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We use a reflection argument, introduced by Gessel and Zeilberger, to count the
number of k-step walks between two points which stay within a chamber of a Weyl
group. We apply this technique to walks in the alcoves of the classical affine Weyl
groups. In all cases, we get determinant formulas for the number of k-step walks.
One important example is the region m > x1 > x2 > · · · > xn > 0, which is a rescaled
alcove of the affine Weyl group C̃n. If each coordinate is considered to be an inde-
pendent particle, this models n non-colliding random walks on the interval (0, m).
Another case models n non-colliding random walks on a circle. © 2001 Elsevier Science
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1. INTRODUCTION

The ballot problem, a classical problem in random walks, asks how many
ways there are to walk from the origin to a point (l1, ..., ln), taking k unit-
length steps in the positive coordinate directions while staying in the region
x1 \ x2 \ · · · \ xn. The solution is known and leads to the hook-length
formula for Young tableaux; a combinatorial proof, using a reflection
argument, is given in [17, 19].
The same reflection argument has also been applied to the case of n
independent diffusions, or n discrete processes which cannot pass each
other without first colliding. Using this method, Karlin and McGregor
[13, 12] give a determinant formula for the probability or measure for
the n particles, starting at known positions, not to have collided up to time
t and to be in given positions. Hobson and Werner [10] generalize this
argument to n independent Brownian motions in an interval or on a circle.



Gessel and Zeilberger [6], and independently Biane [1], consider a more
general question, for which some of the same techniques apply. For certain
‘‘reflectable’’ walk-types, we can count the number of k-step walks between
two points of a lattice, staying within a Weyl chamber. The argument
generalizes naturally to ‘‘reflectable’’ diffusions [7]; we can compute the
density function for the diffusion started at a point g to stay within
the Weyl chamber up to time t and be at a point l.
Grabiner and Magyar [8] classify all reflectable random walks for finite
Weyl groups, and compute determinant formulas for many important
cases, including walks with steps ±ei or with steps ±

1
2 e1± · · · ±

1
2 en in all

of the classical Weyl groups.
We prove analogous results for the alcoves of affine Weyl groups. In
contrast to the chambers of classical Weyl groups, these are bounded
regions, such as m > x1 > · · · > xn > 0. The reflectable random walks for
the affine Weyl groups are the same as for the corresponding classical Weyl
groups. We use these reflection arguments to find determinant formulas for
the number of walks of length k which stay within the alcoves of the clas-
sical affine Weyl groups. We then simplify the determinant of infinite sums
to get a determinant of finite sums of sines and cosines or of exponentials
of cosines, depending on the random walk.
Many results are known in the Ãn−1 cases, in which the region in R2 is
x1 > x2 > · · · > xn > x1−m. The Ã1 case (or equivalently B̃1, region
m > x > 0) is a single random walk on an interval. This is the classical
gambler’s ruin problem; gamblers with initial stakes of g and N−g chips
bet one chip at a time until one is broke. The probability that the gambler
who started with g will first go broke after k bets is

1
N

C
N−1

r=1
cosk−1(pr/N) sin(pr/N) sin(pgr/N). (1)

This formula goes back to Lagrange [3, p. 353]. Similar calculations show
that the probability that the gambler who started with g will have l left
after k bets, with neither player going broke, is

2
N

C
N−1

r=1
cosk(pr/N) sin(plr/N) sin(pgr/N). (2)

The reflection principle was applied to this problem by Grossman [9].
A q-analogue of this formula was computed by Krattenthaler and
Mohanty [15].
The n-dimensional case, with steps only in the positive coordinate
directions, was solved by Filaseta [4], and a q-analogue was proved by
a reflection argument by Krattenthaler [14]. This case can be viewed as
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a variation of the n-candidate ballot problem: how many ways are there to
arrange the ballots so that the candidates stay in order, with the difference
between the first-place and last-place candidates also limited? (In the ballot
problem, equal coordinates are allowed, but we can translate the start and
end by (n−1, n−2, ..., 0) to make the inequalities strict.)
Our most important case is the model of n non-colliding particles in
discrete random walks in the interval (0, m). Equivalently, we can consider
a single random walk in n dimensions in the region m > x1 > · · · > xn > 0,
with each coordinate of the n-dimensional walk corresponding to one of
the n particles, and permitted steps in the positive and negative coordinate
directions. We then simplify the determinant of infinite sums, computing
the exponential generating function in the number of steps. This gives the
number of walks for one particle to go from g to l while staying in this
region, or for n particles to go from gi to li while staying in the interval
(0, m) and not colliding. The exponential generating function is

ggl(x)=det
n×n

: 1
2m

C
2m−1

r=0
2 sin(pr(lj)/m) sin(pr(gi)/m) exp(2x cos(pr/m)) : .

(3)

Using a reflection argument of Gessel and Krattenthaler [5] which uses
the methods of [10, 13], we can also give a formula for the model of n
independent discrete random walks on the circle. As a one-particle model,
this is a variation of the affine Weyl group Ãn−1 counting walks to multiple
destinations in Rn which become equivalent when projected the circle.

