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a b s t r a c t

In this paper, a three-trophic-level food chain system with Holling type IV functional
response and impulsive perturbations is established.We show that this system is uniformly
bounded. Using the Floquet theory of impulsive equations and small perturbation skills, we
find conditions for the local and global stabilities of the prey and top predator-free periodic
solution. Moreover, we obtain sufficient conditions for the system to be permanent via the
comparison theorem.We display some numerical examples to substantiate our theoretical
results.
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1. Introduction

In recent years, it has been of great interest to study dynamical properties of impulsive perturbations on population
models. In particular, the impulsive prey–predator population models have been investigated by many researchers [1–8]
and there is also a lot of literature on three-species food chain systems with impulsive perturbations [9–15]. For example,
Liu et al. [2] investigated the dynamic behaviors of a Holling I predator–prey model with impulsive effect as regards
biological and chemical control strategies. Cheng et al. and Liu et al. [1,3] studied the dynamic behaviors of a Holling II
functional response predator–prey system as regards an impulsive control strategy—periodic releasing of natural enemies
and spraying pesticide at different fixed times. Zhang and Chen [12] observed a three-trophic-level food chain system with
Holling II functional responses and periodic constant impulsive perturbations of the top predator. In this context, many
authors researchedHolling type IV populationmodelswith impulsive perturbations [10,4,16,13]. In particular, Li and Tan [4]
proposed a predator–prey model with Holling type IV functional response and an impulsive control strategy as follows:

x′(t) = x(t)(a− bx(t))−
c1x(t)y(t)
1+ e1(x(t))2

,

y′(t) = −d1y(t)+
c2x(t)y(t)
1+ e1(x(t))2

,

 t 6= (n+ τ − 1)T , t 6= nT ,

x(t+) = (1− p1)x(t),
y(t+) = (1− p2)y(t),

}
t = (n+ τ − 1)T ,

x(t+) = x(t),
y(t+) = y(t)+ q,

}
t = nT ,

(x(0+), y(0+)) = (x0, y0),

(1)
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where x(t) and y(t) are functions of time representing population densities of the prey and the predator, respectively, and
all parameters are positive constants. The constant a is the intrinsic growth rate of the prey population, b is the coefficient of
intra-species competition, c1 is the per capita rate of predation of the predator, e1 is the half-saturation constant, d1 denotes
the death rate of the predator, c2 is the rate of conversion of a consumed prey to a predator, τ and T are the periods of
spaying pesticides (harvesting) and the impulsive immigration or stocking of the predator, respectively, 0 ≤ p1, p2 < 1
represent the fractions of the prey and the predator which die due to the harvesting or pesticides etc., and q is the size of
the immigration or stocking of the predator. They found conditions for system (1) to go extinct and established permanence
conditions via the comparison theorem involving multiple Lyapunov functions. Also, they illustrated that system (1) has
rich dynamical behaviors by using numerical simulations.
Inmost researches, the authors regarded the prey (x(t)) and the predator (y(t)) as a pest and a natural enemy of the prey,

respectively, and studied the dynamical properties of population systems. It is natural to assume that the predator (y(t))
also has a natural enemy (z(t)) not a pest for understanding and investigating more complex food chain systems. Thus, in
this paper, we develop the following three-species Holling type IV system by introducing spraying pesticide and periodic
constant release of natural enemies (mid-level predators) at different fixed times:

x′(t) = x(t)(a− bx(t))−
c1x(t)y(t)
1+ e1(x(t))2

,

y′(t) = −d1y(t)+
c2x(t)y(t)
1+ e1(x(t))2

−
c3y(t)z(t)
1+ e2(y(t))2

,

z ′(t) = −d2z(t)+
c4y(t)z(t)
1+ e2(y(t))2

,


t 6= (n+ τ − 1)T , t 6= nT ,

∆x(t) = −p1x(t),
∆y(t) = −p2y(t),
∆z(t) = −p3z(t),

}
t = (n+ τ − 1)T ,

x(t+) = x(t),
y(t+) = y(t)+ q,
z(t+) = z(t),

 t = nT ,

(x(0+), y(0+), z(0+)) = (x0, y0, z0),

(2)

where c3 is the per capita rate of predation of the top predator, e2 is the half-saturation constant, d2 denotes the death
rate of the predator, c4 is the rate of conversion of consumed prey to a predator and 0 ≤ p3 < 1 presents the fraction of
the top predator dying due to the harvesting or pesticides etc. Such a system is an impulsive differential equation whose
theories and applications were greatly developed by the efforts of Bainov and Lakshmikantham et al. [17,18] and, moreover,
the theory of impulsive differential equations is being recognized not only to be richer than the corresponding theory of
differential equations without impulses, but also to represent a more natural framework for mathematical modeling of real
world phenomena.
The main purpose of this paper is to establish conditions for the local and global stabilities of pest, top predator-free

periodic solutions and for the permanence of system (2). To achieve our purpose, we make use of Floquet theory for the
impulsive equation, comparison techniques and so on.

