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Each (nondeterministic) multilective VLSI-circuit C of area A can be simulated 
by an oblivious (disjunctive) branching program of width exp(O(A)) which has the 
same multiplicity of reading as C. That is why exponential lower bounds on the 
width of (disjunctive) oblivious branching programs of linear depth provide lower 
bounds of order Sl(nlm2’), 0 <a < i, on the area of (nondeterministic) multilective 
VLSI-circuits computing explicitly delined one-output Boolean functions, if the 
multiplicity of reading is bounded by O(log”n). Lower bounds are derived for the 
sequence equality problem (SEQ) and the graph accessibility problem (GAP). 
‘P 1992 Academic Press, Inc. 

1. INTRODUCTION AND MAIN RESULT 

VLSI-circuits represent a basic model of computation which has gained 
great importance in practical applications. VLSI-complexity theory which 
deals with the study of the computational power of these VLSI-circuits has 
to tackle two major issues. These consist, first, in proving good upper 
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bounds, i.e., to present area and/or time efficient VLSI-circuit designs per- 
forming a given task, and, second, in deriving nontrivial lower bounds, i.e., 
to explore minimal resources (time, area, combinations of time and area) 
needed to solve a certain computational problem. The present paper is 
devoted to the second issue. It contributes a new and quite powerful 
method for proving lower bounds on the area A of (deterministic or non- 
deterministic) multilective VLSI-circuits (i.e., VLSI-circuits which are 
allowed to read input variables more than once) that compute explicitly 
defined Boolean functions. The method is based on deriving exponential 
lower bounds on the width of length bounded oblivious branching 
programs obtained recently by Krause, Meinel, and Waack (1989). Its 
novelty is that it is applicable to one-output functions while so far known 
techniques (see, e.g., Savage (1984), Siegel (1984)) work for multi-output 
problems only. 

In detail, we prove the following theorem: 

THEOREM. Let k be fixed. If C is a multilective VLSI-circuit that reads 
each input variable at most k times and computes the Boolean function 
sequence equality (resp. graph accessibility), then the area of C is Q(n). This 
result still holds if C is a nondeterministic multilective VLSI-circuit. If each 
(ordinary) variable is read at most O(log” n) times, a < 4 (LX < a), the lower 
bound becomes Q(n’ ~ 2rr). 

The theorem is proved by combining the following two facts: 

(a) A (nondeterministic) multilective VLSI-circuit of area A can be 
simulated by a (nondeterministic) oblivious branching program of width 
O(23A) whose length equals the number of clock periods the VLSI-circuit 
gets input values from outside during a computation. 

(b) Each oblivious branching program of length O(n *logan), 0 < 
~1< f (c1< $) that computes the Boolean function sequence equality (graph 
accessibility) is of exponential width. 

Part (a) is an improvement of a simulation method described in 
HromkoviE and Proch&zka (1988). It will be proved in Section 4. The 
lower bounds of Part (b) were proved in Krause, Meinel, and Waack 
(1989) and are quoted in Section 5. In Section 2 we recall the definition of 
multilective VLSI-circuits (see, for example, Ullman (1984), Hromkovic 
(1988)) and introduce the corresponding nondeterministic VLSI-circuit 
model. Section 3 presents p-branching programs and disjunctive 
p-branching programs which generalize the well-known branching program 
model (see, e.g., Meinel (1988)). 

For all natural numbers n we denote by X, a collection {x,, . . . . x,} 
of n Boolean variables, and by B, the set of all Boolean functions 
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f: (0, 1 }” + (0, 11. Let A be a language over the alphabet { 0, 1 } and let 
A” = A n (0, l}“. Throughout this paper we make no difference between 
sets and their characteristic functions. 

2. MULTILECTIVE VLSI-CIRCUITS 

Recall the definition of multilective VLSI-circuits given, e.g., in Ullman 
(1984) or HromkoviE (1988). 

A grid-graph G is a directed graph drawn in a rectangular grid such that 
each square of the grid has one of the following contents: 

(1) filled up, 
(2) a straight line in horizontal or vertical direction, 
(3) a bent line entering the grid square in the horizontal or vertical 

direction and leaving the square in the vertical or horizontal direction, 
respectively, 

(4) a crossing of a horizontal line and a vertical line, or 
(5) the empty content. 