2. REFLECTABLE RANDOMWALKS

A walk-type is defined by a lattice L, a set S of allowable steps between
lattice points, and a region C to which the walks are confined. Without
affecting the walk problems, we may restrict L and C to the linear span of
S, so that L, S, and C have the same linear span.
We will assume C is a Weyl chamber of a finite Weyl group W, or an
alcove of an affine Weyl group. The following definitions and results are
given in [11].
For a finite Weyl group, we have L, S, C … Rn; C is defined by a system
of simple roots D … Rn as

C={x ¥ Rn | (a, x) \ 0 for all a ¥ D}; (4)
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the orthogonal reflections ra: x W x− 2(a, x)(a, a) a preserve L and S for all a in D;
and the ra generate a finite group W of linear transformations, the Weyl
group.
The full root system F consists of the images of all roots under W; these
roots come in pairs, and we can take the system F+ of positive roots to be
the set of all roots which are positive linear combinations of the simple
roots; this includes one root from each pair. The hyperplanes orthogonal to
the positive roots are all reflections in W, and they partition the space into
|W| disjoint Weyl chambers.
For any root a, the corresponding coroot is 2a/(a, a). The corresponding
affine Weyl group W̃ is the semidirect product of W and the translation
group of the coroot lattice; that is, it is generated by reflections

ra, k: x W x−
2(a, x)−k
(a, a)

a

for all roots a and all integers k. Again, the group W̃ contains the reflec-
tions ra, k not only for simple a but for all a, and these hyperplanes of
reflection partition space into alcoves. The alcoves are the regions bounded
by |F+| simultaneous inequalities ka < (l, a) < ka+1, as a runs over all
roots in F+, for ka in Z. The principal alcove A is bounded by the inequa-
lities 0 < (l, a) < 1 for all positive roots a; this can be shown to be
non-empty.

Example. Let W be the symmetric group Sn permuting the n coordi-
nates in Rn; this is generated by reflections in the simple roots
D={ei−ei+1, 1 [ i [ n−1} (where ei is the ith coordinate vector), which
gives Weyl chamber x1 > x2 > · · · > xn. The positive roots are ei−ej for
i < j; their hyperplanes xi=xj give n! Weyl chambers, one for each permu-
tation of the coordinates. The corresponding affine Weyl group contains a
reflection in the hyperplane xi−xj=k for any integer k; the principal
alcove is thus x1 > x2 > · · · > xn > x1−1. (While this alcove is unbounded,
W really acts only on the subspace in which ; xi=0, and the alcove is
bounded in that subspace.)
We would like to classify those Weyl chambers and alcoves which allow
us to reflect a walk from the point at which it hits a wall. The definition of
a reflectable walk from [8] generalizes easily to the affine case.

Definition. A walk-type (L, S, C) is reflectable with respect to the
finite or affine Weyl group W if the steps S are symmetric under the finite
Weyl group, and the following equivalent conditions hold:
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(1) Any step s ¥ S from any lattice point in the interior of C will not
exit C.
(2) For each simple root ai, there is a real number ki such that

(ai, s)=±ki or 0 for all steps s ¥ S; (ai, l) is an integer multiple of ki for
all l ¥ L; and if C is an alcove of an affine Weyl group, then 1/ki must be
an integer.

To see that these conditions are equivalent, note that if aj is any root which
is symmetric to ai, then kj=ki. Thus the second condition guarantees than
L contains only points whose dot-product with aj is an integer multiple of
kj, and a single step can change the dot product 0 or ±kj. Therefore, the
walk cannot go from one side of the wall (aj, l)=0 to the other without
stopping on a wall. Likewise, since each alcove wall is the set of points with
(aj, l)=m for some m, and m is a multiple of kj, the walk cannot go from
one side to the other in a single step.

Example. In the example above, in which W is the symmetric group,
the steps ±ei/t on L=Zn give a reflectable random walk, with each
ki=1/t. This is reflectable for the affine alcove as well provided that t is an
integer.
By a similar argument, all of the reflectable random walks on the finite
Weyl groups give reflectable walks on the corresponding affine Weyl
groups. These steps are enumerated in [8]; they turn out to be precisely the
Weyl group images of the minuscule weights [2], those weights with dot-
product 0 or ±1 with every root. The reflectable walks include the weights
which are minuscule for only one of Bn and Cn. In the Bourbaki numbering
[2], the allowed step sets are the Weyl group images of the following w̌i,
the duals of the fundamental roots:

An: w̌1, ..., w̌n, all compatible,

Bn, Cn: w̌1, w̌n, not compatible,

Dn: w̌1, w̌n−1, w̌n, all compatible,

E6 : w̌1, w̌6, compatible,

E7: w̌7.

E8, F4, G2: none.

We can also get a reflectable walk by taking any union of compatible
step sets (step sets which give the same ki), and we can add the zero step.
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For the minuscule weights, which include all of the above weights for the
Weyl groups An, Dn, E6 and E7, and also include the weight w̌1 of Bn, and
w̌n of Cn, the allowed steps have dot product 0 or ±1 with every root; thus
multiplying the steps by 1/t for any positive integer t gives a reflectable
random walk for the affine Weyl group.
For the weights w̌n of Bn and w̌1 of Cn, the dot product with the short
roots is 0 or ±1, and with the long roots is 0 or ±2. Thus, for these cases,
we must multiply the steps by 1/2t for a positive integer t to satisfy the
reflectability condition.
In the natural cases we study later, it will be clear from the definitions
that the first reflectability condition is satisfied.

