b) The set of MOFS in (a) is complete if and only if C is a complete
net and D a symmetric net.

Proof. Let C have point set K. Then |K|=mm. Let P be the set of
point classes of D. Then |P|=mm. Define a design S0 as follows.
The points of S0 are the elements of K×P. For any parallel class L of C

and any block B of D we define a block [L, B]={(P, C) | P ¥ Lt ;
Ct ¥ B; 1 [ t [ m} of S0. All blocks of S0 are defined in this way.
It is straightforward to verify that S0 is an (m, rs; m2)-net, where two

blocks [L, B] and [LŒ, BŒ] are parallel if, and only if, L=LŒ and B is par-
allel to BŒ. To get our framed net we need to delete some parallel classes
and label in a special way.
Choose any block class E={E1, E2, ..., Em} of D. The labelling of E is

arbitrary. Label the points of each point class Q of D so that Qi ¥ Ei,
1 [ i [ m. Delete the r parallel classes from S0 that consist of blocks of the
form [L, Ei], Ei ¥ E. The remaining design S is an (m, r(s−1); m2)-net.
We show that S is a framed net. Let P ¥K. Define XP to be the

set of all points (P, C) of S, where C ¥P. Given C ¥P, define YC=
{(P, C) | P ¥K}. Let X={XP | P ¥K} and let Y={YC | C ¥P}. We show
that [X : Y] is a frame.
Let P ¥K and let [L, B] be a block of S. Then [L, B] 5XP consists of

all points (P, C) for which Ct ¥ B, where P ¥ Lt. The number of such points
is |B 5 Et |=m.
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Now, let C be a point class of D. A point (P, C) ¥ [L, B] 5 YC if, and
only if, P ¥ Lt where t is such that Ct ¥ B. The number of such points is
therefore |Lt |=m.
It is now readily seen that [X : Y] is a frame for S.
S is a complete-framed net if, and only if, r(s−1)=(mm−1)2/(m−1).

From Section 2, we have r [ (mm−1)/(m−1) with equality if, and only if,
C is complete. We also have s [ mm with equality if, and only if, D is a
symmetric net. The proof is now easily completed. L

The existence of a complete (m, m/m)-net and a symmetric (m, m)-net is
equivalent to the existence of a complete (m, m)-net with a parallel class of
lines all of size m. This is proved in [12], but see also [16]. In [15], it is
shown that all but one of the known existence results for complete sets of
MOFS can be obtained using complete nets with parallel classes of lines.
The exception will be dealt with in the next construction.
First we make some further comments on the foregoing construction. An

important construction due to Street [18] is not mentioned in [3]. Essen-
tially, Street shows that a complete set of MOFS exists if there exist a
generalised Hadamard matrix and a complete net with suitable parameters.
Any Hadamard matrix is of course a generalized Hadamard matrix and
Hadamard matrices give the complete (2, m)-nets. Then Federer’s theorem,
that a complete set of type F(n; n/2) MOFS exists if there is a Hadamard
matrix of order n, which is quoted in [3], can be deduced from Street’s
result.
Moreover, from any generalized Hadamard matrix one can construct a

symmetric net but not all symmetric nets arise in this way. In this way, one
may deduce Street’s result from Theorem 5.1. (See Mavron and Tonchev
[16] for more details.)
The next construction covers the missing existence result alluded to

earlier. The construction is essentially the net form of a generalisation of
the construction in Mavron [14], which in turn generalises a construction
of Laywine (see [11]). The construction we describe shows that complete
sets of MOFS in certain cases may be generated recursively.

Theorem 5.2. Suppose there exists an (m, r; m)-net C and a (mm2, s; n2)-
net D. Then there exists an (m, rs; m2m2n2)-net S. If D is framed then so is S.
In this case S is complete-framed if, and only if, D is complete-framed and C
is a complete net.

Proof. Let C have point set J. Then |J|=mm2. Let D have point set K.
Then |K|=m2m4n2. We may assume that the mm2 blocks of any parallel
class L of D are labelled Lt, t ¥ J. Define S as follows.
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The point set of S is that of D; namely K. Given a parallel class L of D
and block B of C a block [L, B] of S is defined by [L, B]={P | P ¥ Lt ;
t ¥ B}. It is straightforward to verify that S is an (m, rs; m2m2n2)-net. Two
blocks [L, B] and [LŒ, BŒ] are parallel in S if, and only if, L=LŒ and B is
parallel to BŒ in C.
It is easy to verify that any frame of D is a frame of S. For, if a subset X

of K meets every block of D in n points, then X meets every block of S in
nmm points.
Suppose D is framed. From Section 2, r [ (mm2−1)/(m−1) with

equality if, and only if, C is complete. Since S is complete-framed if, and
only if, rs=(mm2n−1)2/(m−1), then, using Theorem 3.5, we see that S is
complete-framed if, and only if, s=(mm2n−1)2/(mm2−1), or, equivalently,
D is complete-framed. L

The following corollary is immediate using Theorem 3.2.

