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TO MY ERSTWHILE TEACHER, PROFESSOR K. M. DAS, IN ~~OR~AM 

Let B,, be the exponential box spline associated with 3,~ C” and an 5 x n 
rational matrix with rank s and non-zero columns. Sufficient conditions are 
provided for the kernel space 

K(B,,) := a: Z’+C: C a(j) B,,(.--j)=O 
! ,EZ’ I 

to be (i) trivial and (ii) finite dimensional. While these results extend the corre- 
sponding theorems known for integer matrices, the methods of proof are discernibly 
different. 0 1991 Academic Press. Inc. 

1. INTRODUCTION 

Let $J be a compactly supported distribution on ’ and IJ its Fourier 
transform. We define the sequence space 

K($):= i a:Z”--+C: c n(j)ijl(.-j)=O 
itZS I 

and the set 

iv(l)) := (eECS: &e+27qj)=o for all Jo ZS>. 

When K(G) is the trivial space {O>, we say that the integer translates cfpL 
are linearly independent. This phenomenon of linear independence of trans- 
lates has received a good deal of attention in the literature. For instance, 
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it is known [12,4, 151 that K($) is trivial if and only if it contains no 
exponential sequences; in turn, this is equivalent to the set N($) being 
empty [15]. Apart from their obvious generality, such results also shed 
considerable light when one studies particular distributions about whose 
structure and properties more precise information is available. 

An especially interesting choice of the distribution $ is provided by the 
exponential box spline whose study was initiated in [ 141 and carried out in 
greater detail in [ 1, 63. To recall its definition, let E be an s x n real matrix 
with non-zero columns and let 2 EC”. The exponential box spline B,, 
associated with E and 2 is the compactly supported distribution on R” 
given by the rule 

(1.1) 

An important special case, namely ,? = 0, corresponds to the well-known 
polynomial box spline B, introduced earlier in [Z, 31. Box splines possess 
a remarkably rich structure and the study of their various properties con- 
stitutes a dominant theme in the theory of multivariate splines. Although 
Definition 1.1 imposes no restrictions on the nature of the matrix S, most 
of the hitherto available results on box splines presuppose that c” is an 
integer matrix (i.e., all entries in Z are integers). In particular, the question 
of linear independence of such polynomial box spline translates is 
addressed in [3,4, lo] and that of their exponential counterparts is 
examined in [6, 14, 161. 

Yet another aspect of the sequence space K($) that has also merited 
attention is its dimensionality to which we now turn. The most general 
result in this connection is the following; the necessity part of this theorem 
was proved in [15] whereas the sufficiency part was obtained in [7]. 

THEOREM 1.1. Let $ be a compactly supported distribution on R”. Then 
K($) is finite dimensional if and only if N($)/2nZS is a finite set. 

Applications of Theorem 1.1 to box splines associated with integer 
matrices are also discussed in [7] as well as in [S, 91. These results are 
stated elsewhere in this article. 

The present paper has a twofold objective. First, we discuss the linear 
independence of the integer translates of B,, when 6 is a rational matrix. 
The main theorem in this regard is a sufficient condition for K(B,,) to be 
trivial. The corresponding problem for polynomial box splines was treated 
in [ 111 to which work the first part of this paper may be considered a 
sequel. The second part of the paper is motivated by [7-91 and is devoted 
to the derivation of a sufficient condition for the space K(B,,,) to have 
finite dimension. Here again, E is assumed to be a rational matrix. In either 
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case, effecting the transition between integer and rational 
the pursuance of a different tack. We are thereby led to su 
tions of the corresponding results for integer matrices as 
for these results. 

In closing this section, the author thanks Professors W. 
Jia, and C. A. Micchelli for providing him with 

and a copy of [9]. 

2. A SUFFICIENT CONDITION FOR LINEAR INDEPENDENCE 

a Let B, j, be the exponential box spline associated with 1= 
(Al, I,,, . . . . A,) E C” and an s x n real matrix P with non-zero columns 
Xl, x2, ‘..2 x,. The Fourier transform of B,, is given by (see [ 141) 

and if rank E = s, then B,, is a piecewise exponential polynomial function 
on R”. 

We first note that as a consequence of (2.1), 0 E N(Bsn) if and only if for 
each 1 E SI there exists a j, 1 6 j 6 n, such that 

lj 

%+ ( > 

&+I ‘XjEZ\(O). 

n particular, if R = 0, then 

N(BE,A)c R”. 

Given the matrix Z, we define 

B(Z) := { Y: Yis an invertible s x s submatrix of Z’), 

and for 4 E C”, 

r&q := {XjI I# *xj=?“j). 

Further, let 

O,(E) := (q5 E C”: span r,(E) = 

If 5’ is an integer matrix, then the linear independence of the integer 
translates of B,, is characterized by the following theorem [16, 
Theorem 4.3; 6, Corollary 4.11. 
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THEOREM 2.1. Let E be an s x n integer matrix with rank s and non-zero 
columns and let A = (A,, I,, ,,., A.,) EC”. Then the integer translates of B,, 
are linearly independent if and only if the following hold: 

(a) ldet Yl = 1 for all YE&~(E); 
(b) 8,,(-id)#Ofor allq5EOn(E). 

Remark 2.2. By (2.1), B,,( -iq5) # 0 if and only if 

i$--i&.xk#Z\{O}, k = 1, 2, . . . . n. (2.4) 

Remark 2.3. (i) If ill R”, then O,(E) E R”; so BE,n( -iq5) # 0 for 
q5 E O,(5). 