3. THE REFLECTION ARGUMENT OF
GESSEL AND ZEILBERGER

In a reflectable random walk problem, we want to compute bgl, k, the
number of walks from g to l of length k which stay in the interior of a
Weyl chamber or alcove. For example, the ballot problem can be converted
to this form by starting at the point (n−1, n−2, ..., 0) instead of the
origin, and requiring the coordinates to remain strictly ordered.
Let cc, k denote the number of random walks of length k, with steps in S,
from the origin to c, but unconstrained by a chamber. The fundamental
result of Gessel and Zeilberger [6] (also proved independently by Biane
[1] for finite Weyl groups), is

Theorem 3.1. If the walk from g to l is reflectable, then

bgl, k= C
w ¥W
sgn(w) cw(l)−g, k . (5)

If W is an affine group, this is an infinite sum, but only finitely many
terms are nonzero for any fixed k.

Proof. Every walk from g to any w(l) which does touch at least one
wall has some first step j at which it touches a wall. Let the wall be a
hyperplane perpendicular to ai, choosing the largest i if there are several
choices [16]; the reflection in that wall is a reflection rai , k. Reflect all steps
of the walk after step j across that hyperplane; the resulting walk is a walk
from g to rai , kw(l) which touches the same wall at step j. This clearly gives
a pairing of walks, and since rai , k has sign −1, these two walks cancel out
in (5). The only walks which do not cancel in these pairs are the walks
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which stay within the Weyl chamber or alcove, and since w(l) is inside the
Weyl chamber or alcove only if w is the identity, this is the desired number
of walks. L

The specific case of the theorem in which W is the symmetric group Sn
was proved by Karlin and McGregor [13]. We can view the Sn process as n
separate walks which are not allowed to collide, rather than one walk
restricted to the region x1 > · · · > xn, and interchange two particles when
they collide. If nij, k is the number of walks of length k from gi to lj, then
the formula (5) becomes

bgl, k= C
s ¥ Sn

sgn(s) ni, s(i), k=det
n×n
|nij, k |. (6)

4. UNCONSTRAINEDWALKS

Two natural choices of step sets are the positive and negative coordinate
directions ±ei, or the 2n diagonals ±

1
2 e1 · · · ±

1
2 en. Both cases give reflect-

able walks for all the classical Weyl chambers. To get a non-trivial walk for
the alcoves of the affine Weyl groups, we have to re-scale either the steps or
the alcoves. It is more natural to state the problem if we leave the steps
alone and re-scale the alcoves by a factor of m or 2m, so that we study the
steps ±ei in the alcoves of the Weyl group mW or 2mW.
For the diagonals, cc, k is easy to compute, and for the coordinate
directions, the exponential generating function

hc(x)=C
.

k=0
cc, kxk/k!

is easy to compute.
If the steps S are the diagonals ± 12 e1 · · · ±

1
2 en, then the walk is essen-

tially n independent walks in the coordinate directions. Each step involves a
step of ± 12 in each coordinate direction, and thus the walk will go forwards
a distance of ci if there are ci more forward steps than backward steps.
That is,

cc, k=D
n

i=1

1 k
(k/2)+ci
2 . (7)
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If the steps S are ±ei, the positive and negative coordinate directions, let
q(u)=;n

i=1 ui+u
−1
i , the generating function for the steps in the formal

monomials u (x1, ..., xn)=ux11 · · · u
xn
n . Then we have

cc, k=q(u)k |uc ,

where |uc denotes the coefficient of uc in the polynomial. This gives

hc(x)=C
.

k=0
cc, kxk/k!=exp(xq(u))|uc

for any walk, and for this walk, we have

hc(x)=C
.

k=0
D
n

i=1
exp(x(ui+u

−1
i ))|uc.

This infinite sum can be written as a product of hyperbolic Bessel func-
tions, using the generating-function definition of the Bessel functions [18].
We have

exp(x(u+u−1))=C
.

k=0

xk

k!
C
k

j=−k

1k
j
2 uk−2j

= C
.

m=−.
um C

.

k=0

xk

k!
1 k
(k+m)/2
2

= C
.

m=−.
um C

.

t=0

x2t+m

t!(t+m)!

= C
.

m=−.
umIm(2x).

Thus, in this case, the exponential generating function for the uncon-
strained walks is

hc(x)=D
n

i=1
Ici (2x). (8)

5. NON-COLLIDING RANDOMWALKS ON AN INTERVAL,
AND FORMULAS FOR C̃n

The basic techniques are similar for all the classical groups; the case of
C̃n is the simplest as well as the most important case.
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The walk with steps ±ei in the chamber m > x1 > x2 > · · · > xn > 0 is
equivalent to a walk of n independent particles in the interval (0, m), with
the process terminating if two particles collide or if one particle hits an end
of the interval. It is reflectable if m is an integer. The Weyl chamber for C̃n
is 12 > x1 > x2 > · · · > xn > 0 because one of the roots is 2e1. We thus rescale
the group to 2mC̃n, to get the chamber m > x1 > x2 > · · · > xn > 0.
We will also consider the walk for the diagonal steps ± 12 e1 · · · ±

1
2 en. This

is reflectable in the same chamber if m is an integer or half-integer.
Since the coroots of C̃n are ei±ej and ±ei, the affine Weyl group 2mC̃n
includes all permutations with any number of sign changes, and transla-
tions of any coordinates by multiples of 2m.
We will first consider the walk for the diagonal steps ± 12 e1 · · · ±