2. Preliminaries

In this section we shall introduce some notation and definitions together with a few auxiliary results related to the
comparison theorem, which will be useful for establishing our main results.
Let R+ = [0,∞),R∗+ = (0,∞) and R3

+
= {x = (x, y, z) ∈ R3 : x, y, z ≥ 0}. Denote as N the set of all of nonnegative

integers and as f = (f1, f2, f3)T the right-hand sides of the first three equations in (2). Let V : R+ × R3
+
→ R+; then V is

said to belong to class V0 if
(1) V is continuous on((n − 1)T , (n + τ − 1)T ] × R3

+
∪ ((n + τ − 1)T , nT ] × R3

+
and lim(t,y)→(t0,x) V (t, y) = V (t0,

x) exist, where t0 = (n+ τ − 1)T+ and nT+,
(2) V is locally Lipschitzian in x.

Definition 1. Let V ∈ V0. For (t, x) ∈ ((n− 1)T , (n+ τ − 1)T ] ×R3
+
∪ ((n+ τ − 1)T , nT ] ×R3

+
, the upper right derivative

of V with respect to the impulsive differential system (2) is defined as

D+V (t, x) = lim sup
h→0+

1
h
[V (t + h, x+ hf (t, x))− V (t, x)].

Remark 2. (1) The solution of system (2) is a piecewise continuous function; x : R+ → R3
+
, x(t) is continuous on ((n−1)T ,

(n+ τ −1)T ]∪ ((n+ τ −1)T , nT ] and x(t+0 ) = limt→t+0 x(t) exists, where t0 = (n+ τ −1)T+ and nT+. (2) The smoothness
properties of f guarantee the global existence and uniqueness of solutions of system (2). (See [18] for the details.)
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We will use a comparison result for impulsive differential inequalities. For this, suppose that g : R+ × R+ → R satisfies
the following hypotheses:
(H) g is continuous on ((n−1)T , (n+ τ −1)T ]×R+∪ ((n+ τ −1)T , nT ]×R+ and the limit lim(t,y)→(t0,x) g(t, y) = g(t0, x)
exists, where t0 = (n+ τ − 1)T+ and nT+, and is finite for x ∈ R+ and n ∈ N.

Lemma 3 ([18]). Suppose V ∈ V0 and
D+V (t, x) ≤ g(t, V (t, x)), t 6= (n+ τ − 1)T , nT ,
V (t, x(t+)) ≤ ψ1n (V (t, x)), t = (n+ τ − 1)T ,
V (t, x(t+)) ≤ ψ2n (V (t, x)), t = nT ,

(3)

where g : R+ × R+ → R satisfies (H) and ψ1n , ψ
2
n : R+ → R+ are non-decreasing for all n ∈ N. Let r(t) be the maximal

solution for the impulsive Cauchy problem
u′(t) = g(t, u(t)), t 6= (n+ τ − 1)T , nT ,
u(t+) = ψ1n (u(t)), t = (n+ τ − 1)T ,
u(t+) = ψ2n (u(t)), t = nT ,
u(0+) = u0 ≥ 0,

(4)

defined on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t), t ≥ 0, where x(t) is any solution of (3).
We now indicate a special case of Lemma 3 which provides estimations for the solution of a system of differential
inequalities. For this, we let PC(R+,R)(PC1(R+,R)) denote the class of real piecewise continuous (real piecewise
continuously differentiable) functions defined on R+.

Lemma 4 ([18]). Let the function u(t) ∈ PC1(R+,R) satisfy the inequalities
du
dt
≤ f (t)u(t)+ h(t), t 6= τk, t > 0,

u(τ+k ) ≤ αku(τk)+ βk, k ≥ 0,
u(0+) ≤ u0,

(5)

where f , h ∈ PC(R+,R) andαk ≥ 0, βk and u0 are constants and (τk)k≥0 is a strictly increasing sequence of positive real numbers.
Then, for t > 0,

u(t) ≤ u0

( ∏
0<τk<t

αk

)
exp

(∫ t

0
f (s)ds

)
+

∫ t

0

( ∏
0≤τk<t

αk

)
exp

(∫ t

s
f (γ )dγ

)
h(s)ds

+

∑
0<τk<t

( ∏
τk<τj<t

αj

)
exp

(∫ t

τk

f (γ )dγ
)
βk.

Similar results can be obtainedwhen all conditions of the inequalities in the Lemmas 3 and 4 are reversed. Using Lemma4,
it is possible to prove that the solutions of the Cauchy problem (4) with strictly positive initial value remain strictly positive.

Lemma 5. The positive octant (R∗
+
)3 is an invariant region for system (2).

