
INFORMATION AND COMPUTATION 96, 168-178 (1992)

Branching Programs Provide Lower Bounds
on the Areas of Multilective Deterministic

and Nondeterministic VLSI-Circuits

JURAJ HROMKOVIC

Department of Theoretical Cybernetics, Comenius University.
842 I5 Bratislava. C:echoslovakia

AND

MATTHIAS KRAUSE AND CHRISTOPH MEINEL

Sektion Mathematik, Humboldt-Universitiit zu Berlin,
1086 Berlin, PF 1297, German?

AND

STEPHEN WAACK

Karl- Weierstrass-Institut fir Mathematik.
1086 Berlin, PF 1304. Germanv

Each (nondeterministic) multilective VLSI-circuit C of area A can be simulated
by an oblivious (disjunctive) branching program of width exp(O(A)) which has the
same multiplicity of reading as C. That is why exponential lower bounds on the
width of (disjunctive) oblivious branching programs of linear depth provide lower
bounds of order Sl(nlm2’), 0 <a < i, on the area of (nondeterministic) multilective
VLSI-circuits computing explicitly delined one-output Boolean functions, if the
multiplicity of reading is bounded by O(log”n). Lower bounds are derived for the
sequence equality problem (SEQ) and the graph accessibility problem (GAP).
‘P 1992 Academic Press, Inc.

1. INTRODUCTION AND MAIN RESULT

VLSI-circuits represent a basic model of computation which has gained
great importance in practical applications. VLSI-complexity theory which
deals with the study of the computational power of these VLSI-circuits has
to tackle two major issues. These consist, first, in proving good upper

168
0890-5401/92 $3.00
Copyright cc\ 1992 by Academic Press. Inc.
All rights of reproduction in any form reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82012998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SIMULATION OF AREAS OF VLSI-CIRCUITS 169

bounds, i.e., to present area and/or time efficient VLSI-circuit designs per-
forming a given task, and, second, in deriving nontrivial lower bounds, i.e.,
to explore minimal resources (time, area, combinations of time and area)
needed to solve a certain computational problem. The present paper is
devoted to the second issue. It contributes a new and quite powerful
method for proving lower bounds on the area A of (deterministic or non-
deterministic) multilective VLSI-circuits (i.e., VLSI-circuits which are
allowed to read input variables more than once) that compute explicitly
defined Boolean functions. The method is based on deriving exponential
lower bounds on the width of length bounded oblivious branching
programs obtained recently by Krause, Meinel, and Waack (1989). Its
novelty is that it is applicable to one-output functions while so far known
techniques (see, e.g., Savage (1984), Siegel (1984)) work for multi-output
problems only.

In detail, we prove the following theorem:

THEOREM. Let k be fixed. If C is a multilective VLSI-circuit that reads
each input variable at most k times and computes the Boolean function
sequence equality (resp. graph accessibility), then the area of C is Q(n). This
result still holds if C is a nondeterministic multilective VLSI-circuit. If each
(ordinary) variable is read at most O(log” n) times, a < 4 (LX < a), the lower
bound becomes Q(n’ ~ 2rr).

The theorem is proved by combining the following two facts:

(a) A (nondeterministic) multilective VLSI-circuit of area A can be
simulated by a (nondeterministic) oblivious branching program of width
O(23A) whose length equals the number of clock periods the VLSI-circuit
gets input values from outside during a computation.

(b) Each oblivious branching program of length O(n *logan), 0 <
~1< f (c1< $) that computes the Boolean function sequence equality (graph
accessibility) is of exponential width.

Part (a) is an improvement of a simulation method described in
HromkoviE and Proch&zka (1988). It will be proved in Section 4. The
lower bounds of Part (b) were proved in Krause, Meinel, and Waack
(1989) and are quoted in Section 5. In Section 2 we recall the definition of
multilective VLSI-circuits (see, for example, Ullman (1984), Hromkovic
(1988)) and introduce the corresponding nondeterministic VLSI-circuit
model. Section 3 presents p-branching programs and disjunctive
p-branching programs which generalize the well-known branching program
model (see, e.g., Meinel (1988)).