Corollary 5.3. If there exists an (m, r; m)-net and a set of s MOFS of
type F(mnm2; n), then there exists a set of rs MOFS of type F(mnm2; mmn).
The second set of MOFS is complete if, and only if, the first set is complete
and the net is complete.

The above corollary was essentially proved in Mavron [14]. It extended
an earlier result of Laywine (see [3, 11]) for the case in which n=1 and m
is a power of m.

ACKNOWLEDGMENTS

We are indebted to R. A. Bailey for pointing out the relevance of the L2-association scheme
to the type of net considered in this paper which greatly improved the exposition of our
results. A considerable part of the research for this paper was done while the first author
visited the Department of Mathematics of the University of Wales; he gratefully acknowledges
the warm hospitality extended to him and the financial support provided by a grant from the
London Mathematical Society.

REFERENCES

1. R. A. Bailey, Partially balanced designs, in ‘‘Encyclopaedia of Statistical Sciences,’’
pp. 593–610, Wiley, New York, 1985.

2. T. Beth, D. Jungnickel, and H. Lenz, ‘‘Design Theory,’’ 2nd ed., Cambridge Univ. Press,
Cambridge, UK, 1999.

3. C. J. Colbourn and J. H. Dinitz (Eds.), ‘‘The CRC Handbook of Combinatorial
Designs,’’ CRC Press, Boca Raton, FL, 1996.

4. J. Dénes and A. D. Keedwell, ‘‘Latin Squares, New Developments in the Theory and
Applications,’’ Elsevier, Amsterdam/New York, 1991.

386 JUNGNICKEL, MAVRON, AND MCDONOUGH



5. A. Hedayat, D. Raghavarao, and E. Seiden, Further contributions to the theory of
F-squares design, Ann. Statist. 3 (1975), 712–716.

6. A. Hedayat, N. J. A. Sloane, and J. Stufken, ‘‘Orthogonal Arrays,’’ Springer-Verlag, New
York/Berlin, 1999.

7. D. Jungnickel, Maximal partial spreads and translation nets of small deficiency,
J. Algebra 90 (1984), 119–132.

8. D. Jungnickel, Existence results for translation nets II, J. Algebra 122 (1987), 288–298.
9. C. F. Laywine, An affine design with v=m2h and k=m2h−1 not equivalent to a complete

set of F(mh; mh−1) MOFS, J. Combin. Designs 7 (1999), 331–340.
10. C. F. Laywine and G. L. Mullen, Gemeralizations of Bose’s equivalence between complete

sets of mutually orthogonal Latin squares and affine planes, J. Combin. Theory Ser. A 61
(1992), 13–35.

11. C. F. Laywine and G. L. Mullen, ‘‘Discrete Mathematics Using Latin Squares,’’
Wiley–Interscience, New York, 1998.

12. V. C. Mavron, Translations and parallel classes of lines in affine designs, J. Combin.
Theory Ser. A 33 (1977), 316–339.

13. V. C. Mavron, Constructions for resolvable and related designs, Aequationes Math. 23
(1981), 131–145.

14. V. C. Mavron, A construction method for complete sets of mutually orthogonal frequency
squares, Electron. J. Combin. 7 (2000), N5.

15. V. C. Mavron, Frequency squares and affine designs, Electron. J. Combin. 7 (2000), R56.
16. V. C. Mavron and V. D. Tonchev, On symmetric nets and generalized Hadamard

matrices from affine designs, J. Geom. 67 (2000), 180–187.
17. D. Raghavarao, ‘‘Constructions and Combinatorial Problems in Designs of Experiments,’’

Wiley, New York, 1971.
18. D. J. Street, Generalised Hadamard matrices, orthogonal arrays and F-squares, Ars

Combin. 8 (1979), 131–141.

NETS AND FREQUENCY SQUARES 387


	1. INTRODUCTION
	2. BASIC DEFINITIONS
	3. NETS AND MOFS
	4. THE CLASSICAL CASE
	5. GENERAL CONSTRUCTIONS
	ACKNOWLEDGMENTS
	REFERENCES