Proof. Let (x(t), y(t), z(t)) : (0, t0) → R2 be a solution of system (2) with a strictly positive initial value (x0, y0, z0). By
Lemma 4, we can obtain that, for 0 < t < t0,

x(t) ≥ x0(1− p1)[
t
T ] exp

(∫ t

0
f1(s)ds

)
,

y(t) ≥ y0(1− p2)[
t
T ] exp

(∫ t

0
f2(s)ds

)
,

z(t) ≥ z0(1− p3)[
t
T ] exp

(∫ t

0
f3(s)ds

)
,

(6)

where f1(s) = a− bx(s)− c1y(s), f2(s) = −d1− c3z(s) and f3(s) = −d2. Thus, x(t), y(t) and z(t) remain strictly positive on
(0, t0). �

3. Main theorems

3.1. Boundedness

Firstly, we show that all solutions of (2) are uniformly bounded.



H. Baek / Computers and Mathematics with Applications 60 (2010) 1152–1163 1155

Theorem 6. There is an R > 0 such that x(t) ≤ R, y(t) ≤ R and z(t) ≤ R for all t large enough, where (x(t), y(t), z(t)) is a
solution of system (2).

Proof. Let (x(t), y(t), z(t)) be a solution of (2) with an initial value (x0, y0, z0) and let u(t) = c2
c1
x(t) + y(t) + c3

c4
z(t) for

t ≥ 0. Then, if t 6= nT , t 6= (n+ τ − 1)T and t > 0, we obtain that

u′(t) = −
c2b
c1
x2(t)+

c2a
c1
x(t)− d1y(t)−

d2c3
c4
z(t). (7)

From choosing 0 < β0 < min{d1, d2}, we get

u′(t)+ β0u(t) ≤ −
c2b
c1
x2(t)+

c2
c1
(a+ β0)x(t), t 6= nT , t 6= (n+ τ − 1)T , t > 0. (8)

As the right-hand side of (8) is bounded from above by R0 =
c2(a+β0)2

4bc1
, it follows that

u′(t)+ β0u(t) ≤ R0, t 6= nT , t 6= (n+ τ − 1)T , t > 0.

If t = nT , then u(t+) = u(t) + q and if t = (n + τ − 1)T , then u(t+) ≤ (1 − p)u(t), where p = min{p1, p2, p3}. From
Lemma 4, we get that

u(t) ≤ u(0+)

( ∏
0<kT<t

(1− p)

)
exp

(∫ t

0
−β0ds

)
+

∫ t

0

( ∏
0≤kT<t

(1− p)

)
exp

(∫ t

s
−β0dγ

)
R0ds

+

∑
0<kT<t

( ∏
kT<jT<t

(1− p)

)
exp

(∫ t

kT
−β0dγ

)
q

≤ u(0+) exp(−β0t)+
R0
β0
(1− exp(−β0t))+

q exp(β0T )
exp(β0T )− 1

. (9)

Since the limit of the right-hand side of (9) as t →∞ is

R ≡
R0
β0
+
q exp(β0T )
exp(β0T )− 1

<∞,

it follows thatu(t) is bounded for sufficiently large t . Therefore, x(t), y(t) and z(t) are boundedby a constantR for sufficiently
large t . �

3.2. Stability of the prey and top predator-free periodic solutions

First, wewill give the basic properties of the following impulsive differential equation considered the absence of the prey
and the top predator.

Lemma 7 ([9]). If aT + ln(1 − p1) ≤ 0, then x(t)→ 0 as t →∞ for any solution x(t) of the following impulsive differential
equation:x

′(t) = x(t)(a− bx(t)), t 6= (n+ τ − 1)T , t 6= nT ,
x(t+) = (1− p1)x(t), t = (n+ τ − 1)T ,
x(t+) = x(t), t = nT .

(10)

Next, we give the basic properties of an impulsive differential equation as follows:y
′(t) = −d1y(t), t 6= (n+ τ − 1)T , t 6= nT ,
y(t+) = (1− p2)y(t), t = (n+ τ − 1)T ,
y(t+) = y(t)+ q, t = nT .

(11)

System (11) is a periodically forced linear system. It is easy to obtain that

y∗(t) =


q exp(−d1(t − (n− 1)T ))
1− (1− p2) exp(−d1T )

, (n− 1)T < t ≤ (n+ τ − 1)T ,

q(1− p2) exp(−d1(t − (n− 1)T ))
1− (1− p2) exp(−d1T )

, (n+ τ − 1)T < t ≤ nT ,
(12)
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y∗(0+) = y∗(nT+) = q
1−(1−p2) exp(−d1T )

and y∗((n + τ − 1)T+) = q(1−p2) exp(−d1τT )
1−(1−p2) exp(−d1T )

is a positive periodic solution of (11).
Moreover, we can obtain that

y(t) =


(1− p2)n−1

(
y(0+)−

q(1− p2)e−T

1− (1− p2) exp(−d1T )

)
exp(−d1t)+ y∗(t),

(n− 1)T < t ≤ (n+ τ − 1)T ,

(1− p2)n
(
y(0+)−

q(1− p2)e−T

1− (1− p2) exp(−d1T )

)
exp(−d1t)+ y∗(t),

(n+ τ − 1)T < t ≤ nT ,

(13)

is a solution of (11). From (12) and (13), we get easily the following result.