1
2 en. We

write an element of the Weyl group as the product of s in the symmetric
group, reflections ei=±1 in the coordinate directions, and translations by
2mti in the coordinate directions. Thus Theorem 3.1 gives

bgl, k= C
s ¥ Sn

sgn(s) C
ti ¥ Z

C
ei=±1

D eic(e1ls(1)+2mt1, ..., enls(n)+2mtn)−g, k. (9)

Using the formula (7) gives

bgl, k= C
s ¥ Sn

sgn(s) C
ti ¥ Z

C
ei=±1

D
n

i=1
ei 1

k
(k/2)+eils(i)−gi+2mti

2 . (10)

Splitting each factor into terms with ei=1 and ei=−1 gives

bgl, k= C
s ¥ Sn

sgn(s) C
ti ¥ Z

D
n

i=1

51 k
(k/2)+ls(i)−gi+2mti

2

−1 k
(k/2)−ls(i)−gi+2mti

26 .
(11)

We interchange the inner sum and the product to get

bgl, k= C
s ¥ Sn

sgn(s) D
n

i=1
C
ti ¥ Z

51 k
(k/2)+ls(i)−gi+2mti

2

−1 k
(k/2)−ls(i)−gi+2mti

26 . (12)

And the signed sum over permutations is the definition of a determinant,
which gives

bgl, k=det
n×n

: C
ti ¥ Z

1 k
(k/2)+lj−gi+2mti

2−1 k
(k/2)−lj−gi+2mti

2 : . (13)
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The infinite periodic sums of binomial coefficients can be written as a finite
sum of powers of roots of unity, and thus of cosines. Let w=e2pi/4m; then
for fixed r and s, we have

w−rs(w r+w−r)k=C
j
w r(2j−s) 1 k

(k/2)+j
2 . (14)

Thus, if we take the sum over all r from 0 to 4m−1, all terms for which
2j – s (mod 4m) (that is, j – s

2 (mod 2m)) will cancel out because of the
roots of unity; that is,

1
4m

C
4m−1

r=0
w−rs(w r+w−r)k= C

j — s
2
(mod 2m)

1 k
(k/2)+j
2 . (15)

Since the original sum was real, we can eliminate the roots of unity in this
sum by taking the real part of w−rs and writing everything in terms of
cosines. This gives

1
4m

C
4m−1

r=0
cos(2prs/4m)(2 cos(2pr/4m))k= C

j — s
2
(mod 2m)

1 k
(k/2)+j
2 . (16)

Substituting this formula into (13) gives a determinant formula for this
case.

bgl, k=det
n×n

: 2k
4m

C
4m−1

r=0
(cos(2pr2(lj−gi)/4m)− cos(2pr2(−lj−gi)/4m))

· cosk(2pr/4m) : . (17)

We can convert the difference of cosines to a product of sines by the
identity cos(a−b)− cos(−a−b)=2 sin a sin b; doing this and simplifying
factors of 2 where possible gives the simplified formula

bgl, k=det
n×n

:2k−1
m

C
4m−1

r=0
(sin(prlj/m) sin(prgi/m)) cosk(pr/2m) : . (18)

For n=1, this is equivalent to the gambler’s ruin formula (1) and the
similar formula (2). The sum of the stakes N is our 2m (and m can be a half-
integer), since our steps are ± 12 rather than ±1. The gambler’s ruin
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formula counts the probability a walk will end at 0 on the kth step, which
is half the probability it will be at 1 after the (k−1)st step, so it corre-
sponds to walks from g to l=1

2 of length k−1. In addition, we are
counting walks rather than determining the probabilities for k-step walks,
so we have an extra factor of 2k−1.
The final difference is that our sum goes from r=0 to 4m−1 rather than
2m−1. The r=0 term is zero. Adding 2m to r changes the sign of
cosk(pr/2m) if k is odd, and changes the signs of sin(prl/2m) (and likewise
sin(prg/2m)) if l (respectively, g) is a half-integer. Thus, if k is odd and
l−g is an integer, or k is even and l−g is a half-integer, the terms from
r=2m to 4m−1 cancel out the terms from r=0 to 2m−1, so the total sum
is zero, which is correct because parity makes such a walk impossible.
Otherwise, the terms are duplicates, and thus we can multiply by 2 and
take only the terms from r=0 to 2m−1. The formulas (1) and (2) as stated
are only valid for possible walks, and we must add the extra terms so that
we get zero for impossible walks.
The procedure for the steps ±ei is similar. The same argument that gave
us the determinant (13) of periodic sums of binomial coefficients for the
case of diagonals shows that the exponential generating function is a
product of periodic sums of Bessel functions. We get

ggl(x)= C
s ¥ Sn

C
ti ¥ Z

sgn(s) D
n

i=1
(Ils(i) −gi+2mti (2x)−I−ls(i) −gi+2mti (2x)). (19)

We simplify these periodic sums of Bessel functions by again using the
generating-function definition for the hyperbolic Bessel functions

exp(x(z+z−1))=C
j ¥ Z

z jIj(2x).