(ii) If IZ =s = rank E, then O,(E) = {$} is a singleton set and 
&A( -i(J) = 1. 

As indicated in the previous section, a necessary and sufficient condition 
for the linear independence of the integer translates of B,, is that the set 
N(B,,) be empty. In view of (2.2), this is tantamount to requiring for each 
9 E C”, an I E Z” such that 

for all k = 1, 2, . . . . n. (2.5) 

Turning to our main results of this section, let us begin with the 
univariate case (s = 1). 

THEOREM 2.4. Let S be a 1 x n rational matrix with non-zero entries 
Xl, x2, . . . . x,. Let A = (A,, A,, . . . . A,) E C” and suppose that 

(a) Xk=l/qk, qkEZ\{o}for allk; 

(b) B,,( - z$) # 0 for all q5 E O,(E). 

Then the integer translates of B,, are linearly independent. 

Proof: Let 8 = 27c(ct + $) E C be given and suppose that 1, = 
2x((rk + itk). By (2.5), it suffices to find an I E Z such that 

k = 1, 2, . . . . n. (2.6) 

Assume, without loss of generality, 

P 
ak+G=oy k = 1, 2, . . . . n. (2.7) 
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Noting that 

one can deduce from supposition (b), (2.4), and (2.7) that for each 
j = 1, 2, . ..) n, 

qjtj~qkfk,gz\(o), k = 1, 2, . . . . M. 

Wow, to prove (2.6), consider the following cases. 

Cckse I. a - qk tk +! Z for all k = 1, 2, . ..) n. 

In this case, (2.6) holds for I = 0. 

Case II. There is a j such that M - qjtj E 

If so, choose 1 = qj tj - CI and (2.6) follows from (2.8 ). 

Remark 2.5. An adaptation of the proof of [II, Theorem 2.11 shows 
that if 3 ’ is a 1 x n rational matrix with non-zero entries xk and 1”~ 
then the integer translates of BE,>, are linearly independent if and onl 

} for each k = 1,2, . . . . n. However, the next example shows 
then the conditions &,,( --id) # 0 for 4 E O,(Z) and 

Xk$z\(-n,l) f or all k do not ensure linear ~~de~e~den~e. 

EXAMPLE 2.6. Let x1=x2 = 312, A1 =2x& A, = 3zi so that O,(Z) = 
(47ri/3, 2ni). It is easy to verify that the two conditions stated above are 

. However, if 6 = 8x13 and I E Z, then 

and 

.A, ( 1 
31+ 1 

?G+ 
$,I x*=- 

2 ’ 

(2.9) 

For any IE Z, one of either (2.9) or (2.10) is a non-zero integer. 
the integer translates of B,,, are linearly dependent. 

The following example shows that even assuming condition (a), condi- 
tion (b) of Theorem 2.4 is not necessary for linear independence. (Contrast 
this with the situation for integer matrices.) 
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EXAMPLE 2.7. Let x1 = 1, x2 = 1, 1, = 0, A, = 2zi, so O,(3) = {0,2ni}. 
It is easy to check that B,,(O) = 0. Yet, we claim that the integer translates 
of BE,, are linearly independent. 

To that end, let 8=2rr(a + $)EC, CI, PER. If /?#O, or if tx is not an 
integer, then (2.5) is satisfied for I= 0. On the other hand, if fi = 0 and a 
is an integer, then (2.5) is satisfied for I= 1 - CI. Thus (2.5) is satisfied for 
all 0 E C, validating our claim. 

Remark 2.8. Suppose that 3 has rank s. If V is an invertible s x s real 
matrix and VT its transpose, then we have the following: 

(i) 4 E O,( VE) if and only if VT4 E O,(Z). 
(ii) It follows from (1.1) and (2.1) that 

B,,(x) = ldet VI BvE,,( Vx) (2.11) 

and 

(2.12) 

In particular, if I/ is a unimodular (i.e., ldet VI = 1) s x s integer matrix, then 
VZ” = Z”; so (2.11) ensures that the integer translates of B,, are linearly 
independent if and only if the integer translates of B,, are. 

THEOREM 2.9. Let B be an s x n rational matrix with rank s and non-zero 
columns x1, x2, . . . . x,. Let A = (A,, &, . . . . A,) E C” and assume that 

(a) Y-’ is an integer matrix for each YE 3?(E); 
(b) BE,n( - id) # 0 for all q4 E O,(Z). 

Then the integer translates of B,, are linearly independent. 

ProoJ The proof proceeds by induction on s and n. Theorem 2.4 covers 
the case s = 1. Assume inductively that the result is true for s - 1. 

Next, the case n = s can be dealt with as follows. Given 6’ E C”, suppose 
that 8 = 27r(a + i/3), CI, p E R”, and jlk = 2n(r7, + itk), k = 1, 2, . . . . s, with 
ok, tk E R. Solve the system of equations for I = (II, Z2, . . . . I,), 

i 1,x; = Ltk - Lx. x/J, k = 1, 2, . . . . s, 
“=l 

where La] denotes the integer part of a. Since E” is now an integer 
matrix, ZE Z” and (2.5) is satisfied for this 1. This proves the result for n = s 
so its validity may be assumed for n - 1. 