Lemma 8. For every solution y(t) and every positive periodic solution y∗(t) of system (2), it follows that y(t) tends to y∗(t) as
t →∞. Thus, the complete expression for the prey and top predator-free periodic solution of system (2) is obtained: (0, y∗(t), 0).

Now, it is time to state the stability of the periodic solution of system (2).

Theorem 9. (1) The periodic solution (0, y∗(t), 0) is locally asymptotically stable if

aT + ln(1− p1) < c1Γ (14)

and

c4
d1
√
e2
(Λ1 +Λ2 −Λ3 −Λ4)+ ln(1− p3) < d2T , (15)

where Γ = q(1−(1−p2) exp(−d1T )−p2 exp(−d1τT ))
d1(1−(1−p2) exp(−d1T ))

,

Λ1 = tan−1
(

exp(d1T )
µ
√
e2(1− p2)

)
, Λ2 = tan−1

(
exp(d1τT )
µ
√
e2

)
,

Λ3 = tan−1
(
exp(d1τT )

µ
√
e2(1− p2)

)
, Λ4 = tan−1

(
1

µ
√
e2

)
and

µ =
q

d1(1− (1− p2) exp(−d1T ))
.

(2) Suppose that aT+ln(1−p1) ≤ 0. Then the periodic solution (0, y∗(t), 0) is globally stable if (14), (15) and c4Γ+ln(1−p3) <
d2T hold.

Proof. (1) The local stability of the periodic solution (0, y∗(t), 0) of system (2) may be determined by considering the
behavior of small amplitude perturbations of the solution. Let (x(t), y(t), z(t)) be any solution of system (2). Define
u(t) = x(t), v(t) = y(t)− y∗(t), w(t) = z(t). Then they may be written as(u(t)

v(t)
w(t)

)
= Φ(t)

(u(0)
v(0)
w(0)

)
whereΦ(t) satisfies

dΦ
dt
=


a− c1y∗(t) 0 0

c2y∗(t) −d1 −
c3y∗(t)

1+ e2(y∗(t))2

0 0 −d2 +
c4y∗(t)

1+ e2(y∗(t))2

Φ(t)
andΦ(0) = I , where I is the identity matrix. So the fundamental solution matrix is

Φ(t) =


exp

(∫ t

0
a− c1y∗(s)ds

)
0 0

exp
(
c2

∫ t

0
y∗(s)ds

)
exp(−d1t) exp

(∫ t

0
−

c3y∗(s)
1+ e2(y∗(s))2

ds
)

0 0 exp
(∫ t

0
−d2 +

c4y∗(s)
1+ e2(y∗(s))2

ds
)

 .
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The resetting impulsive conditions of system (2) becomeu((n+ τ − 1)T+)v((n+ τ − 1)T+)
u((n+ τ − 1)T+)

 = (1− p1 0 0
0 1− p2 0
0 0 1− p3

)(u((n+ τ − 1)T )
v((n+ τ − 1)T )
w((n+ τ − 1)T )

)

and u(nT+)v(nT+)
w(nT+)

 = (1 0 0
0 1 0
0 0 1

)(u(nT )
v(nT )
w(nT )

)
.

All of the eigenvalues of

S =

(1− p1 0 0
0 1− p2 0
0 0 1− p3

)(1 0 0
0 1 0
0 0 1

)
Φ(T )

areµ1 = (1−p1) exp
(∫ T
0 a− c1y

∗(t)dt
)
, µ2 = (1−p2) exp(−d1T ) < 0 andµ3 = (1−p3) exp

(∫ T
0 −d2 +

c4y∗(t)
1+e2(y∗(t))2

dt
)
.

Since ∫ T

0
y∗(t)dt =

q(1− (1− p2) exp(−d1T )− p2 exp(−d1τT ))
d1(1− (1− p2) exp(−d1T ))

(16)

and ∫ T

0

y∗(t)
1+ e2(y∗(t))2

dt =
1

d1
√
e2
(Λ1 +Λ2 −Λ3 −Λ4), (17)

where

Λ1 = tan−1
(

exp(d1T )
µ
√
e2(1− p2)

)
, Λ2 = tan−1

(
exp(d1τT )
µ
√
e2

)
,

Λ3 = tan−1
(
exp(d1τT )

µ
√
e2(1− p2)

)
, Λ4 = tan−1

(
1

µ
√
e2

)
and

µ =
q

d1(1− (1− p2) exp(−d1T ))
,

the conditions |µ1| < 1 and |µ3| < 1 are equivalent to Eqs. (14) and (15), respectively. By Floquet theory [18], we obtain
that (0, y∗(t), 0) is locally asymptotically stable.
(2) Now we will prove the global stability. Since c4Γ + ln(1 − p3) < d2T , we take a sufficiently small number ε1 > 0

satisfying

φ ≡ (1− p3) exp
(
−d2T + c4Γε1 + c4ε1T

)
< 1,

where Γε1 =
q(1−(1−p2) exp(−(d1−c2ε1)T )−p2 exp(−(d1−c2ε1)τT ))