For all natural numbers n we denote by X, a collection {x,, x,}
of n Boolean variables, and by B, the set of all Boolean functions

643!96.:2-3

170 HROMKOVIC ET AL.

f: (0, 1 }” + (0, 11. Let A be a language over the alphabet { 0, 1 } and let
A” = A n (0, l}“. Throughout this paper we make no difference between
sets and their characteristic functions.

2. MULTILECTIVE VLSI-CIRCUITS

Recall the definition of multilective VLSI-circuits given, e.g., in Ullman
(1984) or HromkoviE (1988).

A grid-graph G is a directed graph drawn in a rectangular grid such that
each square of the grid has one of the following contents:

(1) filled up,
(2) a straight line in horizontal or vertical direction,
(3) a bent line entering the grid square in the horizontal or vertical

direction and leaving the square in the vertical or horizontal direction,
respectively,

(4) a crossing of a horizontal line and a vertical line, or
(5) the empty content.

The interpretation of these contents is as follows. A grid square of type (1)
corresponds to a part of the layout of a node of G, which is usually
assumed to be a convex region of squares. Grid squares of types (2) and
(3) correspond to parts of the layout of an edge of G and squares of
type (4) depict the place of the crossing of some two edges of G. The area
of a grid-graph is the area of a minimal rectangle comprising all nonempty
squares of the grid.

A multilective VLSI-circuit C over the set X, = {x,, x,} of input
variables is a synchronous sequential circuit which is laid out as a grid-
graph. The area A(C) of C is the area of a minimal grid-graph which lays
out c.

In more detail, we assume that

- C has some input nodes (i.e., nodes of indegree zero) and one
outpute node (i.e., a node of outdegree zero) different from the input nodes.

- Each inner node v of C is labelled with some operation
p(v): (0, l}j+ (0, l}‘, where i equals the indegree and j the outdegree of v.

- C has a fixed working time T(C) E N. At each time t, 0 < t d T(C),
all edges are labelled by some Boolean constant from (0, 1) representing
the bit transmitted at time t along this edge. At time t = 0 all edges of C
are labelled by 0.

The computation performed by C is based on an I/O-schedule I, which
for each time unit t E {0, 1, T(C)} defines a labelling Z(t) of the input

SIMULATION OF AREAS OF VLSI-CIRCUITS 171

nodes by elements from X” u (0, 1). By X(t), t E N, we denote the set of
those input variables which are “read” by C at time unit t, i.e., which occur
as a label of an input node via Z(t). C is said to read at time t if X(t) # 0.

If we assume each input node (the single output node) to be equipped
with an additional input edge (output edge), than we can describe internal
states s of C completely by assignments of Boolean constants from (0, 1 }
to the edges of C. Let CI = (al, a,) E (0, 1 }” be an input vector. The initial
state sO, i.e., the state at time t = 0, assigns

- the value C(~E (0, 1 }, 1 < i < n, to the additional input edges of
those input nodes labelled by xi under Z(O), and

- the value 0 to the (original) edges of C and to the additional
output edge.

If C is in state s at time t, 0 6 t < T(C), then, at time t + 1, C enters the
state s’ that assigns

- the value a;~ (0, l}, l<i<n, to the additional input edges
corresponding to those input nodes that are labelled by xi under Z(t + l),

- the value p(v)(tx,,r, Q) to the additional output edge that
corresponds to the output node u of indegree i, where c(,,, are the values
assigned by state s (at time t) to the edges e,,, 1 d 1~ i, leading to v, and

- the value projection,,, (p(v)(a,l, a,,;)) to edges e:,,, 1 <m 6 j,
leaving the inner node v of indegree i and outdegree j, where a,,! are the
values assigned by state s (at time t) to the dges e,,,, 1 < Id i, leading to v.

The output value C(a) of C is defined to be the value of the additional
output edge of C at time T(C). We say that C computes the Boolean func-
tion in B,, that associates the value C(a) with a E (0, l}“. This function is
also denoted by C.