Now, let 3” be an s x n matrix. Without loss of generality, we may assume 
that there exists a YE g’(E) containing x1 as one of its columns and 
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also that the s x (n - 1) matrix with columns x2, . . . . x,, has rank S. Let 
x,=(l/m)y,, wherey,EZS and PZEZ\{O>. As in [ll, Theorem2.41, we 
follow the proof of Theorem II.2 in [13] to obtain an s x s unimo 
integer matrix V such that 

vi1 = G:, o,o, “.> 01=, Y: E Z\(O). 

Let E-:= VS and denote its columns by j?‘i, i= 1, . . . . n. Note that g is a 
rational matrix with non-zero columns and rank s; moreover, it has the 
form 

where 2: = j:/rn. Furthermore, the s x (n - I) matrix with columns zk, 
k = 2, . . . . IZ, has rank s. In view of Remark 2.8(G), it s&ices to prove t 
theorem for Bz, 1. 

If Z E S?(g), then Z = VW for some WE S?(E:“); since W- 1 and V ~’ are 
integer matrices, so is Z -‘. This shows that % satisfies condition (a) of the 
theorem. By Remark 2.8(i) and (2.12), Bz,, satisfies assumption ( 
Therefore, the induction hypotheses can be (and are) applie 
matrices of LY. 

Let Ye, r3, . . . . Y, be integers such that 1 -=c r2 < r3 < ~. . < rr d M. Note that 
if the matrix 

(2.13) 

is invertible, then the inverse, by hypothesis, is an integer matrix. There- 
fore, (.%i)-’ E Z and the inverse of the matrix 

exists and is an integer matrix. 
Now, let 19= (Q,, 02, . . . . 19,) EC” be given. We show that (2.5) holds. 

There are two possible cases. 
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Case I. 

(2.15) 

Let E’ be the s x (n - 1) submatrix of g whose columns comprise I,, k = 
2, 3, . . . . n. Then E-I satisfies condition (a). Since Bg,A satisfies (b) and 
O,(E’) c_ O,(g), one infers from (2.1) that BE,,, satisfies (b) as well. The 
induction hypothesis, applied to Bgr,n, furnishes an I = (Ii, 12, . . . . 1,) E Z” 
such that 

a 
iG+ k = 2, 3, . . . . n. (2.16) 

Further, 

as I, and (2:))’ are integers and (2.15) holds. 
This proves (2.5) in this case. 

Case II. 

01 4 g+i---EZ. 
2n.q 

Rearranging columns 2, 3, . . . . n of 2 (and the corresponding &‘s), if 
necessary, assume that for each k = 2, . . . . m, ni, # 0 for some j = 2, . . . . s and 
for each k = m + 1, . . . . n, ni, = 0 for all j = 2, . . . . s and 2; # 0. 

Consider the (s- 1) x (m - 1) submatrix ?‘of 2 whose columns are 
(22, . . . . n;)‘, k = 2, 3, . . . . m. Then 2” has non-zero columns and rank s - 1. 
If ZEB(~“), then it is of the form (2.14) and can be extended to an 
element in B(8) of the form (2.13). Consequently, Z-l is an integer 
matrix. This shows that 2” satisfies condition (a). Let p := (Pi, . . . . p,) E 
Cm- ‘, where 

pk :=a&;, k = 2, 3, . . . . m. 

If 

p = (&, . ..) (IT:> E O,(B”), 
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then there exists an (s- 1) x (s- 1) matrix in g(E”) with columns 
cx;, ..‘> Z;,JT, J = 2, 3, . . . . s, such that 

v~2$::Z~,=pr,, j=2, 3, . . ..s. (2.19) 

&q=al. (2.20) 

Since the s x s matrix with columns (ZT,)j,= i (rl := !) belongs to L@(g), 
(2.18), (2.19), and (2.20) imply that FG O,(E) and so B$,b\--i 
fore, from (2.4) and (2.18), BzPj,,( -z$“) #O, showing that 
condition (b). By the induction hypothesis applied to B,Z.,,P, 
an (12, . . . . I,) E Z”-’ such that 

iE+ i “=2 $+I, Tw\P)s 
( 1 

k = 2, 3, . ..) In. g2.21) 

Let 1, = - (Q1/27c) - i(.L,/2G:) so that 1 := (II f I,, .,~, I,) E 

4 i-+ 
271. ( > 

;+1 .I,=O, 

and from (2.18) and (2.21), 

.Ak , 
%+ 2 > &+z ~~kW\(O), k = 2, 3, . ..) I??. 

Now, for k = r~ + 1, . . . . n, note that 

and 

Choose p E O;.(g) so that 

/9.z1=a,. 

As Bs,,( - ip) # 0, it follows from (2.4), (2.24), and (2.26) that 

.a, . Al 
z~-iR.i:~~~Z\{O}i k=nz+l,..., n. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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From (2.27), (2.25), (2.23), and (2.22), we conclude that (2.5) holds once 
again and this completes the proof. 

Remark 2.10. In comparing Theorem 2.9 with Theorem 2.1, note that if 
E is an integer matrix and YE B(8), then Y -’ is an integer matrix if and 
only if ldet YI = 1. 

Remark 2.11. In general, condition (a) of Theorem 2.9 is not necessary 
for linear independence. As a simple example, consider 

E”= 3/2 O 
( > 0 1’ 

I = 0. 