(d1−c2ε1)(1−(1−p2) exp(−(d1−c2ε1)T ))
. From the first equation in (2), we obtain that x′(t) = x(t)(a −

bx(t) − c1x(t)y(t)
1+e1(x(t))2

) ≤ x(t)(a − bx(t)) for t 6= (n + τ − 1)T , t 6= nT . By Lemma 3, x(t) ≤ x̃(t) for t ≥ 0, where x̃(t) is the
solution of (10) with the initial value x(0+). By Lemma 7, we get x̃(t) → 0 as t → ∞ which implies that there is T1 > 0
such that x(t) ≤ ε1 for t ≥ T1. For the sake of simplicity, we suppose that x(t) ≤ ε1 for all t ≥ 0. We can infer from the
second equation in (2) that y′(t) = y(t)

(
−d1 +

c2x(t)y(t)
1+e1(x(t))2

−
c3y(t)z(t)
1+e2(y(t))2

)
≤ y(t)(−d1 + c2x(t)) ≤ y(t)(−d1 + c2ε1) for

t 6= nT , t 6= (n+ τ − 1)T . Let ỹ1(t) be the solution of the following equation:
ỹ′1(t) = −(d1 − c2ε1)ỹ1(t), t 6= (n+ τ − 1)T , t 6= nT ,
ỹ1(t+) = (1− p2)ỹ1(t), t = (n+ τ − 1)T ,
ỹ1(t+) = ỹ1(t)+ q, t = nT ,
ỹ1(0+) = y0.

(18)

Then we know that y(t) ≤ ỹ1(t) by Lemma 3. Thus, from the third equation in (2) and Lemma 8, we obtain that

z ′(t) ≤ z(t)(−d2 + c4ỹ1(t))

≤ z(t)(−d2 + c4ỹ∗1(t)+ c4ε1) (19)
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a b c

d e f

Fig. 1. a = 1.1, b = 1, c1 = 0.9, c2 = 1, c3 = 0.9, c4 = 0.01, d1 = 0.2, d2 = 0.6, e1 = 0.2, e2 = 0.2, p1 = 0.1, p2 = 0.001, p3 = 0.01, τ = 0.6, T = 1
and q = 3. ((a)–(c)) Time series of system (2) when (x0, y0, z0) = (1, 1, 1) and ((d)–(f)) time series of system (2) when (x0, y0, z0) = (100, 100, 100).

where

ỹ∗1(t) =


q exp(−(d1 − c2ε1)(t − (n− 1)T ))
1− (1− p2) exp(−(d1 − c2ε1)T )

, (n− 1)T < t ≤ (n+ τ − 1)T ,

q(1− p2) exp(−(d1 − c2ε1)(t − (n− 1)T ))
1− (1− p2) exp(−(d1 − c2ε1)T )

, (n+ τ − 1)T < t ≤ nT

is the periodic solution of (18). Integrating (19) on ((n+ τ − 1)T , (n+ τ)T ], we obtain

z((n+ τ)T ) ≤ z((n+ τ − 1)T+) exp
(∫ (n+τ)T

(n+τ−1)T
−d2 + c4ỹ∗1(t)+ c4ε1dt

)
= z((n+ τ − 1)T )φ.

Therefore we obtain z((n+ τ)T ) ≤ z(τT )φn → 0 as n→∞. Also, for t ∈ ((n+ τ − 1)T , (n+ τ)T ],

z(t) ≤ z((n+ τ − 1)T+) exp
(∫ t

(n+τ−1)T
−d2 + c4ỹ∗1(t)+ c4ε1dt

)
≤ z((n+ τ − 1)T ) exp

(
qc4

1− (1− p2) exp(−(d1 − c2ε1)T )
+ c4ε1T

)
which implies that z(t)→ 0 as t →∞. Thus, we may assume that z(t) ≤ ε2 for t > 0. Again, from the second equation in
(2), we obtain that y′(t) ≥ y(t)(−d1−c3ε2). Let ỹ2(t) and ỹ∗2(t) be the solution and the periodic solution of (11), respectively,
with d1 changed into d1+c3ε2 and the same initial value y0. Thenwe can infer fromLemmas 3 and 7 that ỹ2(t) ≤ y(t) ≤ ỹ1(t)
and ỹi(t) (i = 1, 2) become close to ỹ∗i (t) (i = 1, 2) as t →∞, respectively. Note that the ỹ

∗

i (t) (i = 1, 2) are close to y
∗(t)

as ε1 and ε2 → 0. Therefore we obtain y(t)→ y∗(t) as t →∞. �

Example 1. It follows from Theorem 9(1) that the periodic solution (0, y∗(t), 0) is locally stable if we take a = 1.1, b =
1, c1 = 0.9, c2 = 1, c3 = 0.9, c4 = 0.01, d1 = 0.2, d2 = 0.6, e1 = 0.2, e2 = 0.2, p1 = 0.1, p2 = 0.001, p3 = 0.01, τ =
0.6, T = 1 and q = 3. Fig. 1 shows this phenomenon and exhibits that this periodic solution may be globally stable even
though aT + ln(1 − p − 1) > 0. Thus we conjecture that the periodic solutions of system (2) can be globally stable if the
conditions (14) and (15) hold.