A multilective VLSI-circuit C is called a VLSZ(k(n))-circuit, k: N + N, if
each input variable x is read at most k(n) times; i.e., there are at most k(n)
time units t with x E X(t). Obviously, VLSI(1)-circuits, i.e., multilective
VLSI-circuits for which each variable is available exactly once, are
multiplective VLSI-circuits.

Finally, let us introduce multilective nondeterministic VLSI-circuits. Let
y,= {Yl, y,} be another set of Boolean variables. Let C be a multilec-
tive VLSI-circuit over the set X, u Y, of input variables. C can be thought
to be a multilective nondeterministic VLSI-circuit (for short multilective
ND-VLSI-circuit) over the sets X, of deterministic and Y, of nondeter-
ministic variables which computes a Boolean function from B, if we modify
the definition of acceptance in the following way: C accepts an input
a E (0, 1 }” if there is an assignment /I E (0, 1 }” for the nondeterministic
variables such that C computes the output 1 on a u /?, i.e., C(a, /?) = 1.

172 HROMKOVIC ET AL.

C is said to be a ND(l(n)) - VMl(k(n))-circuit, 1, k: N + N, if each non-
deterministic variable is read at most l(n) times and each deterministic
variable is read at most k(n) times.

3. BRANCHING PROGRAMS

A ,u-branching program (p - BP for short) P, /* E N, over the set X,, =
{X , 1 ..‘, x,} of Boolean variables is a finite, directed, labelled, acyclic graph
that has the following properties.

- P contains exactly one node of indegree zero (the source) and two
nodes of outdegree zero (the sinks of the program). One sink is labelled by
1, the other by 0.

- Each non-sink o of P has outdegree 2p and is labelled by a subset
X(o) of X, with #X(u) = p.

- The edges of P are labelled by elements from { 0, 1) V such that all
2” edges leaving a nonsink node u of P have different labels. I.e., for all
nonsinks u of P each vector from { 0, 1) Ir occurs exactly once as a label of
an edge leaving u.

Each p-branching program P over X, computes a function f E B, as follows.
Given an input c1= (cx,, a,,)~ (0, l}“, the computation starts at the
source of P. If the computation reaches a node u of P labelled by X(u) =
{xi,, . . .3 xi,} s X, it follows the edge labelled by (ail, CQ E (0, 1 }“. The
ualuef(cr) is given by the label of the sink reached by the computation.

The depth of P, denoted by Depth(P), is defined to be the length of a
longest path in P. The size of P, denoted by Size(P), is the number of
non-sink nodes of P.

A p-branching program P over x” is said to be k-times-only, k E N, with
regard to an input variable x E X,, if on each path in P there are at most.
k non-sink nodes with a label containing x. P is called a k-times-only
p-branching program if P is k-times-only with regard to each input variable
x E X,,. Finally, a sequence (P,},, N of p-branching programs P, is said to
be k(n)-times-only, k: N + N, if, for each n E N, P, is k(n)-times-only.

A p-branching program P is obZiuious if the set of nodes of P is
partitioned into disjoint levels L,, L,, L,, , in the following way:

- for each edge (u, u’) of P there is an index i, 1 < i < 1, such that
UEL~ and v’EL~+~, and

- all nonsink nodes at the same level have the same label.

Obviously, the parameter I coincides with the depth of P. Level LI+ 1
contains merely the two sinks.

SIMULATION OF AREAS OF VLSI-CIRCUITS 173

For each oblivious p-branching program P, Width(P) denotes the
maximum taken over the cardinalities of a11 levels of P.

It is an easy exercise to prove the following fact.

Remark 3.1. For each oblivious k(n)-times-only p-branching program
P over X, it holds that

Depth(P) <k(n) .n/p.

Let Y,= {yr, ym} be another set of Boolean variables, and let P be
a p-branching program over X,, u Y,. As in the case of circuits, P can be
interpreted as a nondeterministic p-branching program over the set X, of
deterministic and the set Y, of nondeterministic variables. The program P
computes a Boolean functionfE B, in such a way that it accepts an input
c1 E (0, I>” iff there is an assignment fi E {O, 1 >‘, to the nondeterministic
variables such that P yields the output “1” on the input (a, p). A nondeter-
ministic p-branching program P is called a disjunctive p-branching program
if it is l-time-only with regard to the nondeterministic variables occuring in
P (Meinel, 1987).