Obviously, Z-’ is not an integer matrix but for any 8 = (or, 0,) E R2, 
0 < tii< 27c, there is an (11, 0) E Z2 such that (2.5) holds. This shows (by 
(2.3)) that N(B,)/2nZ2 and hence N(B,) is an empty set. That is, the 
integer translates of B, are linearly independent. (For more discussion in 
this regard, see [ll, Section 31.) 

Remark 2.12. If A E R”, then Remark 2.3(i) and Theorem 2.9 show that 
the integer translates of B,, are linearly independent provided Y -’ is an 
integer matrix for every YE B(E). In particular, if 2 = 0, then one recovers 
[ 11, Theorem 2.41. 

Remark 2.13. In view of what is to follow in Section 4, we wish to 
reformulate condition (b) given in Theorems 2.1 and 2.9. Let B,, be the 
exponential box spline associated with an s x 12 matrix E and I E C”. Sup- 
pose that Y is an s x k submatrix of 3. We denote by i, the vector in Ck 
whose components are those S’s corresponding to the columns of Y. We 
employ the notation y E Y to denote that y is a column of Y and use (E\Y) 
to denote the s x (n-k) submatrix of Z whose columns consist of those 
r E Z which are not columns of Y. It must be noted that Y and (Z\ Y) can 
have columns in common. Further, we let 

(Y):= Ca,y:a,ER,yEY 

With this notation in place, it is not hard to see using (2.4) that the 
aforesaid condition (b) is in fact equivalent to the following: 

(b’) Let Y be any e2emen.t in ST(E). For 5 E (E\Y), 
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3. ON A PROPERTY OF MATRICES 

We commence this section by recalling a definition from [7]. 

DEFINITION 3.1. An s x n integer matrix is called weakly ~~irnodu~~r if 
for each s x k (k < s - 1) submatrix W of B with full rank (i.e., the co~~rn~s 
of W are linearly independent), the greatest common divisor (g.c. 
its k x k minors is 1. 

The following proposition is stated in [7, Remark 1.11. We include a 
proof here for the sake of completeness. 

PROPOSITION 3.2. Let E be an s x n integer matrix. Then Z is weak13 
unimodular if and only if every s x k (k < s - 1) submatrix of Z with fur! rank 
can be completed to an s x s unimodular integer matrix. 

ProoJ To show sufficiency, let W be any s x k (k < s - I) submatrix of 
Z with full rank. Then there exists an s x (s-k) integer matrix W, SU& 
that the completed matrix @= [ WW,] is unimodular. ~xpa~~~ng det - 
( = + 1) with respect to the k x k minors of W9 we conclude that the g.c.d. 
of all these minors is 1. 

The reverse implication is a consequence of the more general fact (see 
f 13, p. 3131) that any s x k (k d s - 1) integer matrix W with full rank can 
be completed to an s x s integer matrix the absolute value of whose deter- 
minant equals that of the greatest common divisor of ah the k x k minors 
of w. 

otivated by Definition 3.1 and Proposition 3.2, we intro 
following 

DEFINITION 3.3. An s x n rational matrix ;” is said to have property 8 
(extendibility) if every s x k (k < s - 1) submatrix W of Z with full rank can 
be completed to an invertible s x s rational matrix whose inverse has only 
integer entries. (Note that it actually sufftces to check the exte~~~~~~~ty 
criterion only for k = min(s - 1, rank El.) 

Remark 3.4. If V is a unimodular s x s integer matrix, then it is not 
hard to see that .E? has property &’ if and only if VS has the same property. 

We now show that property & is an appropriate extension of the notion 
of weak unimodularity to rational matrices. 

PROPOSITION 3.5. Let Z be an s x n integer matrix. Then B has property 
d if and only if it is weakly unimodular. 
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ProoJ: If d - is weakly unimodular, then it has property 6’ by Proposi- 
tion 3.2 (since the inverse of any unimodular integer matrix is again an 
integer matrix). As to the converse, suppose that E has property d and that 
Wis an sxk (kds- 1) submatrix of B with full rank. Then there exists an 
s x (s - k) rational matrix W, such that the inverse of the completed matrix 
IV= [ WW1] is an integer matrix. Since 

UT-’ CWWll =I,, 

the s x s identity matrix, it follows from the Cauchy-Binet theorem (see for 
instance [13, p. 251) that there exist integers Lj (which are in fact minors 
of (@‘) -‘) such that C Ajmj = 1, where (m,} is the set of all k x k minors 
of W. This shows that g.c.d. (mj) = 1; i.e., 6 is weakly unimodular. 1 

We observe in passing that every 1 x n rational matrix possesses property 
8 (vacuously); the following result characterizes property & when s = 2. 

EXPOSITION 3.6. Let E be a 2 x n rational matrix with non-zero cohonns 
Xl 3 . . . . x,. Let xi = l/qi(p:, ~f)~, i= 1,2, . . . . n, where p,‘, pf, qiE Z. Then 2 
has property 8 if and only iffor each i, 1 d i< n, g.c.d. (pi, pf) divides qi. 

ProoJ: Suppose E has property &. Then each column xi can be com- 
pleted to a 2 x 2 rational matrix whose inverse is an integer matrix. Conse- 
quently, there exist integers a,l, uf such that ai pi + a; pf = qi; ergo, g.c.d. 
(p,‘, pf) divides qi. 