The interpretation of these contents is as follows. A grid square of type (1) 
corresponds to a part of the layout of a node of G, which is usually 
assumed to be a convex region of squares. Grid squares of types (2) and 
(3) correspond to parts of the layout of an edge of G and squares of 
type (4) depict the place of the crossing of some two edges of G. The area 
of a grid-graph is the area of a minimal rectangle comprising all nonempty 
squares of the grid. 

A multilective VLSI-circuit C over the set X, = {x,, . . . . x,} of input 
variables is a synchronous sequential circuit which is laid out as a grid- 
graph. The area A(C) of C is the area of a minimal grid-graph which lays 
out c. 

In more detail, we assume that 

- C has some input nodes (i.e., nodes of indegree zero) and one 
outpute node (i.e., a node of outdegree zero) different from the input nodes. 

- Each inner node v of C is labelled with some operation 
p(v): (0, l}j+ (0, l}‘, where i equals the indegree and j the outdegree of v. 

- C has a fixed working time T(C) E N. At each time t, 0 < t d T(C), 
all edges are labelled by some Boolean constant from (0, 1) representing 
the bit transmitted at time t along this edge. At time t = 0 all edges of C 
are labelled by 0. 

The computation performed by C is based on an I/O-schedule I, which 
for each time unit t E {0, 1, . . . . T(C)} defines a labelling Z(t) of the input 
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nodes by elements from X” u (0, 1). By X(t), t E N, we denote the set of 
those input variables which are “read” by C at time unit t, i.e., which occur 
as a label of an input node via Z(t). C is said to read at time t if X(t) # 0. 

If we assume each input node (the single output node) to be equipped 
with an additional input edge (output edge), than we can describe internal 
states s of C completely by assignments of Boolean constants from (0, 1 } 
to the edges of C. Let CI = (al, . . . . a,) E (0, 1 }” be an input vector. The initial 
state sO, i.e., the state at time t = 0, assigns 

- the value C(~E (0, 1 }, 1 < i < n, to the additional input edges of 
those input nodes labelled by xi under Z(O), and 

- the value 0 to the (original) edges of C and to the additional 
output edge. 

If C is in state s at time t, 0 6 t < T(C), then, at time t + 1, C enters the 
state s’ that assigns 

- the value a;~ (0, l}, l<i<n, to the additional input edges 
corresponding to those input nodes that are labelled by xi under Z(t + l), 

- the value p(v)(tx,,r, . . . . Q) to the additional output edge that 
corresponds to the output node u of indegree i, where c(,,, are the values 
assigned by state s (at time t) to the edges e,,, 1 d 1~ i, leading to v, and 

- the value projection,,, (p(v)(a,l, . . . . a,,;)) to edges e:,,, 1 <m 6 j, 
leaving the inner node v of indegree i and outdegree j, where a,,! are the 
values assigned by state s (at time t) to the dges e,,,, 1 < Id i, leading to v. 

The output value C(a) of C is defined to be the value of the additional 
output edge of C at time T(C). We say that C computes the Boolean func- 
tion in B,, that associates the value C(a) with a E (0, l}“. This function is 
also denoted by C. 

A multilective VLSI-circuit C is called a VLSZ(k(n))-circuit, k: N + N, if 
each input variable x is read at most k(n) times; i.e., there are at most k(n) 
time units t with x E X(t). Obviously, VLSI( 1)-circuits, i.e., multilective 
VLSI-circuits for which each variable is available exactly once, are 
multiplective VLSI-circuits. 

Finally, let us introduce multilective nondeterministic VLSI-circuits. Let 
y,= {Yl, . . . . y,} be another set of Boolean variables. Let C be a multilec- 
tive VLSI-circuit over the set X, u Y, of input variables. C can be thought 
to be a multilective nondeterministic VLSI-circuit (for short multilective 
ND-VLSI-circuit) over the sets X, of deterministic and Y, of nondeter- 
ministic variables which computes a Boolean function from B, if we modify 
the definition of acceptance in the following way: C accepts an input 
a E (0, 1 }” if there is an assignment /I E (0, 1 }” for the nondeterministic 
variables such that C computes the output 1 on a u /?, i.e., C(a, /?) = 1. 
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C is said to be a ND(l(n)) - VMl(k(n))-circuit, 1, k: N + N, if each non- 
deterministic variable is read at most l(n) times and each deterministic 
variable is read at most k(n) times. 

3. BRANCHING PROGRAMS 

A ,u-branching program (p - BP for short) P, /* E N, over the set X,, = 
{X , 1 ..‘, x,} of Boolean variables is a finite, directed, labelled, acyclic graph 
that has the following properties. 