It is easy to verify that in the case p = 1 all definitions concerning
general, k(n)-times-only, oblivious and nondeterministic p-branching
programs agree with the corresponding definitions for ordinary branching
programs. Consequently, in the following we will speak of branching
programs in the case of l-branching programs. Branching programs
represent a basic model of sequential computation which is well
investigated (see, e.g., Meinel (1988)). For example, the classes of
languages which are computable by sequences of polynomial size deter-
ministic or disjunctive branching programs coincide with the fundamental
logarithmic space-bounded Turing machine complexity classes Y or Jf2,
respectively (Pudlak and Zak, 1983; Meinel, 1986).

It is not difficult to show that each Boolean function f E [EB, can be com-
puted by an oblivious l-time-only branching program over X, whose
underlying graph is a tree of size 2”. (For n = 1 this assumption is obvious.
If n > 1 and f E 5, then we obtain the tree TJ. for f by connecting the trees
T,, and T, r for the functions f(x,, x,- , , 0) and f(xi, x,- r, 1) from
IB, _ r , respectively, via a new source v labelled by x, and two edges labelled
by 6 E (0, l} such that the edge with label 6 connects u with the source of
T’,.)

By the same idea, each nonsink node v in a given p-branching program
can be simulated by an oblivious l-time-only branching program over X(u)
of size 2p. This fact leads to the following remark.

Remark 3.2. Each (nondeterministic) p-branching program P can be
simulated by a (nondeterministic) branching program P’ with

Depth(P’) < p . Depth(P) and Size(P’) 6 Size(P) . 2p.

174 HROMKOVI? ET AL.

Moreover, if P is k(n)-times-only for an input variable x E X, then P’ has
the same property. Especially, if P is a k(n)-times-only p-branching
program, or disjunctive, then the same is true for P’.

Finally, if P is oblivious then P’ is also oblivious, and

Width(P’) d Width(P) . 2p.

4. THE SIMULATION RESULT

Adapting a construction of Hromkovii: and Prochazka (1988) we can
simulate multilective VLSI-circuits by branching programs.

PROPOSITION 4.1. Let C be a VLSI (k(n))-circuit, k: N -+ N, over the set
x, = {Xl) . ..) x,} of Boolean input variables. Then there is an oblivious
k(n)-times-only branching program P over X,, with

Width(P) < 23A’C’

that simulates C, i.e., that computes the same function as C.

Proof Due to Remarks 3.1 and 3.2 it s&ices to construct an oblivious
k(n)-times-only .4(C)-branching program P over X,, with Width(P) Q
22A(CJ, that simulates C.

Let S= {si, s,} be the set of internal states of C. Since C has at most
2A(C) edges, the number of internal states of C is bounded by 22A(C), i.e.,
q < 22A(=‘.

Let t, < ..’ < t, be those time units at which C reads. For short, let
X(i) = X(ti). As the number of input nodes of C is bounded by A(C) we
have #X(i) < A(C) for all i, 1 < i < d. For convenience, let td+ i = T(C).

We construct the desired A(C)-branching program P from nodes u from
the set S x { 1, d+ l}, which are arranged in d+ 1 levels L,cSx (i},
l<i<d+l.

If s, ES denotes the internal state of C at time t, then we take node
(sir 1) as source of P. (Note that si does not depend on the input.) Induc-
tively, we define level Li+ 1 and the edges connecting levels Li and Li+ , ,
1 < i < d, as follows: ((s, i), (s’, i + 1)), s, s’ E S, is an edge from level i to
level i + 1 if there is an assignment o! to the variables of X(i) such that C
is in state s’ at time ti+ i if C starts in state s at time ti with input u.
(Obviously, the state s’ is well-defined since C works deterministically, and
the input does not affect the computation of C in the time period (tit ti+ i).)
Level Lj+, consists of all nodes (s’, i + 1) which are reachable in such a
way from nodes of level L,.