On the other hand, suppose that g.c.d.(pf, pf) divides qi and choose 
b!, bf E Z such that p,‘bf - pfb! = g.c.d.(p!, pf). Then the matrix 

is a completion of xi and its inverse has only integer entries. This being true 
for every i, 1 < i < n, we conclude that 8 has property 8. 1 

In general, if W is an s x k (k < s - 1) rational matrix of full rank, then 
W= (l/q(W)) W’, where q(W) E Z\{ 0} and IV’ is an s x k integer matrix of 
full rank. As noted earlier, IV’ can be completed to an s x s integer matrix 
p such that ldet WI = d,J IV’) := g.c.d. (k x k minors of IV’). So an s x n 
rational matrix E has property & if for each s x k (k < s - 1) submatrix W 
of E with full rank, dk( IV’) divides q(W). (If so, the matrix WI= 
(l/q(W)) p is a completion of W and (@‘)’ has only integer entries.) 

We end this section with a simple result which is used later. 
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I~RO~OSITION 3.7. Let A be an s x n ratiolzal matrix with BoyI-zero 
columns and of the form 

Define A, to be the s x (n - 1) submatrix of A whose columns comprise 
(a;, ..~) a;)T, j= 2, 3, . . . . n, and let A, be the (s- 1) x (n - 1) submatrix of A 
with columns (a;, . ..) a;)=, j = 2, 3, . . . . n. Assume that A has property 8. T.en 

(i) A, and A, both have property 8; 
(ii) (ai1-l EZ. 

PPOO~ (i) That A, has property 6 is quite evident. Turning to A,, let 
be any (s - 1) x k (k d s - 2) submatrix of A2 with full rank, say, 

The s x (k+ 1) matrix W, with columns (a:, 0, . ..) Q)T, (a$ . . . . a:,)‘, j= 
1 , . . . . k has full rank and since A has property 6, W, can be completed to 
an s x s rational matrix wO whose inverse is an integer matrix. Let 

i 

1 
a1 a:, ... aik b: ... hj-,_, 
0 a2 ... a2 6: ... bf_,_, 

iv0 = . I’ . . I” . . . . . . : : 
\ 0 a:, ... as, b; ... 

Then the (s- 1) x (s- 1) matrix @‘with columns (a:,, . . . . a:,)Tlj= 1, 2, . ..> k, 
(b;, . . . . bj)T, j= 1, 2, . . . . s-k - 1, is invertible and its inverse has only 
integer entries. This shows that A, has property 8. 

(ii) There exists an s x s rational matrix Y with first column 
(a:, 0, . . . . 0)’ and whose inverse is an integer matrix. It follows that 

4. UPON THE DIMENSIONALITY QF K( 

Having discussed, in Section 2, conditions under which the spat 
is trivial, we now take up the question of its finite dimensionahty. 
result in this direction was established for polynomial box splines in [S 
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where a necessary and sufficient condition for the finite dimensionality of 
K(B,) was obtained subject to the proviso that 2 is an integer matrix with 
ranks. (The sufficiency part is contained in Theorem 4.2 of that paper 
whereas the necessity is implicit in the remarks following Example 4.1.) In 
essence, this theorem can be stated as follows [7]: 

THEOREM 4.1. Let B be an s x n integer matrix with rank s and non-zero 
columns. Then K(B,) is finite dimensional if and only if 9 is weakly 
unimodular. 

An analogous theorem for exponential box splines, announced in [8], 
states that for ;1 E C” and E as in Theorem 4.1, K(BE,A) is finite dimensional 
provided D - is weakly unimodular. However, this result is true only if 2 E R” 
but not otherwise. As an example, let 

z = 1 1 0 ( ) 0 0 1 

and 2 = (27r( 1 + 2i), 2n( 1 + i), 0). Clearly ,Z is weakly unimodular (in fact B 
is unimodular, i.e., ldet YI = 1 for every YE B(E)) and has rank 2. None- 
theless, one can show that for any 8, EC, (-2ni, %,) belongs to N(B,,,). 
This shows, via Theorem 1.1, that K(B,,,) is infinite dimensional. Subse- 
quent to our communicating this to the authors of [S], we have received 
from them a corrected version of the said result [9]. It is included here 
(Theorem 4.3) upon their request and with their gracious permission. 

The next result serves as prelude to what follows. For polynomial box 
splines, one direction of its proof is implicit in the remarks following [5, 
Example 4.11 whereas the other direction is contained in the proof of [IS, 
Theorem 4.21 and also in that of [7, Theorem 1.11. The appropriate 
modifications needed to carry the proof over to exponential box splines can 
be made with ease because the aforementioned arguments rely on certain 
common features shared by both polynomial and exponential box splines 
associated with integer matrices. Such details are therefore omitted. 

The notation used in the sequel is in keeping with that introduced in 
Remark 2.13. 

THEOREM 4.2. Let E be an s x n integer matrix with ranks and non-zero 
columns and suppose that A E C” is given. Then K(B,,,) is finite dimensional 
if and only if for each s x k submatrix Y of E with rank Y < s, the translates 
{4&-j): jsZ”> are ‘linearly independent. 