If we let z=w r, where w=e2pi/2m here rather than e2pi/4m as for the
diagonals, we have

w−rs exp(x(w r+w−r))=C
j ¥ Z

w r(j−s)Ij(2x). (20)

As before, we now take 1/2m times the sum over all values of r to elimi-
nate the terms for which j – s (mod 2m), and then take the real part of w−rs

to write everything in terms of cosines. This gives

1
2m

C
2m−1

r=0
cos(2prs/2m) exp(2x cos(2pr/2m))= C

j — s (mod 2m)
Ij(2x). (21)
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Substituting this into our determinant gives the exponential generating
function for this random walk.

ggl(x)=det
n×n

: 1
2m

C
2m−1

r=0
(cos(2pr(lj−gi)/2m)− cos(2pr(−lj−gi)/2m))

· exp(2x cos(2pr/2m)) : . (22)

As before, we simplify factors of 2 and the difference of cosines to get the
final formula

ggl(x)=det
n×n

: 1
m

C
2m−1

r=0
sin(prlj/m) sin(prgi/m)

· exp(2x cos(pr/m)) : . (23)

Since this is a model of n non-colliding particles, this formula could also
be derived from the argument of Karlin and McGregor [12, 13]. The
possibility of a walk restricted to an interval is not mentioned there,
but the argument is still valid. The formula above could thus be derived
from the sum of Bessel functions for the one-dimensional walks using
a particle-interchange argument analogous to the one we use below in
Theorem 6.1.

6. FORMULAS FOR Ãn−1, AND NON-COLLIDING
RANDOMWALKS ON THE CIRCLE

The Weyl group Ãn−1 gives Weyl chamber x1 > x2 > · · · > xn > x1−1, so
we rescale by a factor of m to get x1 > x2 > · · · > xn > x1−m. The Weyl
group acts only on the hyperplane ; xi=0. It is easier to study walks in Rn
with steps in the coordinate or diagonal directions as before; we will also
project these walks onto the hyperplane on which Ãn−1 acts to study walks
on this hyperplane.
This Weyl group gives another important reflectable case, the n steps ei,
in addition to the two reflectable cases we had for C̃n. The step set ei is the
primary case that has been studied previously [4, 14]. This step set does

296 DAVID J. GRABINER



not give a reflectable walk for B̃n, C̃n, or D̃n because the step set is not
symmetric under the Weyl group.
In addition, we will study the case of n independent random walks on the
circle (the interval [0, m] with endpoints identified). We will use the same
notation for this problem as for a single n-dimensional walk, as it is analo-
gous to a single n-dimensional walk in mÃn−1. The desired number of walks
b −gl, k is the number of ways for particle i to go from gi to li in k steps such that
no two particles collide. The walk is reflectable if it is symmetric under an
interchange of particles at any time that two particles are in the same place.
For the steps ei, the problem is the same for the Weyl group mÃn−1
acting on Rn or the hyperplane, and for n non-colliding particles on the
circle (the interval [0, m] with endpoints identified) with one moving
forward at a time. The points g and (g1+c, ..., gn+c) in Rn project to the
same point on the hyperplane ; xi=0, but if there are walks from l to g
of k steps, then ; (gi−li)=k, and there cannot be walks to
(g1+c, ..., gn+c) for c ] 0. (Note that this does not hold for the other step
sets because there are backward steps.) Thus there is a bijection between
walks in Rn from l to g and walks in the hyperplane from the projection of
l to the projection of g. The walks in the hyperplane have steps which are
(n−1)/n in one coordinate direction and −1/n in the other coordinate
directions; that is, they are the Weyl group images of the fundamental
weight w̌1.
To see that the walks restricted to the alcove on Rn and of n non-collid-
ing particles on the circle are equivalent, let each coordinate of a walk in Rn

represent an individual particle. The first and last particles will collide if
x1−m=xn, and two adjacent particles will collide if xi=xi+1; these walls
are the same as the walls of the Weyl chamber. We want to count the
number of k-step walks in the alcove in Rn in which one particle goes from
l to g. This is the same as the number of sets of non-colliding walks of n
particles in which particle i goes from li to gi, provided that the coor-
dinates of g are translated by multiples of m if necessary so that
; (gi−li)=k, and so that they are in decreasing order in an interval of
length m. (Again, this argument is not valid for the other step sets, because
we do not have the condition ; (gi−li)=k.)
For example, a walk of 59 steps from (2, 1, 0) to (4, 3, 5) on a circle of
length m=10 corresponds to a walk in the alcove in Rn ending at
(24, 23, 15); a walk of 49 steps is impossible without permutation of par-
ticles, as the walk in the alcove in Rn cannot end at (14, 23, 15), and a walk
which ends at (23, 15, 14) corresponds to a walk on the circle in which the
first particle goes from 2 to 3, not from 2 to 4.
The number of unconstrained walks from g to g+c with steps ei is the
multinomial coefficient k!/c1! · · · cn!. The Weyl group mÃn−1 has coroots
ei−ej, so the Weyl group contains all permutations, with translations of all
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coordinates by multiples of m such that the sum of translations is zero.
Thus, if we look at the constrained walks on Rn which end at l, then
Theorem 3.1 gives us the sum for any step set

bgl, k= C
s ¥ Sn

C
; ti=0

sgn(s) c(mt1, ..., mtn)+s(l)−g, k, (24)

which in our case is

bgl, k= C
s ¥ Sn

C
; ti=0

sgn(s)
k!

<n
i=1(mti+ls(i)−gi)!