- P contains exactly one node of indegree zero (the source) and two 
nodes of outdegree zero (the sinks of the program). One sink is labelled by 
1, the other by 0. 

- Each non-sink o of P has outdegree 2p and is labelled by a subset 
X(o) of X, with #X(u) = p. 

- The edges of P are labelled by elements from { 0, 1) V such that all 
2” edges leaving a nonsink node u of P have different labels. I.e., for all 
nonsinks u of P each vector from { 0, 1) Ir occurs exactly once as a label of 
an edge leaving u. 

Each p-branching program P over X, computes a function f E B, as follows. 
Given an input c1= (cx,, . . . . a,,)~ (0, l}“, the computation starts at the 
source of P. If the computation reaches a node u of P labelled by X(u) = 
{xi,, . . .3 xi,} s X, it follows the edge labelled by (ail, . . . . CQ E (0, 1 }“. The 
ualuef(cr) is given by the label of the sink reached by the computation. 

The depth of P, denoted by Depth(P), is defined to be the length of a 
longest path in P. The size of P, denoted by Size(P), is the number of 
non-sink nodes of P. 

A p-branching program P over x” is said to be k-times-only, k E N, with 
regard to an input variable x E X,, if on each path in P there are at most. 
k non-sink nodes with a label containing x. P is called a k-times-only 
p-branching program if P is k-times-only with regard to each input variable 
x E X,,. Finally, a sequence (P,},, N of p-branching programs P, is said to 
be k(n)-times-only, k: N + N, if, for each n E N, P, is k(n)-times-only. 

A p-branching program P is obZiuious if the set of nodes of P is 
partitioned into disjoint levels L,, . . . . L,, L,, , in the following way: 

- for each edge (u, u’) of P there is an index i, 1 < i < 1, such that 
UEL~ and v’EL~+~, and 

- all nonsink nodes at the same level have the same label. 

Obviously, the parameter I coincides with the depth of P. Level LI+ 1 
contains merely the two sinks. 
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For each oblivious p-branching program P, Width(P) denotes the 
maximum taken over the cardinalities of a11 levels of P. 

It is an easy exercise to prove the following fact. 

Remark 3.1. For each oblivious k(n)-times-only p-branching program 
P over X, it holds that 

Depth(P) <k(n) .n/p. 

Let Y,= {yr, . . . . ym} be another set of Boolean variables, and let P be 
a p-branching program over X,, u Y,. As in the case of circuits, P can be 
interpreted as a nondeterministic p-branching program over the set X, of 
deterministic and the set Y, of nondeterministic variables. The program P 
computes a Boolean functionfE B, in such a way that it accepts an input 
c1 E (0, I>” iff there is an assignment fi E {O, 1 >‘, to the nondeterministic 
variables such that P yields the output “1” on the input (a, p). A nondeter- 
ministic p-branching program P is called a disjunctive p-branching program 
if it is l-time-only with regard to the nondeterministic variables occuring in 
P (Meinel, 1987). 

It is easy to verify that in the case p = 1 all definitions concerning 
general, k(n)-times-only, oblivious and nondeterministic p-branching 
programs agree with the corresponding definitions for ordinary branching 
programs. Consequently, in the following we will speak of branching 
programs in the case of l-branching programs. Branching programs 
represent a basic model of sequential computation which is well 
investigated (see, e.g., Meinel (1988)). For example, the classes of 
languages which are computable by sequences of polynomial size deter- 
ministic or disjunctive branching programs coincide with the fundamental 
logarithmic space-bounded Turing machine complexity classes Y or Jf2, 
respectively (Pudlak and Zak, 1983; Meinel, 1986). 

It is not difficult to show that each Boolean function f E [EB, can be com- 
puted by an oblivious l-time-only branching program over X, whose 
underlying graph is a tree of size 2”. (For n = 1 this assumption is obvious. 
If n > 1 and f E 5, then we obtain the tree TJ. for f by connecting the trees 
T,, and T, r for the functions f(x,, . . . . x,- , , 0) and f(xi, . . . . x,- r, 1) from 
IB, _ r , respectively, via a new source v labelled by x, and two edges labelled 
by 6 E (0, l} such that the edge with label 6 connects u with the source of 
T’,.) 

By the same idea, each nonsink node v in a given p-branching program 
can be simulated by an oblivious l-time-only branching program over X(u) 
of size 2p. This fact leads to the following remark. 