The following theorem is proved in [9]. (Compare condition (b) below 
with condition (b’) set out in Remark 2.13.) 
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THEQREM 4.3. Let .F be an s x n integer matrix with yEoH-zero columns 
x1, . . . . x, and rank s. Suppose that .I = (AI, . . . . A,) E C” is given. Then K( 
is finite dimensional if and only if the following conditions hold: 

(3) 6 is weakly unimodular; 

(b) Let Y be any s x (s- 1) submatrix of .I? with full rank (i.e., the 
columns of Y are linearly independent). For t E (8\Y) r\ ( Y), 

[= C a,y*A<- C a,A,$XZ\{Q). 
YE y ,VE Y 

Proof. The necessity of weak unimodularity is proved in 18, 
Theorem 3.11. The necessity of condition (b) is proved in [9] as follows. 

Let Y be any s x (s - 1) submatrix of E with linearly in 
columns xrl, . ..) xrs-, . Choose f3 E CS such that 

ix,, .tl- 2,, = 0, k= 1, . . . . s- 1. (4.1) 

y Theorem 4.2, the translates (By, n,( . - j) : j E are linearly inde- 
pendent and so (2.5) warrants the existence of an ’ such that 

ix,.(e+271E)--“~~271iZ\{O), j = I, . ..) n. (4.2) 

Since ix,, .2&~2~iZ, (4.1) and (4.2) imply that 

Xrk .1= 0, k = 1, . . . . s - 1. (4.3) 

Now, let t E (Z\Y) A ( Y) with 

r-1 

t= 1 akxrk, 

k=l 
(4.4) 

Then, using (4.1), (4.3), and (4.4), we have 

s -- 1 s-l 

is- C a,A,=A5- C ia,x,;(B+2~1) 
k=l k=l 

= I., - it. (% + 2ni). 

From (4.5) and (4.2), we conclude that 

(4.5) 

as desired. 
The proof of the sufficiency part, as detailed in [9], relies on the suf- 

ficiency part of Theorem 4.2; we do not reproduce this argument 
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Instead, we deduce the desired result from Proposition 3.5 and the 
forthcoming Theorem 4.7. The proof of the latter does not involve 
Theorem 4.2. 

Remark 4.4. If B is any s x n matrix and II E C”, then B,, satisfies con- 
dition (b) of Theorem 4.3 if and only if B,, satisfies the same condition 
for any s x s invertible matrix I’. 

Also in connection with condition (b), the following observation is made 
in [9]. Suppose that B is an s x IZ real matrix and Y an s x k submatrix of 
8 with linearly independent columns, x,,, j= 1, . . . . k. Assume that 

5 = (51, . ..) 5”) E (E\ Y) n ( Y) 

with 

5 = i ajx,,. 
j=l 

Then there exists a non-singular k x k submatrix Y’ of Y with columns say, 
(x$ . . . . x:)~, j= 1, . . . . k, such that 

1 UjXt = t’p, p = 1, . . . . k. 
i=l 

Defining 

it is not hard to see that 

AC-- 2 aj*,=g. 
j=l 

This provides a readily computable method for checking condition (b). 

Turning now to rational matrices, we begin with the one-dimensional 
case. The following theorem is a special case of [15, Corollary 2.4(a)] but 
we provide a self-contained proof for the sake of completeness. 

THEOREM 4.5. Let E be a 1 x n rational matrix with non-zero columns 
Xl 2 . . . . x, and let A = (A,, . . . . A,) E C”. Then K(B,,) is always finite dimen- 
sional. 
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ProoJ In view of Theorem 1.1, it suffices to show that t 

S:={o=2~(u+iB)EN(B~,i.):a,PER,0~cr<1) 

is finite. We let xk = pk/qk, k = 1, . . . . n, where pk, and pk > 0. Let us 
suppose that A,= 27c(a,+ itk), k= 1, . . . . N, Go, t,E d define 

R .= j+tkqk 
k. 

i 
--:jEZ,-tkqk~j<Pk-Ikqk 

Pk 

Further, let 

‘93 := u Rk 
k=I 

and 

Now let 0 = 27c(a + ip) E S. By (2.2), there exists a k, 1 d k <n, such lhal 

It follows that 

0 +BPk=o k 
qk 

and 

upk-tkqkEZ. 

From (4.6) (4.7), and the fact that 0 d LX < 1, we conclude that 

UE% and pE3. 

This finishes the proof because both ‘% and 3 are finite sets. 

Remark 4.6. If V is a unimodular s x s integer matrix, then so is V ~ I. 
Therefore, by (2.1 l), the sequence (a( j))jE zs E K(B, j.) if and only if 
(a(v-ii))jcZs EK(B,,~,~). Consequently, either one of these spaces is finite 
dimensional precisely when the other is. 

We now pass to higher dimensions. The following is an improved version 
of our earlier result in this direction, thanks to condition (b) of 
Theorem 4.3 whose use was suggested by [9]. In what follows, if 4 = 
(4r, &, . . . . ds)~C”, then P(d) will denote its projection (42, . . . . 4,)~ 



112 N. SIVAKUMAR 

THEOREM 4.7. Let 9 be an s x n rational matrix with non-zero columns 
x1, . . . . x, and rank s. Let A= (A,, . . . . A,,) EC” be given and suppose that the 
following two conditions hold: 

(4 B has property &; 
(b) Let Y be any s x (s- 1) submatrix of E with full rank. For 

SE(E\Y)n (Y>, 

5= C a,y*A.<- C a,l,$27GZ\(O}. 
YE y YEY 

Then K(B,,) is finite dimensional. 