. (25)

This is the formula computed by Filaseta and Krattenthaler [4, 14].
We cannot convert this sum to a single determinant in this case; the
condition ; ti=0 means that we do not have a periodic infinite sum. We
can convert the sum to a sum of determinants by interchanging the order
of summation and taking out the constant factor k!. This gives

bgl, k=k! C
; ti=0

det
n×n
|1/(mti+lj−gi)!|. (26)

For the other step sets, the problems of n particles on the circle, of one
particle in Rn, and of one particle in the hyperplane ; xi=0 on which the
Weyl group acts, are not equivalent. We can use our methods to get single
determinant formulas for walks of n particles in the circle, or of one
particle on the hyperplane.
It is most natural to start with the case of n particles on the circle, as we
will use the results of this case in our formulas for the walk on the
hyperplane. We will use a reflection argument from [13] closely related to
Theorem 3.1, and a technique used in [10] for the analogous problem for
Brownian motion. This theorem is essentially a case of [5, Theorem 2].

Theorem 6.1. Let c −c, k be the number of unconstrained walks in R
n (not

on the circle) of length k from g to g+c. We may assume the coordinates of
g are in decreasing order; let ls be the smallest coordinate of l. If the walk
from g to l on the circle of size m is reflectable, then the number of
constrained walks of length k on the circle is

b −gl, k= C
s ¥ Sn

C
; ti — s (mod n)

sgn(s) c −(mt1, ..., mtn)+s(l)−g, k. (27)
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Proof. The walks counted by c −c, k on Rn project to walks of n particles
on the circle by taking coordinates modulo m. In a walk which projects to
a good walk, if particle s goes from gs to ls+mts, then particle i for i < s,
which starts at gi > gs, must end between ls+mts and ls+(m+1) ts in
order not to collide with particle s when the walk is projected to the circle.
Since li > ls, we must have ti=ts. Similarly, if i > s, we have ti=ts−1.
Thus the sum of all the ti, corresponding to the total number of
revolutions, is congruent to s modulo n.
Now, consider a bad walk counted by (27). Consider the first time at
which two particles collide, and the first pair of particles i and j which
collide at that time. Pair it with the corresponding walk obtained by
switching particles i and j after the collision. The new s will differ from the
old s by a transposition; the values of ti and tj may change, but the sum
ti+tj will not because the total forward distance covered by the two par-
ticles does not change. Thus the paired walk is still counted in (27), and
these walks cancel out.
The only walks which do not cancel out are those which have no colli-
sions, and the only walks which have no collisions and are counted are
those in which the particles end in the correct positions. L

We can convert the sum from this theorem to a finite sum in the same
way as before. For the steps ±ei, which corresponds to one particle at a
time moving independently, we have the exponential generating function

g −gl(x)= C
s ¥ Sn

C
; ti — s (mod n)

sgn(s) D
n

i=1
Ils(i) −gi+mti (2x). (28)

Let z=e2pi/mn; then we can eliminate the condition ; ti — s (mod n) by
using the fact that

1
n
C
n−1

u=0
zum(−s+; ti)

is 1 if ;ti — s (mod n) and 0 otherwise. Thus we have

g −gl(x)=
1
n
C
n−1

u=0
z−ums C

s ¥ Sn

C
ti ¥ Z

sgn(s) D
n

i=1
zumtiIls(i) −gi+mti (2x). (29)

For each value of u, we get a determinant as before, but this time we have
period m rather than 2m. This gives

g −gl(x)=
1
n
C
n−1

u=0
z−ums det

n×n

: C
ti ¥ Z

zumtiIlj −gi+mti (2x) : . (30)
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Except for the factor zumti, these determinants are the same type as as (19).
We can again use exp(x(z+1/z))=;j ¥ Z z jIj(2x), and take a sum over
different values of z; this time, we will use z=zu+nr, and take the sum of
only m terms; that is,

1
m

C
m−1

r=0
z−(u+nr) v exp(x(zu+nr+z−(u+nr)))= C

j — v (mod m)
z juIj(2x). (31)

We cannot eliminate all of the complex terms by taking the real part, but
we can get a formula which still contains the complex roots of unity,

g −gl(x)=
1
n
C
n−1

u=0
z−ums det

n×n

: 1
m

C
m−1

r=0
z−(u+nr)(lj −gi) exp(2x cos(2p(u+nr)/(mn))) : .

(32)

An analogous method works for the diagonal walk. In this walk on the
circle, the particles all start at integer positions, or all start at half-integer
positions, and at each step, all particles move simultaneously forwards or
backwards by 12 . We define s as before and z=e

2pi/2mn since each periodic
sum becomes 2m terms rather than m, and follow a similar process to get

b −gl, k=
1
n
C
n−1

u=0
z−2ums det

n×n

:2k−1
m

C
2m−1

r=0
z−(u+nr)(lj −gi) cosk(p(u+nr)/(mn)) : . (33)

For the case of walks in the mÃn−1 Weyl chamber on Rn, restricted to
end at l, we have the formula (24). We have the same difficulty in getting a
single determinant for all step sets, but we can use the same argument as
for (26) to get a sum of determinants. For the steps ±ei, we get the
exponential generating function

ggl(x)= C
; ti=0

det
n×n
|Imti+lj −gi (2x)|, (34)

and for the diagonal steps ± 12 e1 · · · ±
1
2 en, we get

bgl, k= C
C ti=0

det
n×n

: 1 k
(k/2)+mti+lj−gi

2 : . (35)