Example 2. If we let a = 1.1, b = 1, c1 = 0.9, c2 = 1, c3 = 0.9, c4 = 0.01, d1 = 0.2, d2 = 0.6, e1 = 0.2, e2 = 0.2, p1 =
0.7, p2 = 0.001, p3 = 0.01, τ = 0.6, T = 1 and q = 3, then these parameters satisfy the condition of Theorem 9(2). Thus
the periodic solution (0, y∗(t), 0) is globally asymptotically stable. (See Fig. 2.)
From the proof of Theorem 9 and Theorem 3.2 in [4], we obtain a condition for the global stability of the periodic solution

(0, y∗(t)) of system (1).

Theorem 10. The periodic solution (0, y∗(t)) of system (1) is globally asymptotically stable if Γ ≤ 0 and aT+ln(1−p1) < c1Γ ,
or Γ > 0 and aT + ln(1− p1) ≤ 0.
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a b c

Fig. 2. a = 1.1, b = 1, c1 = 0.9, c2 = 1, c3 = 0.9, c4 = 0.01, d1 = 0.2, d2 = 0.6, e1 = 0.2, e2 = 0.2, p1 = 0.7, p2 = 0.001, p3 = 0.01, τ = 0.6, T = 1
and q = 3. ((a)–(c)) Time series of system (2) when (x0, y0, z0) = (1, 1, 1).

3.3. Permanence

Wemake mention of the definition of permanence before stating the permanence of system (2).

Definition 11. System (2) is said to be permanent if there exist two positive constants m and M such that every positive
solution (x(t), y(t), z(t)) of system (2) with x0, y0, z0 > 0 satisfies m ≤ x(t) ≤ M,m ≤ y(t) ≤ M and m ≤ z(t) ≤ M for
sufficiently large t .

To prove the permanence of system (2), we consider the following two subsystems. If the top predator is absent i.e., z(t) = 0,
then system (2) can be expressed as

x′(t) = x(t)(a− bx(t))−
c1x(t)y(t)
1+ e1(x(t))2

,

y′(t) = −d1y(t)+
c2x(t)y(t)
1+ e1(x(t))2

,

 t 6= (n+ τ − 1)T , t 6= nT ,

x(t+) = (1− p1)x(t),
y(t+) = (1− p2)y(t),

}
t 6= (n+ τ − 1)T ,

x(t+) = x(t),
y(t+) = y(t)+ p,

}
t = nT ,

(x(0+), y(0+)) = (x0, y0).

(20)

In fact, subsystem (20) is the same as system (1). If the prey is extinct, then system (2) can be expressed as

y′(t) = −d1y(t)−
c3y(t)z(t)
1+ e2(y(t))2

,

z ′(t) = −d2z(t)+
c4y(t)z(t)
1+ e2(y(t))2

,

 t 6= (n+ τ − 1)T , t 6= nT ,

y(t+) = (1− p2)y(t),
z(t+) = (1− p3)z(t),

}
t 6= (n+ τ − 1)T ,

y(t+) = y(t)+ p,
z(t+) = z(t),

}
t = nT ,

(y(0+), z(0+)) = (y0, z0).

(21)

In particular, Li and Tan [4] gave a condition for the permanence of subsystem (20).

Theorem 12 ([4]). Subsystem (20) is permanent if

aT + ln(1− p1) > c1Γ .

Theorem 13. Subsystem (21) is permanent if

c4
d1
√
e2
(Λ1 +Λ2 −Λ3 −Λ4)+ ln(1− p3) > d2T . (22)

Proof. Let (y(t), z(t)) be a solution of subsystem (21) with y0 > 0, z0 > 0. From Theorem 6, wemay assume that y(t) ≤ M
and z(t) ≤ M

c4
for some M > 0. Then y′(t) ≥ −(d1 + M)y(t). From Lemmas 3 and 8, we have y(t) ≥ u∗(t) − ε for ε > 0,
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where

u∗(t) =


q exp(−(d1 +M)(t − (n− 1)T ))
1− (1− p2) exp(−(d1 +M)T )

, (n− 1)T < t ≤ (n+ τ − 1)T ,

q(1− p2) exp(−(d1 +M)(t − (n− 1)T ))
1− (1− p2) exp(−(d1 +M)T )

, (n+ τ − 1)T < t ≤ nT .