Proof. We use induction on s and n. Theorem 4.5 covers the case s = 1. 
We may therefore assume the validity of the result for s - 1. 

Now for the case n = s. It may be assumed that 8 is of the form 

x; x; ... 4 
z zz 0’ x; ... x; 

l :I. 

. . . . . . : . . . . 
0 x; ... xz 

(Otherwise, we can find a unimodular s x s integer matrix V such that VZ 
has the form above. This matrix also satisfies conditions (a) (Remark 3.4) 
and (b) (Remark 4.4) and it suffices to prove that K(B,,) is finite dimen- 
sional (Remark 4.6).) 

Note that Proposition 3.7(ii) guarantees that 

(x:)-l EZ. (4.8) 

We need to show (by Theorem 1.1) that N(BS,)/2~Z” is a finite set. Let 
e = (e,, . . . . 0,) E N(B,,,), 0, = 27r(aj + ibj), aj, fij E R, and 0 < 01~ < 1. Also 
suppose that 2, = 27c(a, + itk), ck, t, E R, k = 1, . . . . s. 

Let 8’ be the s x (s - 1) matrix with columns xk, k = 2, . . . . s, and 
1’ := P(A). Since E has property &, there exists z = (z’, . . . . z’) E R” such that 
the s x s matrix 8’ with columns xk, k = 2, . . . . s, z (in that order), has an 
inverse all of whose entries are integers. Defining 1’ := (A,, . . . . A,, 0), it 
follows from Remark 2.3(ii) and Theorem 2.9 that N(BE,,~,) is empty. As 
N(B,,,,.) E N(B,I,,T) and f3 E N(B,,), there exists a d = (d,, . . . . d,) E Z” such 
that 

.A zG+ (4.9) 

Therefore, 

o,+Blx:=o (4.10) 
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and since (xi))’ and d, are integers, 

t1 ai-yEZ. 
Xl 

Conditions (4.10), (4.11), and the fact that 0 < @I < 1 fix 0, uniquely. 
note that (4.8) and (4.9) imply 

4 0, is+-EZ. 
1 271 

Now, let 3” be the (s - 1) x (S - 1) submatrix of 5’ with non-zero columns 
P(Xk), k = 2, . ..) S, and rank S- 1. Define ,n := (p*, ~.., pcl,) EC?‘, where 

I*k :=i,-$x:; k = 2, . . . . s. 

The matrix E” has property & by Proposition 3.7(i) and 
condition (b) vacuously because E” has rank s - 1. Let (E 
and set 

4 6 1, I= -i--- 
2rcx; 27c’ 

For I= (I,, E,, .D., 2,) E Z”, there is a k (by (2.2)) such that 1 d k < s am3 

& 
?2- (4.14) 

choice of I,, 2 Q k<,ss; thus, from (4.14), (4.13), and the fact that lz9 . . . . J, 
arbitrary, we conclude that 

p(e) E N(B,.,,)/~~z~- 1 

which set, by the induction hypothesis, is finite. 
This completes the proof for the case n =s. Assume now that t 

theorem is true for IE - 1. 
Although the proof of the general case is quite similar to that of the 

previous one, there are some notable differences that ought to be dealt with 
in some detail. 

To proceed, we may assume once again that B is of the form 

x; x; .~’ xt, 

0 x; .” x; 
. . . . . . : 
. . . . 

0 x; ... x; 
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with (xj))’ EZ. We may also assume that the sx (n- 1) matrix with 
columns xk, k = 2, . . . . n, has rank s. By rearranging, if need be, columns 2 
through n (and the corresponding 1,‘s) we may assume that for each k= 
2 9 . ..> m, P(xR) # 0 whereas for k = m + 1, . . . . n, P(xJ = 0. We designate 0”’ 
to be the s x (n - 1) submatrix of E with columns xk, k = 2, . . . . n, and ;2’ = 
(A 2, . . . . 1,). Note that Z’ has property 8 (Proposition 3.7(ii)) and BE,,,, 
satisfies condition (b) because B,, does. By the induction hypothesis 
applied to BGs,E,s, it suffices to show that the set (N(BE,,)\N(B,r,,r))/2nZS 
is finite. If 0 = (e,, . . . . 19,) belongs to this set, then there must be a 
d= (d,, . ..) d,) E Z” for which (4.9) holds. Once again this fixes 8, uniquely 
and (4.12) holds as well. Choosing integers I,, . . . . I, arbitrarily and I1 as 
before, we conclude that (4.14) holds for some k, 2 d k < n. Suppose now 
that k E {m + 1, . . . . n}. We can tind an s x (s - 1) submatrix Y of 8 with full 
rank and whose first column is xi. Clearly, 

x,E(E\Y)n (Y) and 4 xk=-ixl. (4.15) 
Xl 

Further, 

1 
i<+ ( > 

4 $,/ .x,=i$-i-x’ 
27cx: k’ 

(4.16) 

From (4.15), condition (b), and (4.16), we conclude that (4.14) does not 
hold for any ke {m+ 1, . . . . n>. It must therefore hold for some 
kE (2, . . . . m>. 

We now pass to the (s - 1) x (m - 1) matrix 9” whose columns comprise 
P(xk), k = 2, . . . . m, and define p := (p2, . . . . pm) E Cm-‘, where & is given by 
(4.13) for each k = 2, . . . . m. The preceding arguments have in effect shown 
that 

P(B) E N(B,.,,)/2nZ”- ‘. 