Remark 3.2. Each (nondeterministic) p-branching program P can be 
simulated by a (nondeterministic) branching program P’ with 

Depth(P’) < p . Depth(P) and Size( P’) 6 Size(P) . 2p. 
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Moreover, if P is k(n)-times-only for an input variable x E X, then P’ has 
the same property. Especially, if P is a k(n)-times-only p-branching 
program, or disjunctive, then the same is true for P’. 

Finally, if P is oblivious then P’ is also oblivious, and 

Width( P’) d Width(P) . 2p. 

4. THE SIMULATION RESULT 

Adapting a construction of Hromkovii: and Prochazka (1988) we can 
simulate multilective VLSI-circuits by branching programs. 

PROPOSITION 4.1. Let C be a VLSI (k(n))-circuit, k: N -+ N, over the set 
x, = {Xl ) . ..) x,} of Boolean input variables. Then there is an oblivious 
k(n)-times-only branching program P over X,, with 

Width(P) < 23A’C’ 

that simulates C, i.e., that computes the same function as C. 

Proof Due to Remarks 3.1 and 3.2 it s&ices to construct an oblivious 
k(n)-times-only .4(C)-branching program P over X,, with Width(P) Q 
22A(CJ, that simulates C. 

Let S= {si, . . . . s,} be the set of internal states of C. Since C has at most 
2A(C) edges, the number of internal states of C is bounded by 22A(C), i.e., 
q < 22A(=‘. 

Let t, < ..’ < t, be those time units at which C reads. For short, let 
X(i) = X(ti). As the number of input nodes of C is bounded by A(C) we 
have #X(i) < A(C) for all i, 1 < i < d. For convenience, let td+ i = T(C). 

We construct the desired A(C)-branching program P from nodes u from 
the set S x { 1, . . . . d+ l}, which are arranged in d+ 1 levels L,cSx (i}, 
l<i<d+l. 

If s, ES denotes the internal state of C at time t, then we take node 
(sir 1) as source of P. (Note that si does not depend on the input.) Induc- 
tively, we define level Li+ 1 and the edges connecting levels Li and Li+ , , 
1 < i < d, as follows: ((s, i), (s’, i + 1 )), s, s’ E S, is an edge from level i to 
level i + 1 if there is an assignment o! to the variables of X(i) such that C 
is in state s’ at time ti+ i if C starts in state s at time ti with input u. 
(Obviously, the state s’ is well-defined since C works deterministically, and 
the input does not affect the computation of C in the time period (tit ti+ i).) 
Level Lj+, consists of all nodes (s’, i + 1) which are reachable in such a 
way from nodes of level L,. 

Clearly, P is an oblivious A(C)-branching program of width not greater 
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than 22A(C) which computes the same Boolean function from B, as C. Since 
C is a VLSI(k(n))- circuit, P is k(n)-times-only. 1 

By exactly the same argument we can prove a similar result for 
nondeterministic multilective VLSI-circuits. 

PROPOSITION 4.2. Let C be a ND(l(n)) - VLSZ(k(n))-circuit, 1, k: IV + N, 
over the set X,, of deterministic and the set Y,,, of nondeterministic variables. 
Then there is a nondeterministic oblivious branching program P over the set 
X,, of deterministic and the set Y,,, of nondeterministic variables with 

Width(P) < 23A(C’ 

that simulates C and that is k(n)-times-only with regard to the deterministic 
variables and l(n)-times-only with regard to the nondeterministic ones, i.e., 

Depth(P) < k(n)n + l(n)m. 

In particular, for nondeterministic VLSI-circuits that are l-time-only 
with regard to the nondeterministic variables we obtain the following 
corollary. 

COROLLARY. Each ND( 1) - VLSZ(k(n))-circuit C, k: N + IV, over the set 
X,, of deterministic variables and the set Y,,, of nondeterministic ones, 
m = O(n), can be simulated by a disjunctive oblivious branching program P 
over X,, with 

Width(P) d 23A’C’ and Depth(P) < O(n . k(n)). 

5. LOWER BOUNDS 

In this section we derive lower bounds of order B(n’ +2a), 0 < c1< 4, on 
the area of VLSI(k(n))-circuits and nondeterministic ND( 1) - VLSI(k(n))- 
circuits, k(n) = O(log” n), which compute some explicitly defined Boolean 
functions. These results are obtained on the basis of Proposition 4.1 and 
Proposition 4.2, respectively, which allow us to apply a method for proving 
exponential lower bounds on the size of ordinary and disjunctive oblivious 
k(n)-times-only branching programs recently developed in (Krause, 
Meinel, and Waack, 1989). 