In contrast, we can get a sum of determinants for the walk restricted to the
hyperplane ; xi=0 restricted to the alcove, by using the formulas for
walks on the circle. We look at the walks on Rn, and then project them
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back to the hyperplane; a walk which ends at (l1+c, ..., ln+c) on Rn

projects to a walk which ends at l on the hyperplane. In particular, the
destinations (l1+mt, ..., ln+mt) for all integers t must all be considered,
and these are exactly the destinations we had in the problem on the circle.
Summing the formula (24) over all such destinations gives exactly the same
sum as in (27), allowing us to use our previous formulas. We will get one
term for each (l1+c+mt, ..., ln+c+mt) for 0 [ c < m for which the walk
can reach such destinations. Thus c may be any integer with 0 [ c < m if
the steps in Rn are ±ei. It must also be an integer if the steps are the
diagonals, provided that we choose our l so that gi−li−k/2 is an integer;
that is, so that l itself has the correct coordinates to make a walk to l pos-
sible in Rn by parity; if g were unreachable by parity, then c would have to
be a half-integer.
For the walk on the hyperplane equivalent to the walk with steps ±ei,
the 2n allowed steps are the projections of ±ei on this hyperplane, which
are (n−1)/n in one coordinate direction and −1/n in all others, or
−(n−1)/n in one coordinate direction and 1/n in all others. That is, they
are the Weyl group images of the weights w̌1 and w̌n−1. We define s in (32)
as before (it is not changed when we translate all coordinates of g by c),
and take the sum of the m terms to get

ggl(x)=C
m−1

c=0

1
n

C
n−1

u=0
z−ums

·det
n×n

: 1
m

C
m−1

r=0
z−(u+nr)(lj −gi −c) exp(2x cos(2p(u+nr)/(mn))) : .

(36)

The walk on mÃn−1 corresponding to the diagonals is more natural. If a
particular diagonal step has p coordinates 12 and n−p coordinates −1/2,
then it projects to the vector in the hyperplane with p coordinates (n−p)/n
and n−p coordinates −p/n. These include all the fundamental weights
w̌1, ..., w̌n−1 of the Weyl group An−1, including their images under permu-
tations; we also get the zero step with multiplicity 2 from the two diagonals
with all coordinates equal:

bgl, k=C
m−1

c=0

1
n

C
n−1

u=0
z−2ums

·det
n×n

:2k−1
m

C
2m−1

r=0
z−(u+nr)(lj −gi −c) cosk(p(u+nr)/(mn)) : . (37)
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7. FORMULAS FOR B̃n AND D̃n

The affine Weyl group 2mB̃n gives the chamber x1 > x2 > · · · > xn > 0,
x1+x2 < 2m. The affine Weyl group 2mD̃n gives the chamber x1 > x2 > · · ·
> xn, x1+x2 < 2m, xn−1 > −xn. Neither one gives a natural model for n
independent particles in one dimension.
The Weyl group 2mB̃n contains all permutations with any number of sign
changes, and with translations of coordinates by multiples of 2m such that
the total translation is a multiple of 4m (since B̃n does not have 2ei as a
root and thus does not have ei as a coroot). The Weyl group 2mD̃n contains
all permutations with an even number of sign changes, and with transla-
tions of coordinates by multiples of 2m such that the total translation is a
multiple of 4m.
We will find the formulas for these cases by using the fact that 2mB̃n and
2mD̃n are subgroups of 2mC̃n, of index 2 and 4. We can thus modify the
formula (9) by including a term which is 1 if the potential endpoint of the
walk is in the Weyl group image of the appropriate subgroup, and 0
otherwise; this is analogous to the technique used to get Dn formulas from
Bn formulas in [7, 8].
If an element of 2mC̃n contains translations by 2mti, then it is in 2mB̃n if

; ti is even, and thus (1+(−1); ti)/2 is a factor which is 1 if the element
is in 2mB̃n and 0 otherwise. Likewise, if it contains reflections ei, it is
only in 2mD̃n if it is in 2mB̃n and < ei=1, so the appropriate factor is
(1+< ei)/2.
Thus, for 2mB̃n, we have

ggl(x)= C
s ¥ Sn

C
ei=±1

C
ti ¥ Z

1+(−1); ti

2
sgn(s) D

n

i=1
eiIeils(i) −gi+2mti (2x).

(38)

We take the 1/2 and (−1); ti/2 terms separately. The 1/2 term is the term
for 2mC̃n. The other term also gives a determinant,

det
n×n

: C
ti ¥ Z

(−1) ti (Ilj −gi+2mti (2x)−I−lj −gi+2mti (2x)) :. (39)

These sums are periodic, but with period 4m rather than 2m. We can
express the terms with odd and even ti as separate periodic sums as before,

1
4m

C
4m−1

u=0
(cos(2pus/4m)− cos(2pu(2m+s)/4m)) exp(2x cos(2pu/4m))

= C
j — s (mod 4m)

Ij(2x)−I2m+j(2x). (40)
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For even u, cos(2pus/4m)=cos(2pu(2m+s)/4m), so these terms are all
zero. For odd u, cos(2pus/4m)=−cos(2pu(2m+s)/4m), so the two
cosines combine to one term. Thus we can let u=2r+1 and write the sum as