Clearly, P is an oblivious A(C)-branching program of width not greater

SIMULATION OF AREAS OF VLSI-CIRCUITS 175

than 22A(C) which computes the same Boolean function from B, as C. Since
C is a VLSI(k(n))- circuit, P is k(n)-times-only. 1

By exactly the same argument we can prove a similar result for
nondeterministic multilective VLSI-circuits.

PROPOSITION 4.2. Let C be a ND(l(n)) - VLSZ(k(n))-circuit, 1, k: IV + N,
over the set X,, of deterministic and the set Y,,, of nondeterministic variables.
Then there is a nondeterministic oblivious branching program P over the set
X,, of deterministic and the set Y,,, of nondeterministic variables with

Width(P) < 23A(C’

that simulates C and that is k(n)-times-only with regard to the deterministic
variables and l(n)-times-only with regard to the nondeterministic ones, i.e.,

Depth(P) < k(n)n + l(n)m.

In particular, for nondeterministic VLSI-circuits that are l-time-only
with regard to the nondeterministic variables we obtain the following
corollary.

COROLLARY. Each ND(1) - VLSZ(k(n))-circuit C, k: N + IV, over the set
X,, of deterministic variables and the set Y,,, of nondeterministic ones,
m = O(n), can be simulated by a disjunctive oblivious branching program P
over X,, with

Width(P) d 23A’C’ and Depth(P) < O(n . k(n)).

5. LOWER BOUNDS

In this section we derive lower bounds of order B(n’ +2a), 0 < c1< 4, on
the area of VLSI(k(n))-circuits and nondeterministic ND(1) - VLSI(k(n))-
circuits, k(n) = O(log” n), which compute some explicitly defined Boolean
functions. These results are obtained on the basis of Proposition 4.1 and
Proposition 4.2, respectively, which allow us to apply a method for proving
exponential lower bounds on the size of ordinary and disjunctive oblivious
k(n)-times-only branching programs recently developed in (Krause,
Meinel, and Waack, 1989).

Let us consider the two problems GAP and SEQ, which are defined over
certain sets Mr,n of Boolean t x n matrices, t, n E N.

Recall that each Boolean matrix A E MIII,, can be thought of as the
adjacency matrix of a directed graph G(A) with n vertices { 1, n} and

176 HROMKOVIC ETAL.

edges leading from vertex i to vertex j iff A,,i = 1, 1 Q i, j d n. The graph
accessibility problem GAP = (GAP,),,, consists of the sequence of
Boolean functions GAP, which decide for a given Boolean n x n matrix A
whether vertex n is reachable from vertex 1 in the directed graph G(A), i.e.,

GAP,(A) = 1 iff there is a path from vertex 1 to
vertex n in the directed graph G(A).

Let A E M12,n, let /A, (, 0 < (Aj 1 d 2, denote the column sum of column j,
1 6 j 9 n, and let w(A) denote the vector of these column sums,

dA)=(IA,l, IAnI).

For each word w E (0, 1,2}’ let red(w) E (0, 1 } * be the reduced word
which is obtained from w by deleting all occurences of the letter “2” in w.
For example, if w= (20120210) E (0, 1,2) *, then red(w) = (01010). The
sequence equality problem SEQ = (SEQ,),, N consists of the sequence of
Boolean functions SEQ, which test for two given matrices A, A’ E M,,,
whether the reduced words of their column sums vectors coincide, i.e.,

SEQJA, A’) = 1 iff red(w(A)) = red(w(A’)).

The following lower bounds on the width of disjunctive oblivious
branching programs of length O(n . log” n), 0 < c(< 4 (0 < a < a) computing
the sequence equality problem SEQ or the graph accessibility problem GAP
could be proved in Krause, Meinel, and Waack (1989).

PROPOSITION 5.1 (Krause, Meinel, and Waack, 1989). For each n E N
let Q, be a disjunctive oblivious branching program computing SEQ, with
Depth(Q,) = O(n ‘log” n), 0 < CI < i. Then

Width(Q,) =exp(C?(n’-‘“)).