Thus, we obtain that y(t) ≥ q(1−p2)(exp(−(d1+M)T ))
1−(1−p2) exp(−(d1+M)T )

−ε ≡ m0 for sufficiently large t . Therefore, we only need to find anm2 > 0
such that z(t) ≥ m2 for large enough t . We will do this in the following two steps.
(Step 1) From (22), we can choosem1 > 0, ε1 > 0 small enough that

φ ≡ (1− p3) exp
(
−d2T − c4ε1T +

c4
(d1 + c3m1)

√
e2
(Λ

ε1
1 +Λ

ε1
2 −Λ

ε1
3 −Λ

ε1
4 )

)
> 1,

where

Λ
ε1
1 = tan

−1
(
(1+ e2ε21) exp((d1 + c3m1)T )+ e2ε1µ(1− p2)

µ
√
e2(1− p2)

)
,

Λ
ε1
2 = tan

−1
(
(1+ e2ε21) exp((d1 + c3m1)τT )+ e2ε1µ(1− p2)

µ
√
e2

)
,

Λ
ε1
3 = tan

−1
(
(1+ e2ε21) exp((d1 + c3m1)τT )+ e2ε1

µ
√
e2(1− p2)

)
and

Λ
ε1
4 = tan

−1
(
ψ1+ e2ε21 + e2ε1

µ
√
e2

)
.

In this step, we will show that z(t1) ≥ m1 for some t1 > 0. Suppose not; i.e., z(t) < m1 for t > 0. Consider the following
system:

v′(t) = v(t)(−d1 − c3m1),

w′(t) = w(t)
(
−d2 +

c4v(t)
1+ e2(v(t))2

)
,

 t 6= (n+ τ − 1)T , t 6= nT ,

v(t+) = (1− p2)v(t),
w(t+) = (1− p3)w(t),

}
t = (n+ τ − 1)T ,

v(t+) = v(t)+ p,
w(t+) = w(t),

}
t = nT ,

(v(0+), w(0+)) = (y0, z0).

(23)

Then, by Lemma 3, we obtain y(t) ≥ v(t) and z(t) ≥ w(t). By Lemma 8, we have v(t) ≥ v∗(t) − ε1, where, for
t ∈ ((n− 1)T , nT ],

v∗(t) =


q exp(−(d1 + c3m1)(t − (n− 1)T ))
1− (1− p2) exp(−(d1 + c3m1)T )

, (n− 1)T < t ≤ (n+ τ − 1)T ,

q(1− p2) exp(−(d1 + c3m1)(t − (n− 1)T ))
1− (1− p2) exp(−(d1 + c3m1)T )

, (n+ τ − 1)T < t ≤ nT .

Thus

w′(t) ≥
(
−d2 +

c4(v∗(t)− ε1)
1+ e2(v∗(t)− ε1)2

)
w(t)

≥

(
−d2 − c4ε1 +

c4v∗(t)
1+ e2(v∗(t)− ε1)2

)
w(t). (24)

Integrating (24) on ((n+ τ − 1)T , (n+ τ)T ], we get

ln
(

w((n+ τ)T )
w((n+ τ − 1)T+)

)
≥

∫ (n+τ)T

(n+τ−1)T
−d2 − c4ε1 +

c4v∗(t)
1+ e2(v∗(t)− ε1)2

dt.

Note that∫ (n+τ)T

(n+τ−1)T

v∗(t)
1+ e2(v∗(t)− ε1)2

dt =
1

(d1 + c3m1)
√
e2
(Λ

ε1
1 +Λ

ε1
2 −Λ

ε1
3 −Λ

ε1
4 ).
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Thenwe getw((n+τ)T ) ≥ w((n+τ −1)T )φ. Therefore z((n+τ +k)T ) ≥ w((n+τ +k)T ) ≥ w((n+τ −1)T )φk+1 →∞
as k→∞which is a contradiction to the boundedness of z(t).
(Step 2) Without loss of generality, we may let z(t1) = m1. If z(t) ≥ m1 for all t > t1, then subsystem (21) is permanent.
If not, we may let t2 = inft>t1{z(t) < m1}. Then z(t) ≥ m1 for t1 ≤ t ≤ t2 and, by continuity of z(t), we have z(t2) = m1
and t1 < t2. There exists a t ′ (>t2) such that z(t ′) ≥ m1 by step 1. Set t3 = inft>t2{z(t) ≥ m1}. Then z(t) < m1 for
t2 < t < t3 and z(t3) = m1. We can continue this process by using step 1. If the process is stopped in finite times, we
complete the proof. Otherwise, there exists an interval sequence [t2k, t2k+1], k ∈ N, which has the following property:
z(t) < m1, t ∈ (t2k, t2k+1), t2k−1 < t2k ≤ t2k+1 and z(tn) = m1, where k, n ∈ N. Let T0 = sup{t2k+1 − t2k|k ∈ N}. If T0 = ∞,
then we can take a subsequence {t2ki} satisfying t2ki+1− t2ki →∞ as ki →∞. As in the proof of the first step, this will lead
to a contradiction to the boundedness of z(t). Then we obtain T0 <∞. Note that

z(t) ≥ z(t2k) exp
(∫ t

t2k
−d2 +

c4(v∗(s)− ε1)
1+ e2(v∗(s)− ε1)2

ds
)

≥ m1 exp(−d2T0) ≡ m2, t ∈ (t2k, t2k+1], k ∈ N.