Let us consider the two problems GAP and SEQ, which are defined over 
certain sets Mr,n of Boolean t x n matrices, t, n E N. 

Recall that each Boolean matrix A E MIII,, can be thought of as the 
adjacency matrix of a directed graph G(A) with n vertices { 1, . . . . n} and 
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edges leading from vertex i to vertex j iff A,,i = 1, 1 Q i, j d n. The graph 
accessibility problem GAP = (GAP,),,, consists of the sequence of 
Boolean functions GAP, which decide for a given Boolean n x n matrix A 
whether vertex n is reachable from vertex 1 in the directed graph G(A), i.e., 

GAP,(A) = 1 iff there is a path from vertex 1 to 
vertex n in the directed graph G( A ). 

Let A E M12,n, let /A, (, 0 < ( Aj 1 d 2, denote the column sum of column j, 
1 6 j 9 n, and let w(A) denote the vector of these column sums, 

dA)=(IA,l, . . . . IAnI). 

For each word w E (0, 1,2}’ let red(w) E (0, 1 } * be the reduced word 
which is obtained from w by deleting all occurences of the letter “2” in w. 
For example, if w= (20120210) E (0, 1,2) *, then red(w) = (01010). The 
sequence equality problem SEQ = (SEQ,),, N consists of the sequence of 
Boolean functions SEQ, which test for two given matrices A, A’ E M,,, 
whether the reduced words of their column sums vectors coincide, i.e., 

SEQJA, A’) = 1 iff red(w(A)) = red(w(A’)). 

The following lower bounds on the width of disjunctive oblivious 
branching programs of length O(n . log” n), 0 < c( < 4 (0 < a < a) computing 
the sequence equality problem SEQ or the graph accessibility problem GAP 
could be proved in Krause, Meinel, and Waack (1989). 

PROPOSITION 5.1 (Krause, Meinel, and Waack, 1989). For each n E N 
let Q, be a disjunctive oblivious branching program computing SEQ, with 
Depth(Q,) = O(n ‘log” n), 0 < CI < i. Then 

Width(Q,) =exp(C?(n’-‘“)). 

PROPOSITION 5.2 (Krause, Meinel, and Waack, 1989). For each n E N 
let N =n2 and P, be a disjunctive oblivious branching program computing 
GAP, with Depth(P,) = O(N. log” N)), 0 GM: < a. Then 

Width(P,) = exp(CJ(n’-*‘)) = exp(O(N’1-2a”2). 

(Observe that N denotes the number of variables GAP,, depends on.) 

Due to the simulation result of Proposition 4.2 the exponential lower 
bounds on the width of disjunctive branching programs given in Proposi- 
tions 5.1 and 5.2 immediately imply, as already stated, a lower bound on 
the area of nondeterministic multilective VLSI-circuits with a bounded 
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multiplicity of reading. These bounds, of course, include corresponding 
lower bounds for deterministic multilective VLSI-circuits. 

THEOREM. Let k(n) = O(n . log” n), 0 < c1< i. For each n E N let S, be a 
ND( 1) - VLSI(k(n))-circuit computing the Boolean function SEQ,. Then 

A(S,)=n(n-2*,. 

Let k(n) = O(n.log” n), Odor < a. For each HE N let C, be a ND(l)- 
VLSI(k( N))-circuit computing the Boolean function GAP,, (Observe that C, 
is defined over N = n2 input variables.) Then 

In particular, if c( = 0 then k(n) is a constant function and we obtain 

COROLLARY. Let k E N be arbitrarily fixed. For each n E N let S, and C, 
be ND( 1) - VLSZ(k)-circuits computing the Boolean functions SEQ, and 
GAP,, respectively. Then 

N&J = Q(n) and A(C,)=Q(N1’2)=S2(n). 

Finally, let us only remark that the lower bound for the sequence equality 
problem SEQ, is optimal. This is true since we have assumed processing 
elements with unrestricted computational power in our definition of multi- 
lective (nondeterministic) VLSI-circuits. Hence, each function f can be 
trivially computed by a circuit C with one processing node of area 

A(C) = fan-in(f) + fan-out(f). 
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