PROPOSITION 5.2 (Krause, Meinel, and Waack, 1989). For each n E N
let N =n2 and P, be a disjunctive oblivious branching program computing
GAP, with Depth(P,) = O(N. log” N)), 0 GM: < a. Then

Width(P,) = exp(CJ(n’-*‘)) = exp(O(N’1-2a”2).

(Observe that N denotes the number of variables GAP,, depends on.)

Due to the simulation result of Proposition 4.2 the exponential lower
bounds on the width of disjunctive branching programs given in Proposi-
tions 5.1 and 5.2 immediately imply, as already stated, a lower bound on
the area of nondeterministic multilective VLSI-circuits with a bounded

SIMULATION OF AREAS OF VLSI-CIRCUITS 177

multiplicity of reading. These bounds, of course, include corresponding
lower bounds for deterministic multilective VLSI-circuits.

THEOREM. Let k(n) = O(n . log” n), 0 < c1< i. For each n E N let S, be a
ND(1) - VLSI(k(n))-circuit computing the Boolean function SEQ,. Then

A(S,)=n(n-2*,.

Let k(n) = O(n.log” n), Odor < a. For each HE N let C, be a ND(l)-
VLSI(k(N))-circuit computing the Boolean function GAP,, (Observe that C,
is defined over N = n2 input variables.) Then

In particular, if c(= 0 then k(n) is a constant function and we obtain

COROLLARY. Let k E N be arbitrarily fixed. For each n E N let S, and C,
be ND(1) - VLSZ(k)-circuits computing the Boolean functions SEQ, and
GAP,, respectively. Then

N&J = Q(n) and A(C,)=Q(N1’2)=S2(n).

Finally, let us only remark that the lower bound for the sequence equality
problem SEQ, is optimal. This is true since we have assumed processing
elements with unrestricted computational power in our definition of multi-
lective (nondeterministic) VLSI-circuits. Hence, each function f can be
trivially computed by a circuit C with one processing node of area

A(C) = fan-in(f) + fan-out(f).

REVEIVED May 14, 1989; FINAL MANUSCRIPT RECEIVED June 18, 1990

REFERENCES

HROMKOVI?, J. (1988), Some computational aspects of VLSI computations. Cornput. Arh$cial
Intelligence I, No. 3, 229.

HROMKOVIE, J., AND PROCHAZKA, J. (1988), Branching programs are a tool for proving lower
bounds on VLSI-computations and optimal algorithms for systolic arrays, in “Proceedings
of MFCS’ 88,” pp. 360-370, Lecture Notes in Computer Science, Vol. 324, Springer-Verlag,
Berlin/New York.

KRAUSE, M., MEINEL, CH., AND WAACK, S. (1989), Separating complexity classes related to
certain input oblivious logarithmic space-bounded Turing machines, in “Proceedings of
Structure in Complexity Theory, Oregon, 1989,” pp. 24&249.

MEINEL, CH. (1986), P-projection reducibility and the complexity classes L(nonuniform) and
NL(nonuniform), in “Proceedings of FCT’ 86,” pp. 527-535, Lecture Notes in Computer
Science, Vol. 233, Springer-Verlag. Berlin/New York.

178 HROMKOVIC ET AL.

MEINEL. CH. (1987), The power of nondeterminism in polynomial-size bounded-width
branching programs, in “Proceedings of FCT’ 87,” pp. 302-309. Lecture Notes in
Computer Science, Vol. 278, Springer-Verlag, Berlin/New York.

MEINEL, CH. (1988), “Modified Branching Programs and their Computational Power,”
Habilitation thesis, Berlin 1988; Lecture Notes in Computer Science, Vol. 370, Springer-
Verlag, Berlin/New York, 1989.

PUDLIK, P.. AND YAK. S. (1983) Space complexity of computation, preprint, University of
Prague.

SAVAGE, J. E. (1984), The performance of multilective VLSI algorithms, J. Comput. S.~tem
Sci. 29, 243.

SIEGEL, A. (1984), “Tight Area Bounds and Provably AT’ Bounds for Sorting Circuits,”
Report No. 122, Courrant Institute, NY.

ULLMAN, J. D. (1984). “Computational Aspects of VLSI,” Comput. Sci. Press, Rockville, MD.