So, we obtain that lim inft→∞ z(t) ≥ m2. Therefore we complete the proof. �

Theorem 14. System (2) is permanent if the conditions

aT + ln(1− p1) > c1Γ

and
c4

d1
√
e2
(Λ1 +Λ2 −Λ3 −Λ4)+ ln(1− p3) > d2T

hold.
Proof. Consider the following two subsystems of system (2):

x′1(t) = x1(t)(a− bx1(t))−
c1x1(t)y1(t)
1+ e1(x1(t))2

,

y′1(t) = −d1y1(t)+
c2x1(t)y1(t)
1+ e1(x1(t))2

,

 t 6= (n+ τ − 1)T , t 6= nT ,

x(1t+) = (1− p1)x1(t),
y1(t+) = (1− p2)y1(t),

}
t 6= (n+ τ − 1)T ,

x1(t+) = x1(t),
y1(t+) = y1(t)+ p,

}
t = nT ,

(x1(0+), y1(0+)) = (x0, y0).

(25)

and 

y′2(t) = −d1y2(t)−
c3y2(t)z2(t)
1+ e2(y2(t))2

,

z ′2(t) = −d2z2(t)+
c4y2(t)z2(t)
1+ e2(y2(t))2

,

 t 6= (n+ τ − 1)T , t 6= nT ,

y2(t+) = (1− p2)y2(t),
z2(t+) = (1− p3)z2(t),

}
t 6= (n+ τ − 1)T ,

y2(t+) = y2(t)+ p,
z2(t+) = z2(t),

}
t = nT ,

(y2(0+), z2(0+)) = (y0, z0).

(26)

It follows from Lemma 3 that x1(t) ≤ x(t), y1(t) ≥ y(t), y2(t) ≤ y(t) and z2(t) ≤ z(t). If aT + ln(1 − p1) > c1Γ , by
Theorem 12, subsystem (25) is permanent. Thus we can take T1 > 0 andm1 > 0 such that x(t) ≥ m1 for t ≥ T1. Further, if
c4

d1
√
e2
(Λ1 +Λ2 −Λ3 −Λ4)+ ln(1− p3) > d2T , by Theorem 13, subsystem (26) is also permanent. Therefore, there exist

T2 > 0 andm2,m3 > 0 such that y(t) ≥ m2 and z(t) ≥ m3 for t ≥ T2. The proof is complete. �

Example 3. Let a = 4, b = 1, c1 = 0.1, c2 = 1, c3 = 0.9, c4 = 1, d1 = 0.1, d2 = 0.1, e1 = 0.2, e2 = 0.1, p1 = 0.8, p2 =
0.001, p3 = 0.01, τ = 0.6, T = 4 and q = 3. Then, it follows from Theorem 14 that system (2) is permanent. (See Fig. 3.)

4. Conclusion

In this paper, we have investigated effects of impulsive perturbations on a Holling type IV food chain system. Conditions
for system (2) to be extinct are establishedbyusing the Floquet theory of impulsive differential equation and small amplitude
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a

c d

b

Fig. 3. a = 4, b = 1, c1 = 0.1, c2 = 1, c3 = 0.9, c4 = 1, d1 = 0.1, d2 = 0.1, e1 = 0.2, e2 = 0.1, p1 = 0.8, p2 = 0.001, p3 = 0.01, τ = 0.6, T = 4 and
q = 3. ((a)–(c)) Time series. (d) The trajectory of system (2) with an initial value (1, 1, 1).

a b c

Fig. 4. a = 2.1, b = 1, c1 = 0.9, c2 = 1, c3 = 0.9, c4 = 0.4, d1 = 0.2, d2 = 0.3, e1 = 0.2, e2 = 0.2, p1 = 0.7, p2 = 0.001, p3 = 0.01, τ = 0.6, T = 15
and 0 < q < 8. Bifurcation diagrams of system (2) when (x0, y0, z0) = (1, 1, 1). ((a)–(c)) x, y and z are plotted for q.

perturbation skills, and the boundary of system (2) is given. In addition, it is shown that system (2) can be permanent
under some conditions via the comparison theorem. We illustrate some examples. In [4], the authors studied the dynamic
complexities of system (1) by using numerical simulations. In fact, system (1) has various dynamical behaviors such as
quasi-periodic and periodic windows, strange attractors, and period-doubling and period-halving phenomena etc. (See [4]
for more details.) We can also catch sight of such phenomena for system (2). Fig. 4 displays the bifurcation diagrams of
system (2) with the parameters as follows:
a = 2.1, b = 1, c1 = 0.9, c2 = 1, c3 = 0.9, c4 = 0.4, d1 = 0.2, d2 = 0.3, e1 = 0.2, e2 = 0.2, p1 = 0.7, p2 =

0.001, p3 = 0.01, τ = 0.6, T = 15 and 0 < q < 8.
This figure indicates that system (2) experiences quasi-periodic oscillation, period-doubling cascades, periodic windows,

period-halving cascades, chaos, chaos crisis, and so on. Thus system (2) also has complex dynamical behaviors.
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