In order to apply the induction hypothesis to Bzrr,w and thereby complete 
the proof, it remains to demonstrate that BEsr,p satisfies the conditions of 
the theorem. 

To that end, we first note that 3” has non-zero columns and rank s - 1 
and it satisfies condition (a) by Proposition 3.7(i). As for condition (b), let 
Y” be an (s - 1) x (s - 2) submatrix of 2” with linearly independent 
columns P(x,,), k = 2, . . . . s- 1. Assume that P(t) E (Z”\Y”) n (Y”), 5 = 
(t’, . . . . 5”) E Z, and 

s-l 

p(t)= 1 akP(x,). 
k=2 

(4.17) 
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Define r1 := 1 and find a, E R such that 

S-1 

c 
k=l 

(4.18) 

The s x (s - 1) submatrix Y of E with columns x,~, k = I, . . . . s - 1, is of full 
rank and it is clear that 4 E (E\Y). Further, it follows from (4,17) and 
(4.18) that 

J-1 

t= c akXrk. 

k=l 

(4.19) 

Since B,), satisfies condition (b), (4.19) implies that 

s-l 

(4.20) 

From (4.13) and (4.18) it is easy to see that 

s-1 s-l 

pP(<)- 1 akiurk=a,- 
k=2 k=l 

(4.21) 

Thus (4.21) and (4.20) show that B,.,, satisfies condition (b) and this co 
pletes the proof. 1 

As promised earlier, the preceding theorem, taken in conjunction with 
Proposition 3.5, completes the sufficiency part of Theorem 4.3. We also 
note that condition (b) of Theorem 4.7 is met automatically if 3, E 
leads us to 

COROLLARY 4.8. Let Z be an s x n rational matrix with non-zero columns 
and rank s. Suppose that 1” ER" is given. Then M(B,,) has finite dirn~~§~o~ 
provided E has property &. 

Corollary 4.8 and Proposition 3.5 clearly serve to exten 
part of Theorem 4.1 to rational matrices. 

Remark 4.9. Condition (a) of Theorem 4.7 is not necessary for finite 
dimensionality unless E is an integer matrix. Take, for example, 8 to e 
matrix given in Remark 2.11 and let d = 0. Then K(B,,,) is trivial, a 
fortiori, finite dimensional. However, Proposition 3.6 shows that Z’ does not 
have property d. Of course, if Z? is an integer matrix, then the necessity of 
property d follows from Theorem 4.3 and Proposition 3.5. 
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5. AN APPLICATION 

Throughout this final section, we assume that E is an s x n integer matrix 
and A= 0. If LZ! is a (perhaps proper) submodule of the Z-module Z”, then 
we define the sequence space 

K&g@=):= a:d+C: 1 a(k)B,(.-kk)=O 
ksd 

If d is a proper submodule of Z”, then it is clear from the definition 
above that any sequence in K,(B,) can be canonically extended to one in 
K(B,) simply by assigning the value zero at those lattice points in Z’\d. 
So if K(B=) is finite dimensional, then so too is K,(B,). Nonetheless, it is 
quite conceivable that for a properly chosen submodule d, the space 
K,(B,) has finite dimension while K(B,-) itself may be infinite dimensional. 
This next result helps identify such submodules. (Compare [ 11, 
Corollary 2.61.) 

PROPOSITION 5.1. Let E be an s x n integer matrix with rank s and non- 
zero columns. Let d := AZ”, where A is an invertible s x s integer matrix. 
Assume that each s x k (k < s - 1) submatrix W of E with fill rank can be 
completed to an s x s integer matrix @ such that d c mZs. Then K,(B,) 
is finite dimensional. 

ProoJ: Defining %’ := A- ‘3, it is not hard to see, using (2.11), that 
K,(BE) is finite dimensional if and only if K(BEf) is. Evidently 2”’ is a 
rational matrix and if W’ is any s x k submatrix of 8”’ with full rank, then 
w’= A-‘W for some s x k submatrix W of 8 with full rank. By our 
premise, W can be completed to an s x s integer matrix @‘such that AZ” E 
FZ’; i.e., there is an s x s integer matrix Q such that A = WQ. Now 
m = A-’ p is a completion of w’ and ( @‘- ’ = Q, an integer matrix. This 
shows that 8’ has property d and the desired result follows from 
Corollary 4.8. 1 

Observe that if & = Z”, then the assumption in the last proposition, in 
view of Proposition 3.2, is equivalent to weak unimodularity of E and 
thereby to the finite dimensionality of K,(B,) ( = K(B,)). 

EXAMPLE 5.2. Let 

.d := AZ2. 
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As L? is not weakly unimodular, K(B,) is infinite dimensional. However 
K,(BZ) has finite dimension. This can be seen from Proposition 5.1 or by 
noting that 

has property 8 (Proposition 3.6). 
Also note that for the submatrix 

0 3 
Y:= ( > 1 -1 

of E’, jdet Yl = 3 and so the integer translates of B, are linearly dependent 
[3, Proposition 4 or Theorem 2.11. Thus N(B,) is non-empty and therefore 
N(B,,) (zN(B,)) is non-void as well. This shows that K(B,-,,) and hence 
K,,(B,) is non-trivial. 

Emendatory efforts on the part of Professors S. Riemenschneider, R. Q. Jia, A. Ron, and 
the referee are acknowledged and appreciated. 
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