1
2m

C
2m−1

r=0
cos(2p(2r+1) s/4m) exp(2x cos(2p(2r+1)/4m))

= C
j — s (mod 4m)

Ij(2x)−I2m+j(2x). (41)

We put both of these terms together in the determinant, to get

ggl(x)=
1
2
5det
n×n

: 1
2m

C
2m−1

r=0

5cos 12pr(lj−gi)
2m
2− cos 12pr(−lj−gi)

2m
26

· exp(2x cos(2pr/2m)) :

+det
n×n

: 1
2m

C
2m−1

r=0

5cos 12p(2r+1)(lj−gi)
4m
2

− cos 12p(2r+1)(−lj−gi)
4m

26 exp(2x cos(2p(2r+1)/4m)) :6 .
(42)

Again, we simplify this to

ggl(x)=
1
2
5det
n×n

: 1
m

C
2m−1

r=0
sin(prlj/m) sin(prgi/m) exp(2x cos(pr/m)) :

+det
n×n

: 1
m

C
2m−1

r=0
sin(p(2r+1) lj/2m) sin(p(2r+1) gi/2m)

· exp(2x cos(p(2r+1)/2m)) :6 . (43)

Likewise, for 2mD̃n, we have as our initial formula

ggl(x)= C
s ¥ Sn

C
ei=±1

C
ti ¥ Z

1+(−1); ti

2
1+< ei
2

sgn(s) D
n

i=1
Ieils(i) −gi+mti (2x).

(44)

We split this into four terms, taking each combination of the 12 or the
other term. When we use 12 rather than < ei/2, and continue as in (9)
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or (38), we have a plus sign rather than a minus sign before the term of
I−ls(i) −gi+mti (2x). Everything else carries out just as before; we have a plus
sign rather than a minus sign between the two terms in this determinant.
This gives us the determinant formula for 2mD̃n,

ggl(x)

=
1
4
5det
n×n

: 1
2m

C
2m−1

r=0

5cos 12pr(lj−gi)
2m
2−cos 12pr(−lj−gi)

2m
26

·exp(2x cos(2pr/2m)) :

+det
n×n

: 1
2m

C
2m−1

r=0

5cos 12p(2r+1)(lj−gi)
4m
2−cos 12p(2r+1)(−lj−gi)

4m
26

·exp(2x cos(2p(2r+1)/4m)) :

+det
n×n

: 1
2m

C
2m−1

r=0

5cos 12pr(lj−gi)
2m
2+cos 12pr(−lj−gi)

2m
26

·exp(2x cos(2pr/2m)) :

+det
n×n

: 1
m

C
2m−1

r=0

5cos 12p(2r+1)(lj−gi)
4m
2+cos 12p(2r+1)(−lj−gi)

4m
26

·exp(2x cos(2p(2r+1)/4m)): 6. (45)

We simplify as before, with the sum of cosines simplifying by cos(a−b)+
cos(−a−b)=2 cos a cos b, to get our final formula for 2mD̃n,

ggl(x)

=
1
4
5det
n×n

: 1
m

C
2m−1

r=0
sin(prlj/m) sin(prgi/m)

· exp(2x cos(pr/m)) :

+det
n×n

: 1
m

C
2m−1

r=0
sin(p(2r+1) lj/2m) sin(p(2r+1) gi/2m)

· exp(2x cos(p(2r+1)/2m)) :
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+det
n×n

: 1
m

C
2m−1

r=0
cos(prlj/m) cos(prgi/m)

· exp(2x cos(pr/m)) :

+det
n×n

: 1
m

C
2m−1

r=0
cos(p(2r+1) lj/2m) cos(p(2r+1) gi/2m)

· exp(2x cos(p(2r+1)/2m)) :6 . (46)

In both cases, we have analogous formulas for the diagonal walk, which
again allows m to be a half-integer.

8. OPEN QUESTIONS

The number of reflectable random walks in a classical Weyl chamber is
of interest in representation theory. Let the step set be the set of weights of
a representation of the corresponding Lie group. Let the starting point g be
r, half the sum of the positive roots, and the end point l be r+m. If the
walk is reflectable, then the number of walks from r to r+m is the mul-
tiplicity of the representation with highest weight m in the kth tensor power
of the representation whose weights are the step set [8]. Does the number
of walks in an alcove of an affine Weyl chamber have a similar meaning in
representation theory, either in the representations of other Lie groups or
Lie algebras, or of the classical Lie groups over some other field?
We have a formula for the probability that n particles in an interval or
on a circle will not collide in k steps. Can we get a single general formula,
or an asymptotic, for the total probability that there will be no collision?
There are formulas and interpretations of the q-analogue of the case with
Weyl group Ãn−1 and steps +ei [14]. Can q-analogues of the other cases
be defined and are they of interest?
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Note added in proof. A. J. Guttman, C. Krattenthaler, and X. Viennot (‘‘Vicious walkers,
friendly walkers, and Young tableaux. III. With two walls,’’ in preparation) have computed
asymptotics for the C̃n case of n particles on an interval, both for the number of walks from g
to l of k steps and for the probability that a random walk will survive for k steps with no
collision. C. Krattenthaler (personal communication) has also computed similar asymptotics
for the case on the circle.
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